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I. INTRODUCTION

The study of vacuum decay initiated more than 30 years
ago with the work of Callan and Coleman [1,2]; in the
following years the interest in the subject increased and the
possible interplay of true vacuum bubbles with gravitation
was also studied [3,4], together with bubbles collisions and
their importance in the early universe [5,6]. At the same
time, and as opposed with the true vacuum bubbles of
Coleman et al., false vacuum bubbles were also consid-
ered. In connection with gravity, the behavior of regions of
false vacuum, first studied by Sato et al. [7–12], was, for
example, analyzed in [13–20]. For additional papers ana-
lyzing it in the context of inflation, we refer the reader to
[21–23]; interesting links with more phenomenologically
oriented approaches can also be drawn, as witnessed, for
instance, by the recent [24].

In these last works, a minisuperspace approximation was
adopted to quantize the system. In more detail, since
general relativistic shells1 can be used as a convenient
model and since in spherical symmetry the system has
only one degree of freedom, standard semiclassical meth-
ods might be suitable to analyze the decay process (see
[25] for an early, in principle, discussion of this point). In
connection with cosmology, spaces equipped with a cos-
mological constant (i.e. de Sitter space and generaliza-
tions) have been naturally considered. In this context it is
also worth remarking the important role that they play in
connection with the problem of gravitational entropy,

causal structure, and the presence of horizons (see, for
instance [26–30] as well as the suggestive [31]).

Notwithstanding many interesting results, after 30 years,
and with different flavors, the problem of the stability of
(the de Sitter) vacuum in connection with the dynamics of
false vacuum bubbles, is still a debated one [19,32,33].

The still open issues are highly nontrivial and go back to
the, also long-lasting, problem of formulating a consistent
framework for a quantum theory of gravity [34–40], but
we will not take explicitly this point of view here. We will
instead analyze a specific situation, described below, in
which the nucleation rate can be computed exactly in
arbitrary spacetime dimensions. We will, then, explicitly
compute in closed form the nucleation rate in the semi-
classical approximation, compare it with existing results,
and discuss in detail the associated spacetime structures: an
analysis of how quantum effects may be relevant in the
context of tunnelling from nothing configurations [41] will
also be given. These results extend some results present in
the literature (for instance [16,42–44]) and can also pro-
vide a useful limiting case of more general situations, for
instance those discussed in [33]. At the same time, to
consider spacetimes of higher dimensionality and negative
cosmological constant is especially important in view of
recent results in the context of the anti-de Sitter (AdS)/
conformal field theory (CFT) correspondence [45] and of
the braneworld cosmological scenario [46,47] (see also
[48] and references therein for a study in the context of
noncommutative branes).

Apart from the papers already cited above, the instanton
approach has also been discussed by other authors (see for
instance [49–51]) and although it will not be directly
related to the present paper, we cannot avoid mentioning
the suggestive relationship between the decay of the cos-
mological constant, membranes generated by higher rank
gauge potentials and black holes, which have appeared in
many papers in the literature [52–62].
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The structure of the paper is the following: in Sec. II we
recall the formalism by which a general relativistic thin
spherical brane/shell can be described; this also gives us
the opportunity to fix conventions and notations and briefly
describe the canonical approach to its semiclassical quan-
tization (subsection II C); a convenient dimensionless for-
malism is also introduced (subsection II D). We then
directly come (Sec. III) to the main result of this paper,
which is the calculation of the tunnelling rate between the
classical configurations of the system, in arbitrary space-
time dimensions; the results for the cases of 3, 4, and 5
spacetime dimensions are explicitly presented with dedi-
cated plots of the values of the action as a function of the
two dimensionless parameters of the model
(subsection III C). The exact results for the tunnelling
amplitude/probability calculated in Sec. III correspond to
specific transitions which take place in spacetime and that
will be discussed later on, in a dedicated appendix. We
discuss, instead, in the main text (Sec. IV) a proposal to
regularize some spacetime configurations which appear to
be singular, relating this issue to the description of the
brane energy-matter content. In the concluding Sec. V,
the results of the paper are summarized; two appendices
follow with the detailed description of the parameter space
of the system (Appendix A) and of all the Penrose dia-
grams associated with different values of the parameters of
the problem (Appendix B): they are crucial to fully grasp
the physical system under consideration.

II. SHELL IN N� 1 DIMENSIONS

In this section we are going to briefly review some
results about the dynamics of codimension one branes in
an �N � 1�-dimensional spacetime, where, under the
words codimension one brane, we understand an
N-dimensional hypersurface � separating the �N �
1�-dimensional manifold in two domains, M� and M�

having � as a common part of their boundary: in brief
@M� \ @M� � �. In what follows we are going to use
the clear notation of [63]: the formulation developed there
can be readily extended to higher dimensions, just by
letting the indices run on an extended set of values. We
will thus quickly report this paraphrase with the purpose of
recalling some notations and conventions. In particular let
us choose two arbitrary systems of N � 1 independent
vector fields E��a� in M�, respectively, with dual forms

��b�
� . Denoting with g��� the four dimensional metric

tensors in the two manifolds we can write,2 in general,

 g ��� � g���ab��a�
���
���b�

���
;

in our notation Latin indices a; b (as well as all other Latin
indices) will vary in the set f0; 1; 2; . . . ; Ng.

Let us first concentrate our attention on �: it is also a
manifold, as M�, and we will denote by e��� an
N-dimensional system of (commuting) independent vector
fields on �, with dual system!���; the indices � and � (as
well as all other Greek indices) will vary in the set
f0; 1; . . . ; N � 1g. Because of the physical interpretation
we will be interested in the case in which � is embedded
as a timelike surface in M�. Since � is timelike the normal
to � in M� is a spacelike vector n, which we choose
normalized so that hn;ni � �1. Moreover, our convention
is that the normal points from the ‘‘�’’ to the ‘‘�’’ domain
of spacetime.

The components of n (an unambiguously defined non-
null vector) will be different, in general, when measured by
an observer in M� or by one in M�, according to the
following definition:

 naj� � hn;E�a�ij� � hn;E��a�i:

In terms of n the extrinsic curvature of the surface � can
be expressed as3

 K�� � hn;re���e���i

and, in general, it is different on the � and � side.
Moreover, by the Gauss-Codazzi formalism, the geometry
of spacetime around � can be described in terms of the
intrinsic geometry of the hypersurface and of its extrinsic
curvature. In the spirit of this formalism, let us denote by h
the intrinsic metric of the hypersurface �, i.e.

 h � h��!
��� �!���:

When we will work with quantities defined in the bulk we
will need to distinguish the ones defined in M� from the
ones defined in M�, and to this end we will use, as we did
above, ‘‘�’’ superscripts or subscripts. In many cases we
will also be interested in the jump of these quantities across
�: for instance, if we consider the extrinsic curvature, we
may need to consider the difference K��� � K

�
��: following

[63,64] we are going to rewrite this difference as �K��	.
Throughout this paper this will be the only meaning that we
will give to the square brackets, i.e.

