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Brane world models with a nonminimally coupled bulk scalar field have been studied recently. In this
paper we consider metric fluctuations around an arbitrary gravity-scalar background solution, and we
show that the corresponding spectrum includes a localized zero mode which strongly depends on the
profile of the background scalar field. For a special class of solutions, with a warp factor of the RS form,
we solve the linearized Einstein equations, for a pointlike mass source on the brane, by using the brane
bending formalism. We see that general relativity on the brane is recovered only if we impose restrictions
on the parameter space of the models under consideration.

DOI: 10.1103/PhysRevD.76.064025 PACS numbers: 04.50.+h

I. INTRODUCTION

The old Kaluza-Klein idea of enlarging the space-time
manifold to extra dimensions has been put on a new basis
recently, in an attempt to solve the hierarchy problem
between the electroweak scale and the Planck scale. The
new point is that there is no need to consider extra dimen-
sions of the order of the Planck length: one may consider
large compact extra dimensions of the order of a millimeter
[1] or even a noncompact extra dimension [2]. An interest-
ing feature of these models, is that they have testable
predictions in the near future high energy experiments.

The localization problem is a major issue in these so-
called brane world models [3,4]. The graviton propagates
in all dimensions (also in the bulk), since it is the dynamics
of space-time itself. The SM particles are localized in some
way on the 4D submanifold (brane), which corresponds to
the universe we are living in. Several localization mecha-
nisms have been proposed; see, for example, Refs. [5,6]
and references therein. For lattice simulations on the same
subject see Ref. [7].

In Ref. [1] one introduces n flat extra compact spatial
dimensions with large volume. This brane world model is
known as ADD model (Arkani-Hamed, Dimopoulos and
Dvali). An important feature of a wide class of brane world
models, including the ADD model, is that they predict
deviations from the 4D Newton law at submillimeter
distances.

The simplest brane models with a warped extra dimen-
sion have been introduced in Ref. [2]. In the first version,
which is known as the first Randall-Sundrum model, we
have an orbifolded extra dimension of radius rc. Two
branes are fitted to the fixed points of the orbifold, z � 0
and zc � �rc with tensions � and �� respectively; it is
assumed that the particles of the standard model are
trapped on the negative tension brane. The second version

of the model is constructed if we send the negative tension
brane to infinity (rc ! �1) and assume that the ordinary
matter lives on the positive tension brane.

In both versions of the Randall-Sundrum model the 4D
graviton is obtained by considering small gravitational
fluctuations �h�� around the classical solution of the model.
The spectrum of gravitational fluctuations �h�� consists of a
zero mode, which gives rise to Newton’s law on the brane,
plus a continuum of positive energy states with no gap,
giving small corrections to the 4D Newtonian potential.
For a derivation of the equation obeyed by the metric
fluctuations see, for example, Ref. [8].

The proper calculation of the Newtonian potential on the
brane plus the correction terms has been detailed by J.
Garriga and T. Tanaka [9] and by S. B. Giddings et al. [10].
These works use the so-called bent brane formalism. The
idea is that if one puts a matter source on the brane, there is
a gauge choice for which the equations for the metric
perturbations decouple; however, in this gauge the brane
is not located at z � 0 but it appears bent around the
position of the matter source. In Ref. [9] it is pointed out
that the role of the bending is essential in reproducing the
4D graviton propagator structure out of the 5D one, as it
exactly compensates for the effects of extra polarization.
Calculations of the Newton potential based on different
philosophies can be found in Ref. [11–14]. For a recent
review on the topic the reader may consult Ref. [15], and
references therein.

There are various generalizations of the ideas of stan-
dard Randall-Sundrum scenario, such as models with more
than five dimensions, models with topological defects
toward the extra dimensions, multibrane models and mod-
els with higher order curvature corrections (i.e. Gauss-
Bonnet gravity). Details are to be found in, for example,
Refs. [6,16,17] and references therein.

Brane world models with a nonminimally coupled bulk
scalar field, via an interaction term of the form � 1

2�R�
2,

where � is a dimensionless coupling, have been studied
recently. Static solutions of these models have been exam-

*kfarakos@central.ntua.gr
†kutsubas@central.ntua.gr
‡paul@central.ntua.gr

PHYSICAL REVIEW D 76, 064025 (2007)

1550-7998=2007=76(6)=064025(10) 064025-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.064025


ined numerically in Refs. [18–20], for the simplest case of
a scalar field potential V��� � ��4, while in Ref. [21] the
same model has been examined in the presence of Gauss-
Bonnet gravity. In Ref. [22] analytical solutions have been
obtained by choosing appropriately the potential for the
scalar field. Cosmological implications of these models are
described in Ref. [23].

