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Static spherically symmetric perfect fluid solutions are studied in metric f�R� theories of gravity. We
show that pressure and density do not uniquely determine f�R� i.e. given a matter distribution and an
equation state, one cannot determine the functional form of f�R�. However, we also show that matching
the outside Schwarzschild–de Sitter metric to the metric inside the mass distribution leads to additional
constraints that severely limit the allowed fluid configurations.
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I. INTRODUCTION

Modern day cosmological observations such as super-
novae type Ia [1], cosmic microwave background [2], and
large scale structure [3] provide strong evidence against a
critical density matter dominated universe. Instead, the
current cosmological concordance model is a critical den-
sity universe dominated by cold dark matter and dark
energy in the form of some kind effective cosmological
constant. The traditional cosmological constant is maybe
the leading dark energy candidate (for a review see e.g.
[4]), but a large number of other alternatives have been
studied in the vast literature on dark energy.

Modifying general relativity (GR) to explain the present
day acceleration is an often considered avenue of research.
In particular, a class of models that has been extensively
studied in the recent years are the f�R� gravity models that
replace the Einstein-Hilbert action with an arbitrary func-
tion of the curvature scalar (see e.g. [5–13] and references
therein). Modifying the gravitational action is faced with
many challenges, however, and obstacles such as instabil-
ities [14–16] as well as constraints arising from known
properties of gravity in our Solar System (see e.g. [17–19]
and references therein) need to be overcome. Also the large
scale perturbations present a challenge for f�R� gravity
theories [20,21]. One of the most direct and strictest
constraints on any modification of gravity comes from
observations of our Solar System. This is often done con-
formally transforming the theory to a scalar-tensor theory
and then considering the parameterized post-Newtonian
limit [22,23] (see also [24,25] for a discussion). The ques-
tion of Solar System constraints on f�R� theories has
recently been extensively discussed by a number of au-
thors. The opinions on viability of f�R� theories divide
from more or less sceptical [26–29] to approving [30,31]
depending on the point of view of the author.

The essence of the discussion is the validity of the
Schwarzschild–de Sitter (SdS) solution in the Solar

System. The SdS metric is a vacuum solution to a large
class of f�R� theories of gravity. However, due to the
higher-derivative nature of the metric f�R� theories, it is
not unique and other solutions can also be constructed (see
e.g. [32,33]). This fact is also present in the cosmological
setting, rendering any cosmological solution nonunique
and hence the form of f�R� cannot be uniquely determined
from the expansion history of the universe alone [34].

In recent literature this question has now been addressed
without resorting to scalar-tensor theory [26–28]. The
result is compatible with the scalar-tensor theory calcula-
tions: the Solar System constraints are valid in a particular
limit that corresponds to the limit of light effective scalar in
the equivalent scalar-tensor theory. In terms of the f�R�
theory, this is equivalent to requiring that one can approxi-
mate the trace of the field equations by Laplace’s equation
[27]. As a result, the often considered 1=R theory is not
consistent with the Solar System constraints in this limit,
if the 1=R term is to drive late time cosmological
acceleration.

In this work, we approach the question differently by
asking what kind of a mass distribution is required so that
the SdS metric is the solution outside a spherically sym-
metric body. Note that realistic theories do not need to have
the exact SdS metric outside the stellar mass distribution.
Instead, the metric has to approach the SdS solution
quickly enough to guarantee that Solar System and cos-
mological observations are satisfied, potentially increasing
the number of physically acceptable f�R� theories. Here
we concentrate on the more restricted SdS cases i.e. given
the SdS metric, what is the matter distribution that has the
correct boundary conditions. Our approach is general, we
do not make any assumptions about the f�R� theory.