 �A	 �
def:
A� � A�:

To avoid confusion no other use of the square brackets will
be done.

A. Junction conditions

The brane � can be more than just a mathematical
surface, i.e. we can (and, in most of the cases, we want

2In a few equations below, we will use the notation h�;�i to
denote the scalar product. We also anticipate the notation rYX
for the covariant derivative of the vector field X in the direction
of the vector field Y. 3We stress the normalization condition on n.
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to) equip it with a matter-energy content: it is then an
infinitesimally4 thin distribution of matter energy. Thanks
to the above mentioned Gauss-Codazzi formalism, we can
rewrite Einstein equations to make explicit the contribution
from the localized matter. Then, the dynamics of � as a
surface separating M� from M� is obtained solving the
following system of equations,

 K��� � K
�
�� 
 �K��	 � 8�GN�1�S�� � h��S=2�; (1)

these are Israel’s junction conditions [63,64] which relate
the jump in the extrinsic curvature �K��	, i.e. the ‘‘jump’’
in the way the surface is embedded in each geometry, to the
stress-energy tensor S�� of the matter contained on �. The
tensor S must also satisfy a conservation equation,

 h�N�r;Si� � �T�n; e����	;

where T is the stress-energy tensor describing the content
of the complete spacetime manifold. Once we have speci-
fied the matter content of the bulk (and hence the geometry
according to Einstein equations) the description of the
dynamics of the system is obtained by solving the system
of equations (1); we refer the reader to [63,66] for addi-
tional material and related considerations.

B. Spherical symmetry

The setup that is of interest for us is a simplified one, in
which all the system is spherically symmetric and the
surface stress-energy tensor is that of the, so-called, tension
model, with

 S � ��h;

where � > 0 is a constant called the tension of the brane. In
what follows, it will be convenient to also define

 ~� � 4��N � 2�GN�1�:

Thanks to the spherical symmetry, the system of equa-
tions (1) can then be reduced to a single equation [67],

 R���
�������������������������
_R2 � f��R�

q
� ��

�������������������������
_R2 � f��R�

q
� � ~�R2; (2)

in the above, f��r�� are the metric functions of the static
line element adapted to the spherical symmetry, i.e., taking
the four dimensional case as a convenient example, we
choose in both M� the coordinate system xa� �
�t�; ��; 	�; r�� corresponding to the basis vectors et� ,
e�� , e	� , and er� , such that the metric is reduced to the
form g���ab � diag��f��r��; r2

�; r
2
�sin2��; 1=f��r���.

Generalizations to spacetimes with higher dimensionality
are just more cumbersome to write but trivial in their
substance. In these coordinate systems, we denote the

radius of the brane by R�
�, where 
 is the proper time of
an observer comoving with the brane and an overdot
denotes the derivative with respect to 
. Moreover, as
anticipated in the introduction, we consider that this
N-dimensional brane separates two �N � 1�-dimensional
spacetimes of the de Sitter/anti-de Sitter type, in general
with different cosmological constants ��. We thus have

 f��r�� � 1�
2��

N�N � 1�
r2
�:

Finally �� are signs, defined as

 ���R� � sign�hn; er�i�jr��R

and are crucial quantities to obtain the Penrose diagrams
associated with the considered brane configuration.

C. The effective action/the momentum

Before proceeding with the analysis of the physical
system that we introduced in the previous subsection, we
believe it is useful to recall some important points about
the structure of the junction conditions in spherical sym-
metry. For a generic junction between spherically symmet-
ric spacetimes across a (spherical) brane carrying matter
described by a given, but otherwise arbitrary, equation of
state, it would prove very useful to extract an effective
action for the dynamics of the brane starting directly from
the Einstein-Hilbert action and from a suitable action for
the matter fields and the brane [67]. This is the content of a
consistent literature on the subject [68–76] among which
we would like to single out the more general, and recent,
[77]: the problem is not trivial at all, because of the same
subtleties that appear, for instance, in the Hamiltonian
formulation of general relativity. Among the various pos-
sible approaches we will closely follow the quantization
procedure originally proposed by Farhi, Guth, and Guven
[16], which has, lately, been followed also in [67,78]. For
the Lagrangian approach to the classical dynamics we will
instead follow the clear and more general exposition of
[77]. We summarize here the relevant elements of these
approaches referring the reader to the literature for addi-
tional details. In particular, the effective action for the shell
can be obtained starting from the Einstein-Hilbert action
with the Gibbons-Hawking boundary terms [16,77,79].
Using the Gauss-Codazzi formalism [80], it is readily
seen that the Einstein-Hilbert action for a spherical codi-
mension one brane (which in our case will separate two
domains of (anti-)de Sitter spacetime) can be decomposed
in nondynamical bulk contributions (indeed, we consider
the geometry of the bulk spacetimes M� fixed) and a
dynamical boundary contribution described in terms of
the extrinsic curvature of the brane �. It is enlightening
(and, perhaps, necessary) not to use all the freedom in
fixing the coordinate systems. As an exemplification we
do not use the freedom given by the reparametrization
invariance with respect to the proper time of the brane

4Strictly speaking � is a source defined in a distributional way:
for additional material on this point, the reader is referred, for
instance, to [65].
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and we, thus, introduce a lapse function N �s�, so that the
brane induced metric can be written as h�N ��� �
diag��N �s�2; R2�s�; . . .� in the coordinates �s; R; . . .� (the
‘‘. . .’’ stand for the trivial spherically symmetric part).
Then, following [67,77], the effective action for the de-
grees of freedom associated with the radial and time coor-
dinates takes the form

 Seff /
Z �
RN�2

�
�
������������������������������
_R2 �N 2f�R�

q

� _R arctanh
� _R

�
������������������������������
_R2 �N 2f�R�

p
�

sign�f�
�

� ~�N RN�1

�
d
: (3)

Thus, the effective Lagrangian of the system is given by

 L � P�N � _R�H ;

where, following [67], we have defined the effective
Hamiltonian as

 H � �RN�2��
������������������������������
_R2 �N 2f�R�

q
	 � ~�N RN�1

and the effective momentum as

 P�N ��R; _R� � �RN�2

�
arctanh

� _R

�
������������������������������
_R2 �N 2f�R�

p
�

sign�f�
�
:

(4)