A crucial question is, whether standard four-
dimensional gravity can be recovered on the brane in
models with a nonminimally coupled scalar field. In order
to answer this question we consider metric fluctuations
around an arbitrary gravity-scalar background solution of
these models. We see that the corresponding spectrum does
include a localized zero mode, which is necessary for
Newton’s law to hold on the brane. For a special class of
solutions, with a warp factor of the RS form, we solve the
linearized Einstein equations in the case where a pointlike
mass source sits on the brane, using the bent brane formal-
ism. We see that standard four-dimensional gravity on the
brane is recovered only if we impose serious restrictions on
the parameters of these models.

In Sec. II of this work we define the model; in Sec. III we
give the first order (linearized) version of the Ricci and the
energy-momentum tensors, concluding with an equation
for the gravitational fluctuation in a source-free space-
time; in Sec. IV we comment on the spectrum of the metric
fluctuations. In Sec. V we present the bent brane formalism
for our case, we calculate the gravitational perturbations
and comment on the results. Section VI summarizes our
conclusions. Finally, in an appendix we give a short dis-
cussion on tensor fluctuations in the Einstein frame.

II. THE MODEL

We consider the action of five-dimensional gravity with
a nonminimally coupled bulk scalar field:

 S �
Z
d5x

������
jgj

q �
F���R�

�����������������
jg�brane�j

q
������
jgj

p ������z�

�
1

2
g��r��r��� V���

�
; (1)

where

 F��� �
1

2k
�1� k��2�; k � 8�G5: (2)

G5 is the five-dimensional Newton’s constant, and ���� is
a �-dependent brane tension. We have assumed that �,
� � 0, 1, 2, 3, 5, and d5x � d4xdz where z describes the
extra dimension. Note that in the above action we did not
add an explicit cosmological constant term; if it is present,
it may be included in the scalar field potential V���.

The Einstein equations with the nonminimally coupled
bulk scalar field are

 

F���G�� �r�r�F��� � g���F���

�
1

2
������z�

�����������������
jg�brane�j

q
������
jgj

p gij�i��
j
� �

1

2
T����� ; (3)

where i, j � 0, 1, 2, 3, G�� � R�� �
1
2g��R, and T����� is

the energy-momentum tensor for the scalar field

 T����� � r��r��� g���
1
2g
	�r	�r��� V����: (4)

The equation of motion for the scalar field reads

 ��� F0���R� V 0��� � �0�����z� � 0; (5)

where F0��� � dF���
d� ; similar definitions are understood

for V 0��� and �0���.
The equations of motion (3) and (5) possess static solu-

tions of the following form:

 ds2 � e2A�z�
ijdx
idxj � dz2; � � ��z�; (6)

which exhibits four-dimensional Poincarè symmetry. The
sign convention for the Minkowski metric is 
ij �
diag��1; 1; 1; 1�.

Static solutions of the form of Eq. (6) have been studied
both numerically [19] and analytically [22].

III. LINEARIZED EQUATIONS

In this section we determine the linearized equations for
the metric fluctuations �h��, in the case of the brane model
with the nonminimally coupled scalar field introduced in
Sec. II.

It is convenient to consider a Gaussian normal coordi-
nate system �xi, �z, where the brane is located by definition at
�z � 0, and the fluctuations �h��, around the brane back-
ground solution, satisfy the conditions �h�5 � �h55 � 0.
Note that we do not consider scalar field fluctuations in
the sequel; we will explain at the end of this section that
this is consistent.

The perturbed metric in this coordinate frame reads

 ds2 � e2A� �z��
ij � �hij�d �xid �xj � d�z2: (7)

The Ricci tensor may be expanded to read

 R�� � R�0��� � R
�1�
�� � . . . ; (8)

where the zero order term is
 

R�0�ij � �e
2A�A00 � 4A02�
ij; R�0�55 � �4�A00 � A02�;

R�0�5i � 0; (9)

while the first order term is
 

R�1�ij � �e
2A�12@

2
z � 2A0@z � A00 � 4A02� �hij �

1
2�
�4� �hij

� 1
2
ije

2AA0@z�

kl �hkl� �

1
2


kl�@i@jhkl � @i@khjl

� @j@khil�; (10)
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 R�1�55 � �
1
2�@

2
z � 2A0@z�


kl �hkl;

R�1�i5 �
1
2


kl@z�@k �hil � @i �hkl�;
(11)

where we have used the 4D d’ Alembertian operator:
��4� � 
ij@i@j:.

