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Magnification relations for Kerr lensing and testing cosmic censorship
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A Kerr black hole with mass parameter m and angular momentum parameter a acting as a gravitational
lens gives rise to two images in the weak field limit. We study the corresponding magnification relations,
namely, the signed and absolute magnification sums and the centroid up to post-Newtonian order. We
show that there are post-Newtonian corrections to the total absolute magnification and centroid propor-
tional to a/m, which is in contrast to the spherically symmetric case where such corrections vanish. Hence
we also propose a new set of lensing observables for the two images involving these corrections, which
should allow measuring a/m with gravitational lensing. In fact, the resolution capabilities needed to
observe this for the Galactic black hole should in principle be accessible to current and near-future
instrumentation. Since a/m > 1 indicates a naked singularity, a most interesting application would be a
test of the cosmic censorship conjecture. The technique used to derive the image properties is based on the
degeneracy of the Kerr lens and a suitably displaced Schwarzschild lens at post-Newtonian order. A
simple physical explanation for this degeneracy is also given.
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I. INTRODUCTION

The theory of gravitational lensing in the weak field
limit has three physical inputs, namely, perturbation theory
of general relativity, geometric optics, and the thin lens
approximation [1,2]. Within this framework, a general
formalism for lensing by spherically symmetric lenses up
to post-post-Newtonian order in metric theories of gravity
was recently developed by Keeton and Petters [3,4]. Their
approach was extended to Kerr black holes by Sereno and
de Luca [5] to study the effect of the angular momentum
parameter on lensing properties.

We elaborate on this work in the present paper and
determine the signed and total magnification sums of the
images as well as the centroid for lensing by Kerr black
holes in the weak field limit to post-Newtonian order. The
post-Newtonian limit for rotating lenses was studied by
Epstein and Shapiro [6] and in more detail by Sereno [7].
Correction terms for the Kerr black hole up to post-post-
Newtonian order were derived by Sereno and de Luca [5],
following earlier work by Bray [8], from the equations of
motion for null geodesics in Kerr geometry. Since we are
presently interested in the post-Newtonian limit only, a
considerably simpler method to derive image positions
and magnifications can be applied, based on the analysis
by Asada, Kasai, and Yamamoto [9]. This utilizes the
degeneracy of rotating lenses and displaced nonrotating
lenses at this order, shown to hold generally by Asada and
Kasai [10]. We provide a simple physical explanation for
this degeneracy in the case of Kerr black holes in the weak
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field limit in Sec. II, then use the degeneracy explicitly to
rederive image properties and find the new magnification
relations in Sec. III. Based on this, we find new lensing
observables for the two images involving post-Newtonian
terms with a/m in Sec. IV.

This introduces a lensing technique to measure angular
momentum parameters of rotating black holes, which
could complement spectroscopic and photometric studies
to this end. For instance, the supermassive black hole at the
Galactic center (Sgr A*) shows flares in x-ray, infrared, and
radio bands with polarization and quasiperiodic ( = 13 =
2 mins) substructure. Now this timescale appears to be
associated with the innermost stable circular orbit, setting
a lower limit of a/m = 0.70 = 0.11 (cf. [11] and the
discussion therein). Measurements of a/m are important,
in particular, since they indicate whether Kerr black holes
have naked singularities, which is the case if a/m > 1. The
absence of naked singularities in nature is stipulated by the
cosmic censorship conjecture which is evoked in the sin-
gularity theorems (see Penrose [12] and references
therein).

Hence the main application we have in mind is a lensing
test of the cosmic censorship conjecture. Lensing proper-
ties of spherically symmetric static naked singularities
were investigated by Virbhadra and Ellis [13]. More re-
cently, Keeton and Petters [3] explored how lensing by the
spherically symmetric Reissner-Nordstrgm and Gibbons-
Maeda-Garfinkle-Horowitz-Strominger black holes can be
used to test the cosmic censorship conjecture. Here, how-
ever, we extend this work to the nonspherically symmetric
but astrophysically more realistic Kerr black holes.