Then, the equations of motion for the R and N degrees of
freedom are

 

dH
d

�

_N

N
H and H �R; _R;N � � 0;

the second equation is a first integral of the former one, and
is the Hamiltonian constraint. We see that it encodes all the
information about the dynamics of the system, being iden-
tical to the only remaining junction condition. The first
equation is the second order equation of motion of the
system, given by the total derivative with respect to the
proper time of the Hamiltonian constraint. In what follows,
we will be mostly interested in the expression of the
momentum evaluated on a solution of the equation of
motion. In order to build a canonical structure (as it is
done, for example, in [46]) we first have to prove the
existence of a well-defined symplectic structure on the
phase space of the Lagrangian system; in particular, the
Legendre transform has to be invertible, which in our case
means nothing but the invertibility of the conjugate mo-
mentum as a function of the velocity [81]. As appreciated
already in [16], for generic codimension one branes this
cannot be proved to be always satisfied.5 However, for the

system under consideration the canonical structure always
exists and P�N � can rigorously be considered the canonical
momentum conjugate to the coordinate R; thus, in the
specific case of interest here, the canonical construction
of the corresponding quantum theory is a well posed
problem. To prove this statement, let us consider

 

@P�N �

@ _R
� �RN�2

�
1

�
������������������������������
_R2 �N 2f�R�

p
�
:

This quantity can be zero if and only if two conditions are
simultaneously satisfied:

(1) �� � ��;
(2) there is a point R in the configuration space such that

f��R� � f��R�.
For our particular choice of branes in (anti-)de Sitter space-
time, we see that in order for the second condition to hold
we must have �� � ��; but this implies6 �� � �1,
�� � �1 so that the first condition then fails. Thus, for
the class of junctions that we are considering one can
always build a canonical structure.

D. Dimensionless formalism

Following, for instance, [82], it is possible to determine
the classical dynamics of the system by studying an equiva-
lent one dimensional problem for the radial degree of
freedom R, taking also into account the values of the signs
���R�.

Before proceeding we will set up a different system of
dimensionless quantities, in order to remove the arbitrari-
ness in the definition of the normalization of the cosmo-
logical constants and of the bubble’s tension. If we define
the quantities

 x � ~�R; �
 � ~�
; �� �
2��

~�2N�N � 1�
;

� � �� � ��; � � �� � ��;

Eq. (2) then becomes7

 � ��
����������������������������
_x2 � 1� �x2

p
	x � x2: (5)

For completeness we also report the dimensionless form of
the effective momentum (4) when we impose the gauge
choice N 
 1:

 

�P�x; _x� � �xN�2

�
� arctanh

�
_x��������������������

_x2 � f�x�
p

�
f=jfj

�
: (6)

This quantity will be central in what follows, but for the
moment we keep our attention on Eq. (5). Despite its
unusual look, it is easily proved that it is equivalent to a
system of equations, which, in the notation that we are

5In these cases the quantum theory cannot be built with the
canonical formalism. Alternative formulations using the path-
integral approach have been considered in the seminal work of
Farhi, Guth, and Guven [16].

6This can be easily seen from the junction condition (2)
remembering that ~� > 0.

7An overdot will denote, from now on, a derivative with
respect to �
.
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using, takes the form

 

�
_x2 � �V�x� � 0

���x� � �sgn��� 1�
; (7)

where the potential �V�x� has a simple parabolic form

 

�V�x� � 1�
x2

x2
0

(8)

and x0, the turning point, is given by

 x2
0 �

4

1� 2�� �2 ; (9)

when the right-hand side is positive; otherwise there are no
nontrivial classical solutions. All the solutions of the prob-
lem can be easily classified according to the values of �
and �: we refer the reader to Appendix A for details. The
expressions for the signs �� relate, instead, the global
geometrical structure of spacetime for this brane configu-
ration only to the difference between the inner and outer
cosmological constants, not to the details of the trajectory
itself. This is a portion of the content of the junction
condition, that is necessary for the description of the global
spacetime structure: a careful discussion of this point can
be found in Appendix B.

The form of (5) for a brane separating two (anti-)de
Sitter spacetimes, which, in turn, is responsible for the
simple quadratic form of the potential (8), allows an exact
solution of this particular case. It is, in fact, not difficult to
see that (5) has:

(1) the trivial solution x� �
� 
 0, which always exists;
(2) the solution

 x� �
� � x0 cosh
�

�
� �
�0�

x0

�
; (10)

which satisfies the initial condition x� �
�0�� � x0; this
solution is known as the bounce solution and exists
only if the condition

 1� 2�� �2 > 0

is satisfied.
We also, incidentally, note that

 � � �1,
1

x2
0

� ��;

i.e. when j�j � 1 the turning point radius coincides with
one of the two cosmological horizons, if they exist. We also
anticipate that a more careful analysis of the trivial solution
x� �
� 
 0 will be required, since, although it is given to us
by the mathematics of the problem, we are mostly inter-
ested in its physical role, especially when we will turn on
(semiclassical) quantum effects (see Sec. IV).

III. TUNNELLING

Using the notation introduced in the last section we can
now describe how the semiclassical regime of the brane
dynamics looks. In particular we can consider the tunnel-
ling between the zero-radius solution towards the bouncing
solution (10), and vice versa.

For example in one direction the semiclassical picture is
as follows: we have a brane, of very small radius; of course,
when it is very small, the quantum properties of its matter
content will be non-negligible (we will further discuss this
issue later on in Sec. IV) and their interplay with gravity
will be nontrivial; although we do not know the full quan-
tum gravity description of the system, we will consider
that, thanks to quantum effects, the brane will have a
certain probability to tunnel under the potential barrier
given by the effective potential (8) into the bounce solu-
tion. When emerging after the tunnelling quantum effects
will likely become less and less important as compared
with gravitational ones (and as far as the interaction with
the bulk spacetime is concerned), so that the evolution of
the brane will closely resemble that of the classical junc-
tion. This is not the case in the first stage of the evolution,
involving the tunnelling process, and we will try to under-
stand, at least at an effective level, the ‘‘responsibilities’’ of
both the quantum and gravitational realms in this process.
In particular, quantum effects will be considered in a
modification at small scales of the stress-energy tensor
(see Sec. IV). Gravitational effects, at small scales, are
also present, and described by the geometric character of
Israel junction conditions. We think that our description
might be able to take into account both these effects, at
least within the limits represented by the semiclassical
approximation. In this sense, although our treatment will
be effective, it will give us the possibility to consistently
solve the ambiguity arising at the mathematical level and
represented by the x� �
� 
 0 solution. We will suggest that,
at the semiclassical level, a more detailed treatment of
both, the quantum and gravitational aspects, is unlikely
to be necessary.

A. Tunnelling trajectories

For the system under consideration, a tunnelling trajec-
tory can be described by constructing the instanton in the
Euclidean sector. The construction of the instanton in the
general case is still an unsolved problem: we will follow
the approach of [16]; moreover, the problems left open in
[16] do not affect the present case. In fact it is easy to see
that in our case the instanton describing the tunnelling can
always be constructed without the necessity to introduce
the pseudomanifold that in [16] was necessary to deal with
multiple covering of points in the Euclidean sector.
Moreover the different descriptions of the tunnelling pro-
cess that were obtained in [16] using the canonical or the
path-integral approaches in our case also coincide, because
they are consequences of properties of the dynamical
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variables during the tunnelling trajectory which are not
present in the system that we are considering (please, see
[83–85] for a more detailed description of these issues).