In this paper we will use the alternative form of the
Einstein equations, which reads

 2F���R�� � ~t��; (12)

where ~t�� � t�� �
1
3g��t, t � t�� � g��t��, and t�� is

defined as
 

t�� � T����� � 2r�r�F��� � 2g���F���

� ������z�

�����������������
jg�brane�j

q
������
jgj

p gij�
i
��

j
�: (13)

The tensor ~t�� may also be expanded as

 

~t �� � ~t�0��� � ~t�1��� � . . . ; (14)

with the zero order term:
 

~t�0�ij �
2

3

ije

2A���0�2F00��� � 7�0A0F0��� ��00F0���

� V���� � 1
3
ij������z�; (15)

 

~t�0�55 � ��
0�2 � 8

3��
0�2F00��� � 8

3�
0A0F0��� � 8

3�
00F0���

� 2
3V���; ~t�0�5i � 0; (16)

and the first order term:

 

~t �1�ij �
2
3e

2A���0�2F00��� � 7�0A0F0��� ��00F0���

� V���� �hij �
1
3������z�

�hij

� 1
3
ije

2AF0����0@z�

kl �hkl� � e

2AF0����0@z �hij;

(17)

 

~t �1�55 �
1
3e

2AF0����0@z�

kl �hkl�; ~t�1�5i � 0: (18)

If we use Eqs. (8), (12), and (14) we obtain the zero and
first order Einstein equations:

 2F���R�0��� � ~t�0���; (19)

 2F���R�1��� � ~t�1���: (20)

The background solution for the metric, Eq. (6), satisfies
the zero order Einstein equations:

 

F����A00 � 4A02� � 1
3��

0�2F00��� � 7
3�
0A0F0���

� 1
3�
00F0��� � 1

3V��� �
1
6������z� � 0; (21)

 

F����4A00 � 4A02� � 1
2��

0�2 � 4
3��

0�2F00��� � 4
3�
0A0F0���

� 4
3�
00F0��� � 1

3V��� � 0; (22)

and the appropriate boundary conditions on the brane
[19,22].

Note, that Eq. (5) for the scalar field, is also satisfied by
the background solution, since it is not independent from
the Einstein equations (3); in fact it can be derived from the
latter [19].

If one takes into account Eqs. (21) and (22), the first
order Einstein equations (20), can be rewritten in the form:

 

2F�����e2A�12@
2
z � 2A0@z� �hij �

1
2�
�4� �hij �

1
2
ije

2AA0@z�
kl �hkl�;

� 1
2


kl�@i@j �hkl � @i@k �hjl � @j@k �hil�� �
1
3
ije

2AF0����0@z�
kl �hkl� � e2AF0����0@z �hij (23)

 � F����@2
z � 2A0@z�
kl �hkl �

1
3e

2AF0����0@z�
kl �hkl�;
1
2


kl@z�@k �hil � @i �hkl� � 0: (24)

We can simplify the above equations if we perform a
gauge transformation �hij ! hij [see Eqs. (45), (48), and
(49) below], where the metric fluctuations hij in the new
coordinate system satisfies the conditions 
ijhij � 0
(traceless) and @ihij � 0 (transverse). In this coordinate
system the Einstein equations decouple and we get:

 F�����e2A�@2
z � 4A0@z� ���4��hij � e2AF0����0@zhij;

(25)

or equivalently:

 �@2
z �Q

0�z�@z � e
�2A��4��hij � 0; (26)

where we have set

 Q�z� � 4A�z� � ln�F���z���: (27)

In this paper we assume that the solutions considered
satisfy F���> 0.

Note that in this work we do not examine the case of
nonzero scalar field fluctuations, that is we have assumed
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that the fluctuation ~� around the background scalar field
vanishes. This is consistent, since one finds that the line-
arized equation of motion for the scalar fluctuation reads:
 

~�00 � 4A0 ~�0 � 1
2�
0
ijh0ij � F

0���R�1� � F00���R�0� ~�

� V00��� ~� � 0:

If we impose the constraint ~� � 0, this equation becomes
1
2�
0
ij �h0ij � F

0���R�1� � 0. or
 

1

2
�0
ij �h0ij �

dF���
d�

�
ij �h00ij � 5A0
ij �h0ij � e
�2A��
ij �hij�

� e�2A@i@j �hij� � 0: (28)

The primes denote differentiation with respect to z. In the
following we work in a gauge, in which the gravitational
perturbation satisfies the constraints 
ijhij � 0, @ihij � 0
[see Eq. (46) below]. It is easily seen that in this gauge
Eq. (28) is manifestly satisfied.