We show that, like in the cosmological setting, the mass
distribution alone cannot in general determine the gravita-
tional theory, or the functional form of f�R�. Imposing the
SdS metric as a boundary condition does limit the allowed
solutions however. We also give a prescription how one can
in principle solve the mass distribution that has the SdS
metric as the outside solution, given a gravitational theory
and the equation of state of matter.
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II. f�R� GRAVITY FORMALISM

The action for f�R� gravity is (8�G � 1)

 S �
Z
d4x

�������
�g
p

�f�R� �Lm�: (1)

The field equations resulting in the so-called metric ap-
proach are reached by varying with respect to g��:

 F�R�R�� �
1
2f�R�g�� �r�r�F�R� � g���F�R� � Tm��;

(2)

where Tm�� is the standard minimally coupled stress-energy
tensor and F�R� � df=dR. Alternatively, this can be writ-
ten in a form similar to the field equations of general
relativity:

 G�� � R�� �
1
2Rg�� � Tc�� � ~Tm��; (3)

where the stress-energy tensor of the gravitational fluid is
 

Tc�� �
1

F�R�

�
1

2
g���f�R� � RF�R��

� F�R�;���g��g�� � g��g���
�
; (4)

and we have defined

 

~T m
�� � Tm��=F�R�: (5)

Contracting Eq. (4) and assuming that we can describe
the stress-energy tensor with a perfect fluid, we get

 F�R�R� 2f�R� � 3�F�R� � �� 3p: (6)

III. SPHERICALLY SYMMETRIC PERFECT FLUID
SOLUTIONS

We are interested in static, spherically symmetric perfect
fluid solutions, or as commonly referred to in the literature,
SSSPF solutions. Study of such solutions can be traced
back to Schwarzschild [35] and the literature is extensive
(see e.g. [36] for reviews). The surface of the fluid sphere is
defined by the surface of zero pressure where the interior
solution is matched to the outside metric.

In spherically symmetric coordinates the metric can
generally be written as

 g�� �

A�r� 0 0 0
0 �B�r� 0 0
0 0 �r2 0
0 0 0 �r2sin2���

0
BBB@

1
CCCA: (7)

The corresponding continuity equation is

 

p0�r�
��r� � p�r�

� �
1

2

A0�r�
A�r�

; (8)

where prime indicates a derivation with respect to r, 0 �
d=dr.

A. Uniqueness

The higher-derivative nature of metric f�R� theories of
gravity can lead to nonuniqueness of solutions of the field

equations. For example, the cosmological solution a�t� for
a given f�R� theory is not unique but other f�R� theories
with the same expansion history exists [34]. This also true
for vacuum solutions: even though the SdS metric is a
solution of the field equations in vacuum, others also exist
[33].

Here we consider the question of uniqueness in the
presence of matter. This is most conveniently done by
using a form of the field equations where f�R� is eliminated
from the equations by using the contracted equation (6):

 FR�� �
1
4�FR��F�g�� �r�r�F

� Tm�� �
1
4��� 3p�g��: (9)

Given a matter distribution, ��r�, p�r�, one can solve for A
from the continuity equation and substitute into Eq. (9)
giving a set of differential equations for F�r� and B�r�.

This set can be solved algebraically for B�r� and B0�r� so
that both B�r� and B0�r� can be expressed in terms of F�r�,
��r�, p�r� and their derivatives (see the appendix for de-
tails). Differentiating the expression for B�r� and equating
it with the other expression for B0�r�, we obtain a single
equation relating various derivatives of F, �, and p. This
equation is a nonlinear third order differential equation for
F�r� and due to its length is not explicitly shown here. Here
we adopt a shorthand notation for the equation and write

 mTOV�F; �; �0; �00; p; p0; p00; p000� � Sf; (10)

where Sf � Sf�F0; F00; F000; �; �0; �00; p; p0; p00; p000� repre-
sents a source term. Explicit calculations show that in the
GR limit, F � 1, the source term vanishes, Sf � 0, and
Eq. (10) is satisfied, whenever � and p satisfy the usual
Tolman-Oppenheimer-Volkov (TOV) equation. Hence, we
can view Eq. (10) as a modified TOV equation of metric
f�R� theories of modified gravity.

Given ��r� and p�r�, one can solve Eq. (10) for F�r� and
hence one has a solution for R�r� using the expressions for
B�r� in terms of F. From F�r� and R�r� one can determine,
at least in principle, F�R� and finally f�R�. The higher-
derivative nature of f�R� theories is apparent in that
Eq. (10) can have a number of solutions. For example,
even when matter follows the ordinary TOV equation, one
can find nontrivial solutions for F�r� i.e. for given standard
SSSPF solution of general relativity, F�r� � 1 is not the
only possible solution. We construct explicit solutions in a
later section.