In this way we know that the tunnelling can be described
directly at the effective level, where, the relevant aspects of
the Euclidean junction can be determined by the Wick
rotated classical effective system. We thus define �
e �
�i �
; then, denoting with a prime the derivative with re-
spect to �
e, we have that the Euclidean system is obtained
with the formal substitutions _x! ix0 for the ‘‘velocity’’
and

 

�P! i �Pe

for the momentum (it is not difficult to prove that the above
substitution rules are rigorous results and that they can be
obtained performing a Euclidean junction, as done, for
instance, in [16]). In particular

 

�P e�x; x0� � �xN�2

�
arctan

�
x0

�
�������������������������
f�x� � �x0�2

p
��
: (11)

In this way, the tunnelling process can be modeled using
the effective tunnelling trajectory, which solves the
Euclidean equation:

 � �x0�2 � 1� �x=x0�
2 � 0: (12)

The analytic expression of the tunnelling trajectory of a
brane expanding from zero radius at Euclidean time �
e � 0
to the bouncing solution is

 x� �
e� � x0 sin� �
e=x0�:

The opposite process is then described by

 x� �
e� � x0 cos� �
e=x0�;

if we assume that at Euclidean time �
e � 0 the brane starts
contracting from x0. These two processes occur with cer-
tain probabilities, whose amplitudes A can be expressed
in the usual semiclassical approximation as

 A �0! x0� / exp��Ie�x	�;

where Ie�x	 is the Euclidean action and can be obtained as
the integral of the Euclidean momentum evaluated on a
solution of the Euclidean equation of motion (12). If, for
simplicity, we define

 Ie�x	 �
�N�1

16�GN�1

1

�N�1
�Ie�x	;

where �N�1 is the volume of SN�1, then �Ie�x	 can be
obtained as

 

�I e�x	 �
Z x0

0

�Pe�x�dx: (13)

We stress again that �Pe�x� is the Euclidean momentum
evaluated on a solution of the Euclidean equation of mo-
tion and can be obtained by substituting x0 �

����������
�V�x�

p
in

(11). We thus have

 

�P e�x� � �xN�2

�
arctan

�
2
����������
�V�x�

p
���!�x

��
;

where, to make writing more compact,8 we have intro-
duced the quantities !� defined as !� � �1.

Note that in the Euclidean case we have some freedom in
appropriately choosing one of the possible branches of the
inverse tangent function. Different choices will affect, in
general, the result that we obtain for the action. As in [16]
we observe that noncareful choices will make the action a
discontinuous function of the parameters; this can be seen
without difficulties. Preliminarily, let us anticipate that
with the symbol ‘‘arctan,’’ we will indicate the branch of
the inverse tangent function with range in ���=2; �=2	.
Let us then consider� � ! and let us integrate by parts the
integral (13). We obtain
 

�Ie�x	 � �
�
xN�1

N � 1
arctan

�
2
����������
�V�x�

p
���!�x

����������
x0

0

�

�Z x0

0

xN�1

N � 1
d
�
arctan

�
2
����������
�V�x�

p
���!�x

���
:

Let us now consider the first term above. Clearly, if we
chose the branch of the arctan function to be the one with
range in ���=2; �=2	, then we have

 lim
�!�!�

�
xN�1

N � 1
arctan

�
2
����������
�V�x�

p
���!�x

����������
x0

0
� �

!�xN�1
0

2�N � 1�

but

 lim
�!�!�

�
xN�1

N � 1
arctan

�
2
����������
�V�x�

p
���!�x

����������
x0

0
� �

!�xN�1
0

2�N � 1�
;

so that the action develops a discontinuity at � � �!.
This discontinuity can be eliminated if we choose different
branches of the inverse tangent functions (please remember
that in the expression that we are considering we are using
a compact notation to indicate the difference of two inverse
tangent functions); in particular, the two discontinuities at
� � �1 can be eliminated by choosing:

(1) the branch with range ���; 0	 for the arctan func-
tion containing quantities of the ‘‘�’’ spacetime;

(2) the branch with range ���; 0	 for the arctan func-
tion containing quantities of the ‘‘�’’ spacetime.

Since in our notation ‘‘arctan’’ has range ���=2; �=2	,
this means that the equations above must be rewritten with
the substitutions (� is the step function)

 arctan�“� ”� ! arctan�“� ”� � ����� 1�

8In view of the definition of the !’s, and of the meaning of the
square brackets, the equation above is a shorthand for �Pe�x� �

�xN�2��� arctan�
2
�������
�V�x�
p

���1�x� � �� arctan�
2
�������
�V�x�
p

���1�x��.
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and

 arctan�“� ”� ! arctan�“� ”� � ����� 1�;

for the jump of the quantity which appears inside the
expression of the Euclidean momentum, this implies the
following substitution:

 �arctan	 ! �arctan	 � ���1� �2�:

In this way the action integral is continuous also at the
points � � �! and is given by the integral
 

�Ie�x	 � �
Z x0

0
dxxN�2 �

��
arctan

�
2
����������
�V�x�

p
���!�x

��

� ���1� �2�

�
: (14)

After these preliminary considerations, we can proceed to
evaluate the tunnelling amplitude in the WKB approxima-
tion; as we anticipated and as we will see, in arbitrary
spacetime dimensions this result can be expressed analyti-
cally in terms of known functions.

B. General result for the tunnelling amplitude

To calculate the first contribution to the integral (14) we
proceed as follows. As a preliminary step, we observe that
it can be written as a difference of two integrals with the
same general structure. Let us then consider the two inte-
grals containing the inverse tangent functions: small dif-
ferences, which do not substantially affect the calculation,
can be taken into account by properly using the !’s intro-
duced above, as we already did in the expressions for the
momentum. This said, we can perform9 an integration by
parts in (14). The terms evaluated at the limits of integra-
tion, which appear in this process, do vanish and by chang-
ing the integration variable from x to � � �x=x0�

2 (which
also transforms the integration domain into the unit interval
(0, 1)) we obtain the following expression:

 

�I e�x	 � �
xN0

4�N � 1�
�

�
���!�

Z 1

0

� �N�2�=2������������
1� �
p

�
1

1� z!�
d�
�
�
�xN�1

0

�N � 1�
��1� �2�; (15)

where

 z! �
�
1� x0

��!
2

��
1� x0

��!
2

�
: (16)

When z! < 1 one of the above integrals diverges since
there is a pole of the integrand on the domain of integra-
tion. On the other hand, it is easy to see that the condition

z! < 1 implies

 

x2
0

4
���!�2 < 0

and cannot be realized for any choice of the parameters if a
tunnelling trajectory has to exist. The value z! � 1 can
instead be obtained if � � �! and we know that the
action can be extended by continuity to these values,
although the above procedure to calculate the integral is
not valid. Thus, under the conditions � � �!, we have
that z! > 1 is satisfied and Eq. (15) gives
 

�Ie�x	 � �
xN0

4�N � 1�

��N=2���1=2�

���N � 1�=2�

�

�
���!�2F1

�
1;
N
2
;
N � 1

2
; z!