IV. GRAVITON LOCALIZATION

In this section we study the spectrum of metric fluctua-
tions for brane models with a nonminimally coupled scalar
field. We obtain that the spectrum does include a zero mode
localized on the brane (which is necessary, in order to
obtain the 4D Newton’s law), along with a continuum of
positive energy states. It should be noted that in models
with a nonminimal coupling the weight function r�z� �
F���e2A depends on the background scalar field, which
marks an important difference from the RS2-model, or
models with a minimally coupled scalar field.

A. Sturm-Liouville form

It is easy to find the weight function by bringing the
equation for the gravitational fluctuations in a Sturm-
Liouville form. If we set

 hij�x; z� � eipxu�m; z� (29)

in Eq. (26) we obtain

 �@2
z �Q

0@z �m
2e�2A�u�m; z� � 0; (30)

where m2 � �pipi is the four-dimensional mass.
We note the following boundary condition on the brane:

 @zhij�x; z�jz�0 � 0; or u0�m; 0� � 0: (31)

Multiplying Eq. (30), with the factor eQ, where Q is
defined in Eq. (27), we get

 � @z�e
Q@zu�m; z�� � m2eQ�2Au�m; z�: (32)

The above equation is of the Sturm-Liouville form:

 � @z�p�z�@zu��; z�� � q�z�u��; z� � �r�z�u��; z�; (33)

with the coefficients:

 

p�z� � F���e4A; r�z� � F���e2A;

q�z� � 0; � � m2:
(34)

The eigenvalue Eq. (33) has a constant solution u�0; z�
for the zero mode (m2 � 0). This solution u�0; z� must be
square integrable with a weight function r�z� � F���e2A,
so the normalizable zero mode is

 u�0; z� �
1���������������������������������R

�1
�1 dzF���e

2A
q : (35)

In addition, the quantity �u�0; z��2F���e2Adz may be in-
terpreted as the probability to obtain the corresponding
graviton between the positions z and z� dz. Note that
we have considered only solutions which satisfy the re-
striction F���> 0 and thus the probability density is
positive. We have also assumed that the integralR
�1
�1 F���e

2A�z�dz exists, that is F���e2A�z� tends to zero
quite fast for large z. From the above we conclude that the
eigenvalue Eq. (30) has a localized zero mode which plays
the role of the 4D graviton on the brane. As we show in the
next section the remaining spectrum consists of continuum
positive energy states.

B. Schrödinger form

It is instructive to use an alternative form of the equation
for the gravitational fluctuations, called the Schrödinger
form. It involves a potential and it offers intuition about the
spectrum.

If one performs the transformation w � w�z�, where
w0�z� � e�A�z�, Eq. (6) is put into the conformally flat
form:

 ds2 � e2 ~A�w��
ijdx
idxj � dw2�; ~� � ~��w�; (36)

and Eq. (30) yields:

 �@2
w � ~Q0�w�@w �m2�~u�m;w� � 0; (37)

where

 

~Q�w� � 3 ~A�w� � ln�F� ~��w���: (38)

The transformation

 ~u�m;w� � e�� ~Q=2�~v�m;w� (39)

brings Eq. (37) into the Schrödinger form:

 � @2
w~v�m;w� � � ~V�w� �m2�~v�m;w� � 0 (40)

with the potential:

 

~V�w� � 1
2

~Q00�w� � 1
4�

~Q0�w��2: (41)

Equation (40) can be written alternatively as

 LyL~v�m;w� � m2 ~v�m;w�; (42)

where the operators L and Ly are defined through
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 Ly � �@w �
1
2Q
0�w�; L � @w �

1
2Q
0�w�: (43)

As the operator LyL is hermitian and positive definite, it
will have a complete system of eigenstates with non-
negative eigenvalues, or m2 	 0. In addition there is a
normalizable zero mode, which obeys the equation

 L~v�0; w� � 0, ~v�0; w� 
 eQ�w�=2 � e�3=2� ~A�w�F� ~��w��:

(44)

It is readily seen from Eqs. (38) and (41) that the
potential ~V�w� strongly depends on F� ~��w��.

If the potential in Eq. (41) vanishes for jwj ! �1, there
exists a continuum spectrum of positive energy states
starting from zero; for extensive discussion on this point
see Ref. [24]. We have checked that the analytical solutions
in Ref. [22], with the RS warp factor, give rise to a potential
of the ‘‘volcano’’ form, in agreement with the above as-
sertions about the spectrum.