With regard to conventions, the metric signature
(=, +, +, +) is employed, and full units are used, where
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G is the gravitational constant and c is the speed of light, to
facilitate observational applications. The mass parameter
m=GM,/ c? is the gravitational radius, where M, is the
physical mass of the black hole, and the angular momen-
tum parameter a = J/(M,c) is the specific angular mo-
mentum. Greek indices denote spacetime coordinates and
Latin indices spatial coordinates.

II. LENSING FRAMEWORK

A. Post-Newtonian formalism

We begin by reviewing the post-Newtonian formalism
for a Schwarzschild lens with mass parameter m in view of
the later application to the Kerr black hole. Let ® =
(@1, @2), |®| =0 and B= (Bl, Bz), |B| = B be the
Cartesian angular coordinates in the lens plane and source
plane, respectively, whose coordinate axes are parallel and
whose origins are on the optical axis. The deflection angle
projected into the lens plane is denoted by & = (d, &5),
|&| = &. Then straightforward plane geometry in the stan-
dard lensing framework yields the lens equation [14]

tanB = tan® — %(tan@ + tan(& — 9)), @))
s

where d;, dg, d; 5 denotes the angular diameter distances
from the observer to lens and source plane, and from the
lens to the source plane, respectively. Up to the post-
Newtonian limit, the angular coordinates can be expressed
in terms of dimensionless coordinates (B;, B,) =
0:(B1, Ba), (04, 0,) = (0, 6,) such that

B = 0B =0r(Bo) + Buye + O(e?)),
@ = HEH = GE(H(O) + 0(1)6 + 0(62)),

where the angular radius of the FEinstein ring and the
expansion parameter are

02 _ 4mdLS
Eddg”
Lag

__ bxds

4d; g @

The impact parameter in the lens plane is b = d; sin® and
the Schwarzschild deflection angle is

m 157 m? m3
A=4—+ — —+ 0| —).
T T Ty B, <b3>
Hence we can recast (1) thus,

1 157 €
=0 - — — — —,
A 6 16 02
to obtain the lens equation for the Schwarzschild black
hole up to post-Newtonian order.

3)

B. Kerr lensing

The line element of the Kerr metric g,’fv in the Boyer-
Lindquist coordinates {z, r, 9, ¢} denoted by x4, is [15]
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2 — K M v
ds® = gu,dxppdxg;

2 damrsin9 2
- —(1 - 4)62[1;2 _ 2P drde + Bar
p p A

(2 + a%)? — Aa%sin?9

0?

+ p2d9? + sin?ddg?,

“4)

where p? =r? + a’cos’® and A = r* —2mr + a?,
which reduces to the Schwarzschild case if a = 0. As
mentioned above, the condition for a naked singularity is
a/m > 1 because then A > 0 and so no hypersurface r =
const can be null which in turn means that no event horizon
exists. For a # 0, the degeneracy of the central caustic
point of the Schwarzschild lens is lifted to give rise to a
central caustic domain bounded by a distorted astroid [16].
We are interested in the weak deflection limit and hence in
the outer caustic domain where two images occur as in the
Schwarzschild solution, albeit with modified positions and
magnifications. In the standard gravitational lensing sce-
nario, the null geodesics cross the equatorial plane ¢ =
ar/2 at least once. In terms of constants of motion in Kerr
geometry, we therefore restrict this discussion to null geo-
desics with Carter constant Q = 0 [17].

The lens plane coordinates introduced in the previous
section can now be conveniently oriented so that the
0,-axis is along the projected angular momentum axis
and forms a right-handed system together with ©-axis
and the optical axis, with the observer at d;, as the third
one. Now up to post-Newtonian order, Kerr lensing is
equivalent to lensing by a Schwarzschild lens of the
same mass but shifted to the position [5,9,10,16]

asindy
801(1) == m y

&)

60 = HE(SGI’ O) = 0E(861(1)E, 0),

where 1, is the observer’s polar angle position.