B. Boundary conditions

The outside solution sets the boundary conditions for the
metric components at the surface of the star, r � r0. The
field equations are fourth order in A and third order in B so
that A0, A00A

00
0 , A0000 , B0, B00, B000 , where A0 � A�r0� etc. are

fixed. This is in contrast to general relativity, where only
A0, A00, B0 are fixed by the outside solution.
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In this paper we are interested in solutions which have
the Schwarzschild–de Sitter space time as the outside
solution. The SdS metric is

 g�� �

s�r� 0 0 0
0 �1=s�r� 0 0
0 0 �r2 0
0 0 0 �r2sin2���

0
BBB@

1
CCCA; (11)

where s�r� � 1� 2M=r� r2=12R0 and R0 is the corre-
sponding scalar curvature (in the standard SdS representa-
tion R0 � �4�). In the f�R�-theory framework R0 is set
by the equation R0F�R0� � 2f�R0�.

This choice of metric fixes the curvature scalar and its
first derivative at the stellar surface at r0: R�r0� � R0,
R0�r0� � 0. The surface of the star is set by the conditions
p�r0� � 0 while the energy density is left as a free parame-
ter, ��r0� � �0.

Using these boundary conditions in the modified
Einstein’s equations, (2), along with the requirement
R0F�R0� � 2f�R0�, gives two independent equations:
 

s�r�
�
�0 � s�r�

d2f

dR2

��������R0

R00
�
� 0; s�r�

d2f

dR2

��������R0

R00 � 0:

(12)

Since we are interested in generalized gravity,
df2=dR2jR0

� 0 and hence R00�r0� � 0, �0 � 0. Note
that this is already a result different from general relativity
where � can be discontinuous at the surface.

Derivating the modified Einstein’s equations once with
respect to r and applying the boundary conditions along
with the new constraints R00�r0� � 0 � �0, gives R000�r0� �
0, �0�r0� � 0. From the continuity equation it then straight-
forwardly follows that also p00�r0� � 0. This process can
then be continued by derivating the modified Einstein’s
equations once more and substituting the boundary values
found at previous steps, resulting in three independent
equations for the highest order derivatives of R, A, and
B. These can then be solved and one can proceed to the
next order derivatives. Obviously, derivatives of R and A
and B are not independent but no new information is
obtained from their mutual relation.

Higher derivatives of � and p are not uniquely defined
and one is free to choose �00 and higher derivatives on the
surface in a way that reflects the desired equation of state.

In summary, requiring that the outside metric is the SdS
metric sets ��r0� � �0�r0� � p�r0� � p0�r0� � p00�r0� �
0 on the surface for a general f�R� theory for which
d2f=dR2jR0

� 0. We can already see here how the
higher-derivative nature of f�R� theories lead to a more
constrained system than general relativity.

C. Polytropic stars

As a simple example of how the boundary conditions
already limit the range of allowed solutions, we briefly

consider polytropic stars. White dwarfs and neutron starts
are often approximated by a polytropic equation of state,
p � ��	, where � and 	 � 1� 1=n are constants and n is
often referred to as the polytropic index (see e.g. [37]).

The continuity equation, Eq. (8), can straightforwardly
be solved for such an equation of state:

 ��r� � �1=�1�	�
��
A�r�
A0

�
�1�	�=�2	�

� 1
�

1=�	�1�
; (13)

where we have used the fact that � vanishes at the surface.
Clearly this condition sets that 	 > 1. Similarly, since �0 is
also vanishing at the boundary, we must require that 	 < 2.
This is again quite different from GR, where 	 is un-
bounded from above (again see e.g. [37]).

D. Examples of matter distributions with
corresponding nonunique f�R� theories

General arguments quite clearly indicate the existence of
different f�R� theories corresponding to a fixed mass dis-
tribution, � and p. We have calculated some simple cases
explicitly and integrated some other cases numerically. In
order to construct f�R� theories, we need to solve F from
Eq. (10) and check the physical meaningfulness of the
solution by studying the behavior of B�r� and the relation
between F�r� and R�r�.