V. GRAVITY IN THE RS BRANE WORLD WITH A
NON-MINIMALLY COUPLED BULK SCALAR

FIELD

In general, brane world models succeed in reproducing
the Newtonian potential on the brane, as they exhibit a
localized zero energy state which mimics the four-
dimensional graviton. In addition, due to Kaluza-Klein-
like excitations, modifications of Newton’s law are pre-
dicted at distances smaller than the length scale of the
model.

We would like to examine whether brane models with a
nonminimally coupled bulk scalar field reproduce the 4D
gravity on the brane. The proper approach for the deriva-
tion of Newton law has been presented in Ref. [9] and it is
known as the bent brane formalism; this approach is
adopted in the sequel. However, the bent brane formalism
cannot be applied to metrics which are not of the Randall-
Sundrum type in a straightforward way. For this reason in
this paper we examine only single brane solutions with a
warp factor eA�z� of the Randall-Sundrum form A�z� �
�jzj=l, where l is the length scale of the model. As already
mentioned, analytical solutions with a Randall-Sundrum
type warp factor have been obtained in [22].

A. Bent brane formalism

In the previous section we considered a Gaussian normal
coordinate system � �xi; �z�, which is defined by the hyper-
surface �z � 0, and we assumed that the brane is exactly
located on the hyper-surface �z � 0. In order to decouple
the linearized equations of motion for the metric fluctua-
tions, we went to another Gaussian normal coordinate
system �xi; z�, where:

 xi � �xi � �i; z � �z� �5: (45)

In these new coordinates the gauge conditions:

 
ijh
ij � 0; and @ihij � 0 (46)

are satisfied. In the case of a source-free brane and bulk, the
hyper-surface which defines the new Gaussian normal
coordinate system is also described by the equation z �
0. However, in the presence of a point mass source on the
brane, with energy-momentum tensor:

 Tbrane
�� � S��� �x����z�; S��� �x� � M�0

��
0
��� �x�; (47)

the hyper-surface which defines the new Gaussian normal
coordinate system appears to be bent, and it is described by
the equation z � ��̂5�x�. We emphasize that the choice
�̂5�x� � 0, when a mass source is present on the brane, is
not compatible with the gauge conditions of Eq. (46), so
that the bending of the brane is unavoidable in the new
coordinate system.

The most general transformations between these two
coordinate systems, which obey the conditions �h�5 �
�h55 � h�5 � h55 � 0, are

 �i � �
ij
Z
d �ze�2A��z�@j�̂

5� �x� � �̂j� �x�; �5 � �̂5� �x�;

(48)

where the functions �̂i and �̂5 are independent from the
bulk coordinate �z.

The metric fluctuations in the new coordinate system hij
(around the background metric �
ije2A�z�; 1�), and the met-
ric fluctuations in the old coordinate system �hij (around the
metric �
ije2A��z�; 1�), are related via the equation

 hij � �hij � @i�̂j � @j�̂i � 2
Z
d �ze2A��z�@i@j�̂5

� 2
ijA0��z��̂
5: (49)

In the coordinate system, where the position of the brane
is at �z � 0, the junction condition reads:
 

2F���0��@�z
�hijj�z�0� � �~Sij� �x�

�~S�� � S�� �
1
3g��S; S � S���:

(50)

The above equation is obtained from the linearized
Einstein Eq. (23) if we include the source term of Eq. (47).

The junction condition for the RS metric in the new
coordinate system obtains by combining Eqs. (49) and
(50):

 2F���0��@zhijjz�0� � �~Sij�x� � 4F���0��@i@j�̂5: (51)

If we had an arbitrary warp factor ~A��z�, rather than the
RS-type warp factor A��z� � �j�zj=l, an extra term of the
form�4F���0��
ij ~A00�0���̂5 would appear in Eq. (51), as
in general the second derivative of ~A��z� would not be zero.
However, in this case it would be impossible to satisfy
simultaneously the ‘‘transverse and traceless’’ conditions
of Eq. (46), and as a result the bent brane formalism can not
be applied in this case in a straightforward way.
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Thus, in the new coordinate system, the linearized equa-
tion of motion for the metric fluctuations hij:
 

e2AF���@2
zhij � e

2A�4A0F��� � F0����0�@zhij

� F�����4�hij � ��ij�x���z� (52)

may be rewritten in the form:

 F����@2
z �Q0@z � e�2A��4��hij � ��ij�x���z�; (53)

where

 �ij�x� � ~Sij�x� � 4F���0��@i@j�̂5: (54)

If one defines the retarded five-dimensional Green function
through the equation:

 F����@2
z �Q0@z � e�2A��4��G�R�5 �x; z; x

0; z0�

� ��4��x� x0���z� z0�; (55)

the solution of Eq. (53) can be expressed as

 hij�x; z� � �
Z
d4x0G�R�5 �x; z; x

0; 0��ij�x
0�: (56)