��

�
�xN�1

0

�N � 1�
��1� �2�; (17)

where � is the Euler’s gamma function, 2F1 the hyper-
geometric function. Note that x0 depends on �, � and so
the first factor of the formula, depending on the number of
spacetime dimensions, cannot be ignored even for a quali-
tative description of the tunnelling amplitude.

C. Some cases of interest

It is useful to specialize the result (17) to particular
situations. We are going to do this by considering the cases
in which spacetime is three, four, and five dimensional.
Below we are going to explicitly discuss these three cases.
A comparative presentation of the results can be found in
the contour plots of Fig. 1.

We start then with the three dimensional case, which is
lower dimensional gravity; in three spacetime dimensions
it seems more clear how to build a quantum theory out of
the classical junction conditions [46]. Moreover three di-
mensional gravity is an interesting system by itself, it
allows an easier visualization of some results and can be
used for interesting specific toy models. Anyway, in this
case we haveN � 2 and we can express 2F1�1; 1; 3=2; x� in
terms of elementary functions as

 2F1

�
1; 1;

3

2
; y
�
�

arcsin�
���
y
p
�������������

1� y
p ���

y
p : (18)

Correspondingly the action becomes

 

�I e � �
x2

0

4

��1���1=2�

��3=2�
�

�
���!�

arcsin�
������
z!
p
����������������

1� z!
p ������

z!
p

�

� �x0��1� �2�: (19)

The corresponding probability is plotted as a function of �
in Fig. 2 for some non-negative values of� and in Fig. 3 for
some negative values of �.

Not many comments are necessary, of course, for the
four dimensional case, the original arena on which this

9Strictly speaking this can be done only when � � �!. The
cases in which � � �! are trivial and can be dealt separately;
or, more simply, since we already know from the discussion in
the previous subsection that the action is continuous, we can just
extend it to � � �! by continuity.
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calculation was performed. Again we can take advantage
of a simple expression for the corresponding hypergeomet-
ric function

 2F1�1; 3=2; 2; y� �
2

y
������������
1� y
p �

2

y
; (20)

which brings the final result in the form
 

�Ie � �
�x2

0

4
�

��
sgn���!�

1� �1� z!�
1=2

z!

�

���1� �2�

�
: (21)

The plots of the probability as a function of � can be found
in Fig. 4 for some non-negative values of� and in Fig. 5 for
some negative values of �. This result is the same as the
one obtained in [86] and it also reduces to the one calcu-
lated in [3]: it, thus, represents a useful consistency check.

Finally, the five dimensional case is interesting in the
context of the Randall-Sundrum scenario. In this case,
using

 2F1

�
1; 2;

5

2
; y
�
�

3

2y

�
arcsin�

���
y
p
�������������

1� y
p

y1=2
� 1

�
; (22)

the result for the action integral can be put in the following
form:

FIG. 2. Plots of the values of the tunnelling probability in a
spacetime of dimension 3, as a function of � for fixed non-
negative values of � as listed above. The detailed behavior for
� � 0 around � � 0, is also shown (to better see that the
probability is small but nonzero).

FIG. 1. Contour plots of the values of the tunnelling probability in 3 (case a), 4 (case b), and 5 (case c) spacetime dimensions in the
�-� plane. The area inside the crosshatched parabola in the bottom of each picture is the region in parameter space where tunnelling
cannot occur since no bounce solutions exist (no tunnel zone). A better understanding of what happens close to the limiting parabola
can be understood from the following Figs. 3, 5, and 7. Next to next contours indicate a jump of the probability of 0.1, with the lightest
gray tone indicating the range (0.9, 1.0) and the darkest the range (0.0, 0.1). The same color indicates the same range of values of the
probability in all the three subdiagrams.

FIG. 3. Plots of the values of the tunnelling probability in a
spacetime of dimension 3, as a function of � for fixed negative
values of � as listed above. For �<�1=2, not all values of �
are allowed. We have put the mark on each curve in correspon-
dence of the minimum value of � for which (at the given value of
�) the tunnelling process can exist. For smaller values, the
infinitely expanding solution, in fact, is not present.
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�Ie � �
x4

0

12

��2���1=2�

��5=2�

�

�
���!�

�
arcsin�

������
z!
p
����������������

1� z!
p

�z!�3=2
�

1

z!

��

�
�x3

0

3
��1� �2�: (23)

Again we present two plots of the corresponding probabil-
ity as a function of �; Fig. 6 shows the behavior for some
non-negative values of �, whereas plots for some negative
values of � can be found in Fig. 7.

FIG. 6. Plots of the values of the tunnelling probability in a
spacetime of dimension 5, as a function of � for fixed non-
negative values of � as listed above. Again the detailed behavior
for � � 0 around � � 0 is shown (to better see that the proba-
bility, although much smaller than in the previous cases, is still
nonvanishing).

FIG. 7. Plots of the values of the tunnelling probability in a
spacetime of dimension 5, as a function of � for fixed negative
values of � as listed above. For �<�1=2, not all values of �
are allowed. We have put the mark on each curve in correspon-
dence of the minimum value of � for which (at the given value of
�) the tunnelling process can exist and, the zoomed diagram,
helps resolving the apparent superposition that arises between
the curves obtained for � � �0:50;�1:00;�1:50.

FIG. 5. Plots of the values of the tunnelling probability in a
spacetime of dimension 4, as a function of � for fixed negative
values of � as listed above. The same observations as in the case
of 3 spacetime dimensions apply.

FIG. 4. Plots of the values of the tunnelling probability in a
spacetime of dimension 4, as a function of � for fixed non-
negative values of � as listed above. Again the detailed behavior
for � � 0 around � � 0 is shown (to better see that the proba-
bility, although very small, is nonvanishing).
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IV. DISCUSSION

Up to this point we have discussed the physics of the
system rather quickly, focusing mainly on the mathematics
necessary to describe the classical and the semiclassical
phases. There is still a point which deserves a detailed
discussion, since it involves nontrivial aspects of the dy-
namics of the brane. Indeed, the physical process we have
considered is the tunnelling of spacetime, from a classical
situation representing a spacetime containing a small brane
to another classical configuration describing a bouncing
brane. In our picture, the pretunnelling state is represented
by the x 
 0 solution of the junction condition. Although
this case might appear rather simple at first sight and one
could be tempted to just state that the initial state is, for
example, the full M� spacetime (a point of view which
has been taken, for example, in [67]), much more care has
to be taken. The main reason is that when x � 0, the
brane’s world volume degenerates to a curve. Thus, the
formalism that we used to describe the brane breaks down
and the analysis that we have made cannot be considered as
rigorous as it is in the case of the bouncing solutions. As a
manifestation of this fundamental problem, we observe
that the equations determining the �� signs do not hold
for the particular solution x 
 0. In particular, for this
solution the junction condition as written in (5) does not
provide any mean to solve this problem.