By taking a simple equation of state p � w� (constant
w) the solution of Einstein’s equations reads as ��r� �
w=�2�G�4w� �1� w�2�r2�. This solution can then be
inserted into Eq. (10). (Note that in this case the stellar
boundary is pushed to infinity.) It is easy to find some
rather trivial solutions, e.g. F�r� / rk, k � � 3�5w

2�4w , corre-
sponding to B�r� � 0, is an unphysical solution. If w �
1=3, F�r� � 1� F2r

2 (F2 is an arbitrary constant) leading
to a constant B�r� � 7=4 and vanishing R. Again, this
solution is unphysical, because it does not properly define
F as a function of curvature R. These two solutions are,
however, very special cases corresponding solutions with
vanishing derivatives of F�r� at the origin. Numerical
calculations confirm, that if F0�0� � 0, a proper relation
between F and R is achieved and B�r� is a well-defined
function everywhere (except possibly at the origin) [38].

Another straightforward example can be found by con-
sidering a pressureless matter distribution, p � 0, with
� � 3r. We have constructed two f�R� theories that have
such a matter distribution as an exact solution: f�R� �
�2

�����������������
�6� R
p

and f�R� � 6
���
3
p
=
��������
�R
p

. Both solutions cor-
respond to nontrivial B�r�, F�r�, and R�r�.

These cases explicitly show that nontrivial choices of F
can be made for a given density and stellar profiles.
Whether the solutions constructed by using Eq. (10) are
physical needs to be analyzed in each case.

E. SSSPF with a SdS boundary metric

In light of the discussion presented above, we can now
consider perfect fluid matter in f�R� gravity theories with

STATIC SPHERICALLY SYMMETRIC PERFECT FLUID . . . PHYSICAL REVIEW D 76, 064021 (2007)

064021-3



the SdS metric as a boundary condition. Again, it is ad-
vantageous to consider a form of the field equations where
explicit f�R� dependence is eliminated in favor of F�r�,
Eq. (9). Since R0�r0� � R00�r0� � R000�r0� � 0, it is clear
that F0�r�, F00�r�, F000�r� vanish on the boundary i.e.
F0�r0� � F00�r0� � F000�r0� � 0. The boundary value of F
can be solved from the requirement R0F�r0� � 2f�R0�
once f�R� is given, e.g. if f�R� � R��4=R, R2

0 � 3�4,
and F0 � F�R0� � 4=3. Note that with a more general
choice of f�R�, one can in principle easily mimic general
relativity i.e. F0 � 1 everywhere. However, requiring
R0F0 � 2f�R0� along with Eq. (6), implies that �� 3p �
0 everywhere inside the star making such constructions
physically uninteresting.

Given a fluid sphere, ��r�, p�r� with appropriate bound-
ary conditions, one can in principle solve Eq. (10) with the
aforementioned boundary values for F�r�. Using the solu-
tion f�R� can then be reconstructed. The constant solution,
F�r� � F0 � 1, is a solution exactly when ��r� and p�r�
satisfy the TOV equation i.e. matter is distributed like in
general relativity. Vice versa, if matter does not obey the
TOV equation, the Sf term acts as source for the differen-
tial equation of F�r� and thus the boundary conditions are
not strong enough to force F to be constant, but the solution
is more general. An important restriction is, however, the
boundary conditions for � and p making the set of allowed
general relativistic SSSPF solutions more restricted in f�R�
gravity, e.g. the standard Shwarzschild fluid sphere with
constant density is not allowed since �0 � 0.

IV. CONCLUSIONS

In the present paper we have discussed spherically sym-
metric solutions with nontrivial matter distributions appli-
cable to stellar systems, in particular. Although we have
restricted our analysis to a simplified system described by a
perfect fluid and external SdS solution, similar conclusions
are expected to apply in more realistic cases.

We find that, like in the cosmological case, the distribu-
tion of matter does not determine the gravitational theory
uniquely but due to the higher-derivative nature of the field
equations, different gravitational theories can support the

same solution. Given the matter distribution, ��r�, p�r�,
one can, at least in principle, construct a gravitational
theory that has the desired solution by solving the modified
TOV equation, Eq. (10). However, some mathematically
admissible solutions of the modified TOV equation are not
physically plausible, but may correspond singular metrics
or do not define properly f as a function of R.