We now show how this fact can be understood in a
simple way in terms of the gravitomagnetic effect, and
use it explicitly in the next section to find the corrected
image positions and magnifications. For an extended dis-
cussion of the gravitomagnetic effect for the Kerr and more
general rotating lenses, see Asada et al. [9,10], Kopeikin
et al. [18], and Sereno [19]. In the weak field limit, the
metric g, can be understood as a formal perturbation £,,,,
about the Minkowski metric 7, such that g,,, = 7,, +
s |hy,| << 1. Defining the trace-reversed perturbation
Ruy = hyy = 8uvhapn® /2, Einstein’s field equation
may be written Oh,, = —167GT,,/c* in the
de Donder gauge h%,” = 0, where T*" is the energy mo-
mentum tensor. Now with a perfect, nonrelativistic fluid,
the components of its retarded solution give rise to a scalar
field U = —hgyyc? /4, which is the Newtonian gravitational
potential, and a vector potential with components Vi =
ho;c*. Hence the perturbed metric line element is
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ds*> = g uvdxtdx”

2U 2

+ <1 - i—?);(dxi)z, (6)

where we work with spatially isotropic coordinates x =
(x1, x5, x3), |x| = x. Here x, is aligned with ®; and x; = 0
corresponds to the equatorial plane ¥ = 7r/2. The gradient
operator for this coordinate system is denoted by V. Also,
let a = aX3 where X3 is the unit vector in the x5 direction.

The equation of motion for null geodesics parametrized
with ¢ and with unit ray 3-vector k can now be obtained
from (6) using Fermat’s principle, yielding a gravitoelec-
tric and gravitomagnetic contribution (e.g., [10]),

czj—k=—2VlU+k><(V><V), (7)
q

where the operator V| selects the component of the gra-
dient perpendicular to the unit vector k such that, for any
scalar  field ¢(x), V, ¢ =Ved— (Vo -kk =
k X (V¢ X K). The forefactor of the gravitoelectric term
is the well-known general relativistic correction of
Newtonian light deflection. In this limit, the Kerr metric
(4) becomes

3

2m 2
+ <1 + 7>Z(dx 2, ®)

2 4
ds> = —(l - —m>czdt2 i cdit(xdx; — xpdx;)
X X

whence one can read off V= —2GM,a X x /)c3 by com-
parison with (6).

We can now see that lensing due to a Kerr black hole at
x =0 to post-Newtonian order is equivalent to a
Schwarzschild lens displaced according to (5), that is, at
8x = d; 60. Since this Schwarzschild lens has zero vector
potential and U = —GM, /|x — 8x|, the right-hand side
of (7) becomes, by Taylor expansion to post-Newtonian
order,

- 2VJ_U(X - 5X) = —ZVJ_U(X) + 2VJ_(VU SX)

because §x = O(e) from (5), and the dot product is with
respect to the Euclidean metric on the spatially isotropic
coordinates. Furthermore, in the thin lens approximation,
one may take k to be constant and perpendicular to the lens
plane L until k is changed by some 8k upon crossing L.
Since we consider the weak field limit, |0k| < |k| so the
leading post-Newtonian term is

2V, (VU - 6x) = 2k X (V(VU - 6x) X k)
=k X (VX (2VU - 6x)k),

which is indeed a gravitomagnetic term of the form occur-
ring in (7). Hence the displaced Schwarzschild lens is
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equivalent to a point lens of mass M, at x = 0 with vector
potential 2GM ,a sindyx, K /x>, using (2) and (5). Butk =
(0, — sind, cosy) by setup, so using the expression for V
above we find that this vector potential component is
precisely provided by a Kerr black hole situated at the
origin with angular momentum parameter a, as required.