A way out of this situation appears when we reflect on
the fact that this process, although described semiclassi-
cally, is quantum in its true nature. Thus an approximation
of the system which considers it completely classical be-
fore the tunnelling, i.e. in the degenerate configuration,
might be too rough and might require a more careful
consideration. During the tunnelling trajectory, and even
more for the x 
 0 classical solution, quantum effects are
supposed to be, if not dominant, at least relevant enough to
modify the classical picture of the junction.

We will propose here an attempt to address the problem.
Our proposal should be considered a first step further, but
far from a first principle solution of the complex quantum
problem; it just aims to show that the mathematical and
physical aspects of the problem stated above can be dealt
with by giving an effective formulation for the phenomena
that might arise at small scales. At the same time, although
we will just build an effective model, we will not be very
demanding about its main properties: in this way, hope-
fully, the model, although effective, could mimic well
enough effects produced by quantum gravity whatever
will be their, still undiscovered, true nature.

In this respect, we would also like to point out the
following: (i) the main effect of our proposal is to slightly
perturb the effective potential (8) in the tunnelling region;
then, we will (ii) show that the perturbed problem is free
from ambiguities, and (iii) use for the unperturbed case the
results obtained in the perturbed one, when the perturba-
tion becomes smaller and smaller. To have a definite

model, we will regard the small scale behavior of the
matter composing the brane/shell as the physical origin
for the perturbations (see below). On the other hand, the
consequence of these perturbations in the effective formu-
lation is completely generic: it is, in fact, possible to show
that other physical motivations, as for instance the quan-
tum properties of spacetime at small scales, could be
reflected in a similar way in the effective formulation.
For these reasons, we can regard our conclusions model
independent to a high degree, at least within the context
defined by the semiclassical approximation.

To introduce our model we can naturally think the brane
as sourced by some matter fields whose nature is, ulti-
mately, quantum. We thus argue that, although at large
scales the approximation for the brane stress-energy tensor
that we made in subsection II B might be rough but still
appropriate, at small scales it will instead break down due
to quantum effects. We will model these additional quan-
tum effects by adding a term to the brane stress-energy
tensor as follows:

 S 			! S� Sq; (24)

where the ‘‘quantum’’ contribution Sq will be parametrized
as

 S q � qu � u� �qh: (25)

The conservation equation for Sq under the assumption of
spherical symmetry gives (we are going to use, from now
on, the dimensionless versions of the parameters q and
�q, which following the notation above, are called �q and
��q)

 

d �q

dx
� N

�q

x
�
d ��q

dx
: (26)

We will choose preliminarily

 � q�x� � axq (27)

so that

 �� q�x� � a
q� N
q

xq: (28)

In this case the junction condition becomes10

 � ���q�
����������������������������
_x2 � 1� �x2

p
	x � x2��x�; (29)

with

 ��x� � 1� �axq (30)

10We remember that we are following the convention in which
square brackets indicate the jump of the enclosed quantity, i.e.
the difference of it when evaluated in the ‘�’ and ‘�’ domains.
We are now using the suffix ‘‘. . . q’’ or ‘‘. . . �q�’’ to indicate
quantities when the energy momentum tensor is modified, as
described in the text, to take into account quantum effects; thus
the two signs will now be ��q��.
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and, for short, �a � a�q� N�=q. Now we are going to
slightly restrict the parameters �a and q to make these
general settings appropriate for our model. In particular,
the modification to the stress-energy tensor, described by �a
and qwas introduced to model the quantum effects at small
scales; thus it should be negligible at large scales and this
can be achieved if q� 1< 0, i.e. q <�1.

We can now compute the modified effective potential
�Vq. The potential turns out to be

 

�V q�x� � �
x2��2 � 2��1� �axq�2 � �1� �axq�4	

4�1� �axq�2
(31)

 

�
x�0
�

�a2

4x�2q�2 (32)

 

�
�a�0 �V�x� �

�1� �2� �a2

2x�q�2 : (33)

Extracting the behavior of (31) for small x we get (32),
whereas for small �a the leading contribution is given by
(33). These are useful results. Indeed we see from (32) that,
quite generally, and certainly under the above q <�1
condition, the potential satisfies

 lim
x!0�

�Vq�x� � �1:

This implies that the �Vq�x� allows not only the bounce
brane junction, as �V�x� does, but also bounded solutions.
Thus the addition of the Sq term to the stress-energy tensor,
which in our picture is supposed to take into account
quantum effects at small scales, in fact does his job by
trading the x 
 0 solution for a bounded one of finite (i.e.
nonvanishing) size. Moreover this solution exists under
very general assumptions about the form of Sq, so that
we do not have to commit ourselves too much about the
underlying quantum gravity physics of which Sq is roughly
supposed to take into account some effective semiclassical
description. Looking now at Eq. (33) we also see that for
small �a, apart from the evident qualitative difference at
small scales, the potential resembles closely the nonper-
turbed one (and this happens, in particular, along the
tunnelling trajectory). Thus it will be a sufficiently good
approximation to evaluate the tunnelling probability in the,
analytically much simpler, unperturbed case.

At this point, our picture of the spacetime transition will
be as follows. We will take as final configurations of the
tunnelling process the junctions obtained without consid-
ering the correction, which in our setup is strongly sup-
pressed at large distances; then, the initial state, which is
the x 
 0 solutions, will be ‘‘regularized’’ by considering
the junction as the limiting case of the bounded perturbed
junction when �a! 0. In particular, the sign ambiguity,
which affects the x 
 0 solution, will be solved by choos-
ing the signs of the bounded trajectory of the perturbed
model. These signs can be obtained in closed form consid-

ering the x! 0 limit of the junction condition, which is
dominated by the correction. Therefore

 �� � �1: (34)

Using this prescription, then, one can build the space-
time diagrams representing the tunnelling process. We
refer the reader to appendices for a complete discussion
of the parameter space (Appendix A) and of the global
spacetime diagrams representing the various physical situ-
ations (Appendix B).