By considering configurations that are matched to a
Schwarzschild–de Sitter metric, we find that such configu-
rations are more tightly constrained than those of general
relativity. Again, this is due to the higher-derivative nature
of the metric f�R� theories of gravity that requires match-
ing of higher order derivatives at the boundary of the fluid
sphere than in general relativity.

As a result, we find that stellar configurations, approxi-
mated by a perfect fluid sphere, can be accommodated to
an external SdS solution, whenever �, p, and f�R� are
related by a the modified TOV equation. The conventional
TOVequations correspond exactly to the choice f�R� � R,
and departures from the standard TOV equations neces-
sarily lead to a more general gravitational action. This
phenomenon may be noteworthy whenever modifications
to the Einstein-Hilbert action, f�R� � R, are small. Small
changes to the Einstein-Hilbert action are likely to lead to
only small modifications to stellar models, i.e. density and
pressure of the matter may deviate only slightly from the
ordinary TOV relation. On this basis it hence seems pos-
sible that realistic stellar models may be constructed also in
f�R� gravity models without violating constraints from the
Solar System. The exact nature and whether such solutions
correspond to f�R� theories that can act as dark energy
requires more extensive analysis.
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APPENDIX

The set of modified field equations, Eq. (9), for a known
matter distribution in terms of F�r� reads:

 

0�
F

2r2�
3p
4
�

3�
4
�

Fp2

2r2B�p���2
�

Fp�

r2B�p���2
�

F�2

2r2B�p���2
�
FB0

2rB2�
F0

2rB
�
B0F0

8B2 �
Fpp0

rB�p���2
�

F�p0

rB�p���2

�
FB0p0

4B2�p���
�

3F0p0

4B�p���
�

Fp02

B�p���2
�

Fp0�0

2B�p���2
�
F00

4B
�

Fpp00

2B�p���2
�

F�p00

2B�p���2

0�
F

2r2�
F

2r2B
�
p
4
�
�
4
�
FB0

2rB2�
F0

2rB
�

3B0F0

8B2 �
Fpp0

rB�p���2
�

F�p0

rB�p� ��2
�

FB0p0

4B2�p���
�

F0p0

4B�p���
�

Fp02

B�p���2

�
Fp0�0

2B�p� ��2
�

3F00

4B
�

Fp00

2B�p���

0��
F

2r2�
F

2r2B
�
p
4
�
�
4
�

F0

2rB
�
B0F0

8B2 �
FB0p0

4B2�p���
�

F0p0

4B�p���
�

Fp02

B�p���2
�

Fp0�0

2B�p���2
�
F00

4B
�

Fp00

2B�p���
:
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This set of equations is not linearly independent and one can solve B�r� and B0�r� algebraically:

 

B0�r� � �2�2F2p0 � r2�p� ��2�F0 � rF00� � rF�p2 � �2 � p0�F0 � r2�2p0 � �0�� � ����rp0� � F00 � r2p00�

� p�2�� rp0 � F00 � r2p00����r2�p� ��F02�p� �� rp0� � 2F2�p2 � �2 � r2p0�3p0 � �0� � r2�p00

� p�2�� r2p00�� � rF���r2F0p0�3p0 � �0�� � p2�3F0 � rF00� � �2�3F0 � rF00�

� r����rp0F00� � F0�2p0 � rp00�� � p���6F0 � 2rF00� � r���rp0F00� � F0�2p0 � rp00�����

� ��p� ��3��2F2 � r3�p� ��F0 � rF�rp� r�� F0 � r2p0��2��1;

B�r� � r
�
�

�
rF02�p� �� rp0�

p� �

�
� F2

�
�2

r
�

6rp02

�p� ��2
�

2rp0�0

�p� ��2
�

2rp00

p� �

�

� F
�
r�p� �� rp0�F00

p� �
� F0

�
�3�

3r2p02

�p� ��2
�
rp0��2p� 2�� r�0�

�p� ��2
�

r2p00

p� �

���

� �2F2 � r3�p� ��F0 � rF���rp� � r�� F0 � r2p0���1: (A1)
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