III. MAGNIFICATION RELATIONS

A. Image properties

Following the discussion in the previous section, one can
use the Schwarzschild lens equation to generate image
properties of Kerr lensing up to post-Newtonian order in
the weak field limit, where source and observer are in the
asymptotically flat region with the source behind the lens
plane and close to the optical axis. Given the shift (5), we
need to let #; — 6; — 66, in the last two terms of (3),
which stem from the deflection angle of the lens model.
Hence

0, — 50,
=0, —
Pre 0 50,7 + &2
157 91 - 591
— + @ 2 )
16 (@ o0 + a3 T o)
0. ©)
=0, —
N (R TN
1
- b 2 e+ 0(e)

16 (6, — 86,)* + 63)*?

is our ansatz for the Kerr lens equation. Notice that, at
Newtonian order, (9) reduces to the Schwarzschild lens
Eq. (3) for € = 0 as expected, since 86, = O(e) according

to (5). The expansion of the image positions is
01 =010 + 011)€ + O(?),
) (10)
0, = Oy0) + O21)€ + O(€),

where 6, 0,() solve the lens equation at Newtonian
order. This yields the two images of the well-known
Schwarzschild case, one of positive and one of negative

parity,
+ _Bl 4
01(0)—7<1t HP)’
(1)
+ _BZ 4
02(0)—7<1¢ H?)’

where 07, + 05 = 0f,. Now at post-Newtonian order,

the lens Eq. (9) becomes

A 15 6,1 — 00
0= 01(1) + 01(0)( 7 ) — 1

Y 3 2 ’
) 160, 0%0)
A 157 02(1)
0= 6y + 9z<o><97 " 1600 ) T
(0) © ©
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where A = 2(6,() — 86,(1))01(0) T 261,020, and we re-
cover the correction terms expected for rotating lenses [5],

15#01(0) I (1 - 0%(0) + 0%(0))501(1)

0 == )

1(1) 16(1 + 9(20))0(0) 1— (9?0) (12)
9 _ 15#02(0) _ 201(0)02(0)501(1)

*016(1 + 63)6,, 1 -6},

Accordingly, the individual post-Newtonian corrections
for the positive and the negative parity image are found
by substituting 67, 65, from (11) into (12). For a dis-
cussion and visualization of this shift, see Sereno [7],
especially his Fig. 5.

Since light rays are conserved in geometric optics, the
signed image magnification w is related to the Jacobian of
the lens map [1,2],

— =det| 55 2.
By, 9B
" A
Recall also that the observable image flux F, and the flux

of the unlensed source Fy are related by F, = |u|F. Now
evaluating the magnification yields

= O _ < 15w 400,010001) )e
O — 1 \16(1 +65)° (1 —65)°(1 +6)’°
+ O(?), (13)

which, up to a sign, coincides with the findings in [5].
Again, this expression holds for both images.

B. Magnification sums

The magnification formula (13) can now be used to-
gether with (11) and (12) to write down a new expression
for the individual magnifications of the positive and nega-
tive parity image, respectively, to post-Newtonian order,

s _ (BB
SRRy U
_ (2 + ﬁZ + B\/4 + ﬂz)(1577183 - 64ﬂ1501(1)) €
8B°(B + A+ BrE+ B
+ O(e?),
y—_(BAE B
(B—+4+ B>)*—16
2+ B2 = ByA+ BH(157B + 643,66, (1) .
8B°(B — A+ B+ B
+ O(e?). (14)

Hence the sum of the signed magnifications can be eval-
uated and is of the simple form
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_ 157
8(4 + B2)3/?

The Schwarzschild lens obeys a well-known magnification
invariant (e.g., [2]) in the standard lensing framework, that
is, at lowest order. Since the signed magnification sum (15)
for the Kerr lens does not depend on the specific angular
momentum a, it is identical to the Schwarzschild lens
result to post-Newtonian order (cf. Eq. (54) of [4]). The
Kerr lens has thus the same deviation from the magnifica-
tion invariant as the Schwarzschild lens at O(e).

Now taking into account the image parities, the absolute
magnifications are |u*| = ™ and |u~| = —u . Hence,
the total absolute magnification is

+ - —

utu =1 €+ O(€?). (15)

Mior = [t [+ (™|

2+ B2 88 asind
TR Pl ,182)3/2 et 0e)

(16)

using (2). The term O(e) vanishes for a = 0 or an observer
on the rotational axis of the Kerr black hole, that is ¢, = 0,
as expected for circularly symmetric lenses [3].