To conclude the discussion, we would like to remark
that, despite the fact that the regularization procedure we
have described changes dramatically the situation in the
region near x � 0 of the configuration space of the brane,
the effect on the calculation we have performed is not
significant. This is due to the fact that in the tunnelling
region, the potential is substantially modified only in a
narrow region close to the turning point corresponding to
the maximum radius of the bounded solution of the modi-
fied classical junction condition. In the tunnelling region,
the perturbation to the potential is finite, and by sending
�a! 0 the tunnelling amplitude of the modified problem is
approximated arbitrarily well by our calculation in Sec. III.
Of course, in the real physical problem we expect that
quantum effects would prevent the brane from shrinking
to zero radius: thus the mathematical limit �a! 0 should be
read as a more physically sound limit in which �a tends to a
small but finite value related to the ultimate physical nature
of the brane itself (which is presently only partially under-
stood). As a consequence, the analytical result that we have
obtained (which relies on a WKB approximated descrip-
tion of the quantum process) can also be considered an
approximation of the full quantum result at the lowest
power in the ratio between the maximum radius of the
bounded solution of the modified classical junction equa-
tions and x0.

V. CONCLUSIONS

In this paper we have calculated analytically the tunnel-
ling amplitude for a domain of spacetime of de Sitter/anti-
de Sitter type in a background which, again, is de Sitter/
anti-de Sitter. The analytical result holds in arbitrary space-
time dimensions greater than three, and generalizes already
existing four dimensional calculations. It is not difficult to
see that this result reduces, for appropriate values of the
parameters, to the result found by Coleman and de Luccia
[3] for the false vacuum to true vacuum transition in four
spacetime dimensions. Also the results by Parke [86],
again in the four dimensional case, are correctly
reproduced.

We have, also, discussed extensively, in the text and in
Appendix B, the spacetime structures that can arise for all
possible values of the parameters characterizing the model.
Some of these spacetime structures, already discussed in
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the literature, are known as tunnelling from nothing con-
figurations. We have also exposed a possible issue of the
shell formalism in the description of the pretunnelling state
and proposed a solution which relies on the above men-
tioned tunnelling from nothing configurations; in this way
we have been able to make what we consider to be a
consistent choice for the before tunnelling configurations.
This proposal, which is implemented by considering a
modification to the stress-energy tensor for the matter on
the shell at small states, is motivated by the observation
that if quantum effects are non-negligible on scales at
which the tunnelling process occurs, they should also be
non-negligible at smaller scales, where the before tunnel-
ling configurations live. By modelling the influence of
these quantum effects with a quite generic modification
to the form of the stress-energy tensor at small scales, we
have proposed an unambiguous rule to fix the initial con-
figuration. This approach to the problem seems to us con-
sistent with the level at which we are modelling quantum
effects for this gravitational system, which is the semiclas-
sical approximation for an infinitesimally thin distribution
of matter and energy. At the same time, it has already been
shown that, if we add a more refined matter content on the
shell (as for instance a collection of gauge fields), mod-
ifications similar to the one that we have considered in this
paper naturally appear [87]. Moreover, we note that it gives
a very consistent picture of the tunnelling process, since all
the possible types of tunnelling result in a ‘‘sudden expan-
sion’’ of a very small region of spacetime from a small size
(where quantum effects are certainly non-negligible) to a
much bigger size, with radius of the order of x0. This shows
that the regularized tunnelling always models what in the
literature has been called tunnelling ‘‘from nothing.’’ In
our case the ‘‘nothing’’ is exactly the quantum state of the
spacetime junction that we model, in an effective way,
using (29). It thus seems that some tunnelling configura-
tions present in the literature and of more difficult inter-
pretation [67] might be ruled out by the quantum properties
of matter and/or of spacetime at small scales. In fact, it is
suggestive to reflect about the fact that, even in our very
simplified and purely effective treatment of quantum ef-
fects before and during the tunnelling, all tunnelling pro-
cesses start exactly ‘‘from nothing’’ (as interpreted above),
i.e. from a configuration which is consistent with the
quantum properties of the following tunnelling process.

To conclude, we would like to explicitly distinguish
between the analytical result for the tunnelling probability
and the proposal to interpret the pretunnelling configura-
tions. Indeed the analytical result is a natural generaliza-
tion of already existing calculations and it incorporates
them as special cases. Its validity is completely indepen-
dent from our interpretation of the before tunnelling con-
figurations and it can represent a useful limit case to check
the results of more elaborated models: for instance, a de
Sitter-Schwarzschild shell configuration should reproduce,

in the limit of vanishing Schwarzschild mass, our result for
a tunnelling between a de Sitter space of assigned cosmo-
logical constant and a de Sitter space with vanishing cos-
mological constant, i.e. Minkowski space.
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APPENDIX A: PARAMETER SPACE

In this appendix we will elaborate about the classifica-
tion of the possible junctions between two (anti-)de Sitter
spacetimes. After switching to the dimensionless formula-
tion (see subsection II D), we remain with two parameters,
i.e. ��, or, which is the same, � and �. We will mostly use
the latter quantities in the following analysis, since many
relevant features of the solutions to Israel’s junction con-
dition related to the causal structure of the full spacetime
manifold M are easily deducible from the comparison
between the two cosmological constants. In particular, in

FIG. 8. The space of parameters is subdivided according to the
different kinds of junctions, which can be between anti-de Sitter
and anti-de Sitter spacetimes (type A), anti-de Sitter and de Sitter
spacetimes (type B), de Sitter and anti-de Sitter spacetimes
(type D), or de Sitter and de Sitter spacetimes (type C). The
black part of the parameter space, identified by the condition 1�
2�� �2 < 0, singles out the values of the parameters for which
tunnelling is not possible since the infinitely expanding solution
does not exist.
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Fig. 8 we give a classification of the possible solutions. The
diagram shows the parameter space of the variables ��;��
and ���; ���. The classification of the solutions using �
and �, looks nicely symmetric with respect to the axis � �
0, for which �� � ��; this is the primary reason why we
will mostly use the ��;�� parametrization in our discus-
sion. The ���; ��� axes can, anyway, be conveniently used
to single out the de Sitter from the anti-de Sitter spacetime.
In particular, we have defined four main groups of
solutions:

type A—these are solutions in which both spacetimes
joined across the brane are anti-de Sitter spacetimes, i.e.
we have an AdS��� � AdS��� junction; this part of the
parameter space is bounded by the parabola � � ���2 �
1�=2 (equivalently x�1

0 � 0), whose inside is the black
region where no solution exists;

type B—these solutions describe a junction of one part
of de Sitter spacetime in the M� manifold with a part of
anti-de Sitter spacetime in the M� manifold, i.e. they are
dS��� � AdS��� junctions, and play the role of counterparts
of the below discussed type D solutions;

type C—these are junctions in which both spacetimes
have the de Sitter geometry, i.e. we have dS��� � dS���
junctions; in some cases, qualitatively different diagrams
may arise depending on which cosmological constant is
bigger, i.e. depending on the sign of �;

type D—as anticipated above, this last type of solutions
is similar to the type B, with the role of ‘‘�’’ and ‘‘�’’
interchanged; we thus have AdS��� � dS��� junctions.