The Green function can be expressed in terms of the
complete set of eigenstates eipxu�m; z�:
 

G�R�5 �x; z; x
0; z0� � �

Z d4p

�2��4
eip�x�x

0�

�
u�0; z�u�0; z0�

p2

�
X
m>0

u�m; z�u�m; z0�

p2 �m2

�
; (57)

where u�m; z� satisfies the eigenvalue Eq. (30). These
eigenfunctions should be normalized according to the
equation:

 

Z �1
�1

dzu�m; z�2F���e2A � 1: (58)

In order to precisely define the summation over states in
Eq. (57), it is necessary to consider a regulator brane in
finite proper distance L, and then send L to infinity.

Since we will concentrate on static solutions, it is con-
venient to define the five-dimensional Green function for
the Laplacian operator:

 G 5�x; z; x0; z0� �
Z �1
�1

dt0G�R�5 �x; z; x
0; z0�: (59)

If we perform the integration over p in Eq. (57) and set r �
jx� x0j, we obtain

 G 5�x; z; x0; z0� � �
1

4�r

�
u�0; z�u�0; z0�

�
X
m>0

u�m; z�u�m; z0�e�mr
�
: (60)

The metric fluctuation �hij on the brane at �z � 0 can be
obtained from Eq. (49):

 

�h ij�x; 0� � hij�x; 0� � @i�̂j � @j�̂i

� 2
�Z

d �ze2A� �z�
�

�z�0
@i@j�̂5 � 2
ijA

0�0��̂5:

(61)

If we use the remaining gauge freedom and choose �̂i�x�
according to

 �̂ i � @i

��Z
d �ze2A� �z�

�
�z�0
�̂5 � 2F���0��

�
Z
d3x0G5�x; 0; x0; 0��̂5

�
(62)

(see Ref. [25]), we obtain a simple expression for the
fluctuation �hij�x; 0� on the brane:

 

�h ij � �
Z
d3x0G5�x; 0; x0; 0�~Sij�x0� � 2
ijA

0�0��̂5:

(63)

The function �̂5 can be determined if take into account that
in the new coordinate system the condition hii � 0 must be
satisfied. Then from Eq. (51) for hij we obtain that �̂5 is a
solution of the equation

 ��4��̂5 � �
1

12
F���0���1S; (64)

where S � Sii. It is not difficult to show that the condition
@ihij � 0 is also satisfied.

In the case of a point mass source on the brane, with the
energy-momentum tensor given in Eq. (47), we obtain

 �̂ 5 � �
M

48�F���0��
1

r
: (65)

Using Eqs. (60), (63), and (65) we get

 

�h00 �
Mu�0; 0�2

6�r
�

M
6�r

X
m>0

u�m; 0�2e�mr

�
M

24�lF���0��
1

r
: (66)

Notice that the Newton potential is given by

 V�r� �
�h00

2
:

Taking into account that the four-dimensional Newton’s
constant G4 is defined by the dimensional reduction equa-
tion [26]
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Z
dzd4x

������
jgj

q
F���R� . . . �

Z �1
�1

dzF���e2A
Z
d4x

�����������
jg�4�j

q
R�4� � . . . �

1

16�G4

Z
d4x

�����������
jg�4�j

q
R�4� � . . . (67)

we obtain

 

1

16�G4
�
Z �1
�1

dze2AF��� �
1

u�0; 0�2
; (68)

where use has been made of Eq. (35).
Equation (66) gives

 

�h 00 �
2MG4�1� �F�

r
�

8MG4

3r

X
m>0

u�m; 0�2

u�0; 0�2
e�mr; (69)

where
 

�F �
1

3

�
1�

R
�1
�1 dze

2AF���
lF���0��

�

�
�k��0�2��1�

R
�1
�1 dẑe

2A ��ẑ�2

��0�2
�

3�1� �k��0�2�
; for ��0� � 0;

(70)

 �F �
�k
3

Z �1
�1

dẑe2A��ẑ�2; for ��0� � 0: (71)

We have used the following notation: ẑ � z
l . We point out

that the first term in Eq. (69), namely, the Newtonian
potential, arises as a combination of two contributions,
the first one is that of the zero mode, while the second
one is due to the brane bending term of Eq. (65).