C. Centroid

We can also define the centroid of the magnification
thus:

0 ul+07|u|
|+ ||
Given (11), (12), and (14), a new expression for the cen-

troid vector of Kerr images to post-Newtonian order can
now be obtained, and its components turn out to be

@Cent — HE

ent (3 + BZ)Bl (B% B B% B 2) ClSin’ﬁO
0f —eE[ 7F B a7 57 e
+ (9(62)}
5 = GE[(32++B;)2'82 + (ZZflgzz)z asindo €+ (9(62)}
(17)

Again, in the circularly symmetric case a = 0 or ¥, =0
we can take B, = 0 without loss of generality, to recover
the result by Keeton and Petters [3].

IV. APPLICATIONS

A. Breaking the degeneracy

Asada and Kasai [10] found that, at post-Newtonian
order, rotating and nonrotating dark lenses cannot be dis-
tinguished on account of the degeneracy discussed in
Sec. II, that is, by observing the images alone. This prob-
lem can be circumvented if the location of the black hole is
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established independently, for instance by observing the
center of the accretion disk surrounding the Kerr black
hole. To see this, recall from Sec. II that the Kerr lens K is
equivalent to a displaced Schwarzschild lens up to post-
Newtonian order in the weak field limit where observer and
source are assumed to be in the asymptotically flat region
of the Kerr black hole. Hence a plane P containing the
observer, the source, and the notional shifted
Schwarzschild lens will also contain the two images of
the Kerr lens as for a standard Schwarzschild lens.
Projected into the plane of the sky, the source, the notional
shifted Schwarzschild lens, and the two images will be
collinear but not typically with K since K & P in general.
Hence, if the position of K can be found independently, the
projected distance of K from the line joining the two
images is observable and the degeneracy is broken in the
generic case. However, note for completeness that there are
very special cases in which the degeneracy cannot be
broken in this way: consider a source such that B, = 0
exactly, so 6,y = 0 and hence 6,(;) = 0 from (12). In this
case, K &€ P and so the projected source, shifted
Schwarzschild lens position, and the two images will all
be collinear with K at the origin. Therefore, the degeneracy
is not broken.

But assuming the Kerr/Schwarzschild degeneracy is
broken successfully, we still need to be able to measure
image positions in the (0, ®,) coordinate system in order
to apply the formalism. Hence the direction of the Kerr
black hole’s spin axis projected into the lens plane must
also be known and, moreover, the observer’s ¥, coordi-
nate. In principle, this could be inferred from observations
of the jet associated with the black hole accretion disk
because of the frame-dragging effect on the magnetohy-
drodynamics of the jet (e.g., [20]). Furthermore, time-
dependent measurements of the polarization of black
hole flare emission could constrain the direction of the
spin axis. In the case of Sgr A*, for instance, this seems
to indicate that the black hole spin axis is essentially
aligned with the Galaxy’s [11].

B. Measuring the angular momentum parameter

In order to determine whether Kerr lensing could be used
to measure a/m and test the cosmic censorship conjecture,
we first of all need to assemble a suitable set of observ-
ables. This set is in turn dependent on resolution capability:
If the two Kerr images can in fact be resolved, then image
positions and fluxes will be observable individually. If,
however, they cannot be resolved, the total flux and the
magnification centroid may be taken as observables. We
shall discuss the former case first.

If the two images can be resolved, two vectorial image
positions and two fluxes are available, giving six equations
altogether. Using (10)—(12), (15), and (16), we propose the
following combinations as convenient observables:
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_ Bl 1577'0E
OF + 0 =7<,/40%+BZ— e>
\46% + B? 16
4 48inole o), (18)
B, 1576,
OF +0; =2 (.]ag2 + B2 ——e>
o 1/4192+132< ’ 16
E

+ O(e?), (19)

0f — 0 = %(,/403@ + B+ —151”66‘? e>

_ B0 + 4B30} asind,

B3,[460% + B>
1
0y -0, = %(Jw% + B2+ —51”60’5 e)