The second term, on the other hand, involving the tower
of the massive states, gives rise to corrections to Newton’s
law. We can use a second regulator brane in order to
express the summation over states as an integral. Now,
use of dimensional analysis indicates that this term tends
to zero for r� l (where l is the AdS5 radius), while for
small r (r l) the corrections become very important;, for
example, for r l they should modify the potential to its
five-dimensional version, namely 1

r2 . However, precise
knowledge of the corrections presupposes knowledge of
the eigenfunctions. This can be done analytically for the
RS2-model, but in our case only numerical calculations are
possible.

We would like to emphasize that in this paper we will
severely narrow the acceptable models; as a result the
corrections of Newton’s law are expected to be quite
similar to those of the RS2-model, which have already
been found analytically [12]. For this reason we will not
attempt a numerical computation of the summation over
the massive states.

B. Zero mode truncation

For large distances the dominant part of the five-
dimensional Green function, for jx� x0j � l, is due to
the contribution of the zero mode part, as the remaining

part is suppressed by anO�l� factor. Thus, if we neglect the
contribution of the continuous modes, which is of the order
of O�l�, we obtain
 

G5�x; 0; x0; 0� � u�0; 0�2G4�x;x0�;

�
�4�
x G4�x;x0� � ��4��x� x0�:

(72)

From Eqs. (63), (64), and (72) we derive the equation
that should be obeyed by the gravitational perturbation �hij:

 ��4� �hij � �16�G4�Sij �
1
2
ijS� � 8�G4�F
ijS: (73)

We observe that the above equation is somewhat different
from the linearized equation of standard 4D general rela-
tivity:

 ��4� �hij � �16�G4�Sij �
1
2
ijS�: (74)

Note that this situation, of modified linearized equations on
the brane, is quite similar with the case of RS1-model; see
Ref. [9].

For a pointlike source, the solutions of Eq. (73) read:

 

�h 00 �
2�1� �F�MG4

r
; �hij �

2�1� �F�MG4

r

ij:

(75)

Absorbing the factor (1� �F) into the mass M (see
Ref. [27]), the solution can take the form:

 

�h 00 �
2MG4

r
; �hij � �F

2MG4

r

ij; (76)

where

 �F �
1� �F
1� �F

: (77)

We recall that the standard isotropic form of the metric
can be expanded to yield the expressions:
 

�h00 �

�
�1�

2MG4

r
� 

2M2G2
4

r2 � . . .
�
;

�hij �
�
1� �

2MG4

r
� . . .

�

ij; i; j � 1; 2; 3:

(78)

giving a fairly general version of the metric [27]. Recalling
the Schwarzschild solution, one may check that the stan-
dard Einstein equations predict  � 1, � � 1.

The expansion (78) can also represent alternative gravity
theories. For instance, the Brans-Dicke theory would yield
� � 1,  � 1, � � !BD�1

!BD�2 , where !BD is the Brans-Dicke
parameter. In our case we have not yet calculated the
parameter , since that would require second order per-
turbation theory [28] and is deferred to a future publica-
tion. If we assume that  � 1, our result (77) is compatible
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with a four-dimensional Brans-Dicke theory, hence we
obtain that the Brans-Dicke parameter is

 !BD �
1

2�F
�

3

2
: (79)

A lower bound on !BD, necessary for consistency with
solar system measurements, which appears in the literature
[29] reads:!BD 	 500. Then, with the help of Eq. (79) this
restriction becomes

 0 � �F � 10�3; (80)

or, equivalently,

 0 �
�k��0�2��1�

R
�1
�1 dẑe

2A ��ẑ�2

��0�2�

3�1� �k��0�2�
� 10�3;

for ��0� � 0;

(81)

 0 �
�k
3

Z �1
�1

dẑe2A��ẑ�2 � 10�3; for ��0� � 0: (82)

We conclude that static solutions of brane models with
nonminimal coupling, with a warp factor of the RS type
A�z� � �jzj=l, are acceptable only if they satisfy the con-
ditions (81) or (82), otherwise we cannot recover general
relativity on the brane. In other publications [30], the lower
bound for !BD is set to even larger numbers. If these
numbers are adopted, the restrictions for our model will
become even stronger.

A complete investigation of the restriction (80) is be-
yond the scope of this paper, as the analytical static solu-
tions of the model depend on a large number of free
parameters [22]. However, one may describe two circum-
stances, in which Eq. (81) is satisfied: (a) If j�1�R
�1
�1 dẑe

2A ��ẑ�2

��0�2
j 
 1, then it is necessary that j�jk��0�2 


10�3. (b) If Eq. (81) is to be satisfied for j�jk��0�2 of order
one, then another type of fine tuning appears, namely, one
should have j � 1�

R
�1
�1 dẑe

2A ��ẑ�2

��0�2
j 
 10�3. We observe

that Eq. (81) is satisfied only if the quantities ��1�R
�1
�1 dẑe

2A ��ẑ�2

��0�2
� and �k��0�2 have the same sign.

Numerical study of the analytical solutions contained in
Ref. [22], indicates that these models fall into case (a).

We would like to emphasize that in other publications
[30], the lower bound for !BD is set to even larger num-
bers, for example !BD > 105. If these numbers are
adopted, the restrictions for our model will become even
stronger, and as a result the class of acceptable models will
be severely narrow, and quite closely to RS2-model.

VI. CONCLUSIONS

We have studied gravitational perturbations for a cate-
gory of brane models involving a scalar field nonminimally
coupled with gravity. The focus of our work has been on

the study of the resulting gravitational potential, in par-
ticular its comparison against the Newtonian one: we
considered the effect of a point mass at rest on the brane
and used the bent brane formalism. It turned out that the
perturbation �hij belongs to a more general class of metrics,
also including the Brans-Dicke theory. Observational con-
straints yield restrictions on the model, which deserve
further investigation to determine the region of the parame-
ter space which is relevant for model building. These
restrictions constitute a test, which should be passed before
any theory belonging to this category is further considered.

As we mentioned in previous sections, in the case of the
bent brane formalism the gauge is fixed from the begin-
ning. In particular, we have chosen a specific gauge (h5� �

0), which holds in Gaussian normal coordinates. The re-
maining gauge freedom [see Eq. (49)] can be used for
imposing the transverse and traceless conditions, where
the equations of motion decouple. However, one could
work in a gauge invariant formalism as is done in
Ref. [31]. In this case graviphotons, graviscalar and the
perturbation of the bulk scalar field are mixed in compli-
cated equations of motion. Of course, the gauge choice in
our paper is not enough to cover completely this general
case. New solutions may exist, where the contribution of
these additional fields is significant.
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APPENDIX: EINSTEIN FRAME

In this appendix we derive the linearized equation for
metric fluctuations by working in the Einstein Frame,
rather than the Jordan frame which has mainly been used
in this paper. In particular, we show that the descriptions of
the metric fluctuations in the two frames are equivalent.

Using the conformal transformation

 ~g �� � !2�x�g��; (A1)

one may transform the action of Eq. (2) to a minimally
coupled form. We refer to g�� as the Jordan frame metric,
while ~g�� is the corresponding metric in the Einstein
frame.

In this paper we have studied tensor fluctuations in the
Jordan frame, and we determined the corresponding line-
arized Eq. (37). However, one might transform Eq. (A1) to
the Einstein frame, where the action is reduced to a mini-
mally coupled form. The derivation of the linearized
Einstein equations has already been done previously (see,
for example, Ref. [8]).

In the Einstein frame we assume the conformal back-
ground metric with fluctuations of the form:
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 ds2
EF � e2 ~B�w���
ij � hij�dx

idxj � dw2�: (A2)

If we set

 hij�x;w� � eipx~u�m;w�; (A3)

we obtain the linearized equation for the metric fluctua-
tions (see, for example, Ref. [8], where a minimally
coupled model is examined)

 �@2
w � 3 ~B0�w�@w �m2�~u�m;w� � 0: (A4)

The question that arises is whether our results in the Jordan
frame are compatible with the corresponding results in the
Einstein frame (A4).

If we just consider the gravity part of the action and
impose the condition

 S �
Z
d5x

������
jgj

q
�F���R� . . .� �

Z
d5x

������
j~gj

q
� ~R� . . .�;

(A5)

taking into account that

 ~g �� � !2�x�g��; ~R � !�2�x�R;������
j~gj

q
� !5�x�

������
jgj

q
;

(A6)

we obtain

 !2�x� � �F����2=3: (A7)

Assuming that the conformal background metric in the
Jordan frame has the form

 ds2
JF � e2 ~A�w���
ij � hij�dxidxj � dw2� (A8)

then in the Einstein frame, with the help of Eqs. (A1) and
(A7), we obtain:

 ds2
EF � �F����

2=3e2 ~A�w���
ij � hij�dxidxj � dw2�; (A9)

or, equivalently,

 

~B�w� � ~A�w� � 1
3 ln�F���� (A10)

If we substitute the above equation in (A4), we obtain

 �@2
w � ~Q0�w�@w �m

2�~u�m;w� � 0; (A11)

where

 

~Q�w� � 3 ~A�w� � ln�F� ~��w���: (A12)

which coincides with Eq. (37), proving that the descrip-
tions of the tensor fluctuations in the Jordan and the
Einstein frames are equivalent.
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