431320% a Sin’ﬁo

_l’_
B J4o% + B> "

262 + B2 8B, 65,

+
B+ B B+ B

N sind, 6) + 0, (22)

€+ 0O(e?),

(20)

€+ 0O(e?), (21)

F,+F, = Fs(

_ 157603
8(40% + B

which reduce to the formulas of Keeton and Petters [4] for
a = Qorsind, = 0, as required. These six equations could
then be solved for the six occurring variables B,, B,, Fy,
O, €, asindy/m. Assuming that the lensed source orbits
the black hole such that d; ¢ << d; and that an independent
estimate for m is available, then d; g and d; = dg can also
be found from 6 and € using (2).

It would therefore be possible to infer a/m from the
post-Newtonian lensing corrections. Moreover, these
corrections should in principle be observable with near-
future instrumentation as discussed by Keeton and
Petters [4]. In the case of Sgr A*, they found an estimate
for the angular Einstein radius to be of order 6p =
0.022(d;5/1 pc)'/?arcsec and the perturbation parameter
to be of order € = 2.1 X 107* X (d, /1 pc)'/2. Since the
image separations will be of order 6, these images can in
principle be resolved with current technology (e.g., the
CHARA interferometer and radio interferometry can re-
solve 10 3arcsec separations [21]). Furthermore, currently
known positional uncertainties in observed radio images
are of order 10~ ®arcsec (e.g., [22]). These are indeed much
smaller than the current resolution capabilities. In addition,
the statistical prospects for observing lensed stars around

Fi—F; = FS<1 e> +0(), (23)
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Sgr A* are discussed in a forthcoming paper by Congdon
et al. [23] who conclude that the disk component of the
Milky Way contributes more than the bulge, and find that
the expected number of lenses reaches unity for a detection
limit of K ~ 18.5 mag.

In the case when the two images cannot be resolved,
then only the total flux (22) and the centroid (17) are
available. In the foreseeable future, this situation applies
to lensing by extragalactic supermassive black holes, and
Congdon et al. [23] estimate that typically ~100 lensed
stars can be expected. But given that we only have three
equations for six variables in this case, a determination of
a/m does not seem possible. However, this situation may
improve if additional information, for instance on m, d;,
and F, becomes available.

Finally, we should stress again that the success of this
method is conditional, in both cases, upon breaking the
Kerr/Schwarzschild degeneracy and establishing the O,
0,, Y coordinates, as discussed in the previous section.
Further data, for example, the time delay between images
of a variable source (cf. [4]) or images of multiple sources,
may also be helpful for breaking degeneracies. Since
Egs. (18)—(23) fully determine the six occurring variables,
we have not considered these ramifications here.
Nonetheless, our analysis shows that lensing measure-
ments of a/m for supermassive black holes, and hence
lensing tests of cosmic censorship, have potential.

V. CONCLUSION

We considered gravitational lensing in the weak field
limit of a Kerr black hole of mass parameter m and angular
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momentum parameter ¢ and derived the magnification
relations for the two ensuing images up to post-
Newtonian order. The image properties used were reder-
ived with a simple perturbation analysis based on the
degeneracy of a Kerr lens and a Schwarzschild lens shifted
by (5). Whereas the signed magnification sum (15) turned
out to be identical to the Schwarzschild case, the absolute
magnification sum (16) and centroid (17) show a term
proportional to a/m at post-Newtonian order. This is in
contrast to circularly symmetric lenses where these terms
have been shown to vanish precisely. In discussing obser-
vational implications, we provided a new set of six lensing
observables (18)—(23) for the case that the two images can
be resolved. These are matched with six lensing variables
including a sind,/m. In the case of lensing by the Galactic
black hole, the two images should be resolvable by current
and near-future instrumentation, so that measurements of
the angular momentum parameter should be feasible. Since
a/m > 1 for naked singularities, this provides a possible
test of the cosmic censorship conjecture using gravitational
lensing. Additional study of this issue is definitely
warranted.
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