The above information is not enough to completely
characterize the classical spacetime obtained from the
junction. In addition we need to know the behavior of the
normal to the brane travelling in the spacetimes that we
have determined from the diagram in Fig. 8. According to
our convention the normal to the brane has its tail-tip
direction going from the ‘‘�’’ to the ‘‘�’’ parts of the
full spacetime M; on the other hand in each of the two
spacetimes M� the corresponding signs �� determine if
the normal to the brane points in the direction of increasing
(� � �1) or decreasing (� � �1) radius. Using the results
in (7) for �� we can subdivide the parameter space in three
main regions, as in Fig. 9. These regions correspond to the
following situations:

region 1—�� � �� � �1, so that in both spacetimes
M� the normal naj� to the brane trajectory points in the
direction of decreasing r�;

region 2 —�� � �1 but �� � �1, and in M� the
normal to the brane trajectory naj� points in the direction
of increasing r� but in M� the normal naj� to the brane
trajectory points in the direction of decreasing r�;

region 3—�� � �� � �1; thus in both spacetimes
M� the normal naj� to the brane trajectory point in the
direction of increasing r�.

FIG. 9. The parameter space can be subdivided in three other
regions (strips) according to the values of the signs ��. In
region 1 we have �� � �1, in region 2 we have �� � �1
and, finally, in region 3 we have �� � �1.

FIG. 10. In principle we have to study 10 different cases,
corresponding to as many different regions in the parameter
space. These regions are obtained combining the classifications
in Figs. 8 and 9, so that in each region there is a well-defined type
of junction with a unique choice for the signs. As we will see
each of the pairs A1 and A3, B1 and D3, B2 and D2, C1 and C3
will correspond to a distinct process in spacetime; this matches
well with the analytical result, in which the action turns out to be
an even function of �, and gives only a total of 6 different
possible processes.
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We thus have various combinations of the geometries of
the two spacetimes M� according to the classification in
Fig. 8; moreover we have to combine them choosing the
part of spacetime on the correct side of the brane trajectory
following the classification in Fig. 9. This gives a total of
ten subcases, which are summarized in Fig. 10. The nam-
ing convention is the most natural, so that, for instance, the
junction named B2 is a junction of type B, i.e. a dS��� �
AdS��� junction, with the signs as in region 2, i.e. �� � �1
and �� � �1. All other names follow the same convention
and we thus obtain solutions of the following types A1, A2,
A3, B1, B2, C1, C2, C3, D2, D3; their causal structure is
detailed in the following appendix.

APPENDIX B: PENROSE DIAGRAMS AND
TUNNELLING

Here, following the classification given in the previous
appendix, we show the corresponding Penrose diagrams
for the classical solutions, and a pictorial representation of
the corresponding tunnelling processes. For each case we
give four diagrams:

(1) the complete spacetime from which we have to
‘‘cut’’ the M� part of the bulk (with the trajectory
of the bubble and the associated normal) in the top
left diagram;

(2) the complete spacetime from which we have to cut
the M� part of the bulk (with the trajectory of the
bubble and the associated normal) in the top right
diagram;

(3) the junction, i.e. the full manifold M (again with
the shell trajectory and the corresponding normal) in
the bottom left diagram;

(4) a pictorial representation of the creation of the brane
via a tunnelling process, in the bottom right dia-
gram; in this case we have used time translation
invariance to set the ‘‘tunnelling time’’ at the coor-
dinate time t � 0 so that the top half of the diagram
represents the final state (i.e. the top half of the
junction in the bottom left diagram) whereas the
bottom half of the diagram is a representation (de-
tailed below) of the pretunnelling configuration.

We would like to discuss preliminarily in more detail the
way in which the pretunnelling configuration is con-
structed. We remember that we are considering non-
negligible quantum effects in the regime of the dynamics
before the tunnelling. We will thus use for the signs the
results coming from the modified junction (29), which are
those in (34). This gives a spacetime structure consisting of
two regions (which can be of the de Sitter or of the anti-de
Sitter type depending on the values of � and �) both
bounded by r � 0 and by the shell radius r � R�
�: this
is the junction corresponding to the bounded solution of the
modified potential (31), which is a brane starting from
zero-radius and expanding to a maximum radius (much
smaller than any other length scale present in the problem)

before recollapsing to r � 0. In the limit in which �a! 0,
as discussed in Sec. IV, this maximum radius tends, in fact,
to zero. Nevertheless, in our representation of the space-
time before the tunnelling we have kept an arbitrarily finite
size for the maximum radius, to make the diagram more
readable. At the same time, we have slightly ‘‘blurred’’ it to
make pictorially explicit that we are not dealing with a
purely classical configuration but with a somehow ‘‘heu-
ristic’’ representation of a spacetime where quantum ef-
fects are highly nontrivial and certainly non-negligible. We
would like, anyway, to stress again that these quantum
configurations will be the initial state of tunnelling pro-
cesses that correspond to what in the literature has also
been called ‘‘tunnelling from nothing’’ (see for instance
[67] and references therein).

We will now present in detail the various kinds of
junctions.

1. Type A

As discussed in the main text (and with reference to
Fig. 10), this class of junctions consists of the matching of
two anti-de Sitter spacetimes with different cosmological
constants. There are three possibilities corresponding to

FIG. 11. Case A1: AdS/AdS, �� � �� � �1.
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type A1, A2, and A3 junctions, which are shown, respec-
tively, in Figs. 11–13.

The junction of type A1 (Fig. 11) has �� � �1, so in
both anti-de Sitter spacetimes the normal to the brane
points in the direction of decreasing radii. For this junction
(and for all the ones in the 1 sector), �> 1, so that �� is
always greater than ��. The classical junction is seen (by
an observer travelling toward increasing values of the
radius) as a transition from a more negative to a less
negative value of the cosmological constant, when he/she
crosses the brane. The global picture of the tunnelling
process is then obtained according to the prescription dis-
cussed in Sec. IV. The pretunnelling spacetime has been
discussed above and now consists of two ‘‘small’’ parts of
anti-de Sitter spacetime with different cosmological con-
stant. The tunnelling process shows the transition between
a compact spacetime composed by two anti-de Sitter re-
gions to a spacetime similar to anti-de Sitter, except for the
fact that at some radius the cosmological constant changes
its value.

The junction of type A2, is instead a junction where
effectively a tiny junction of two anti-de Sitter spacetimes
is ‘‘inflated’’ (Fig. 12). In this case the signs are given by

�� � �1. Thus the normal to the brane points in the
direction of increasing radii in the anti-de Sitter spacetime
with cosmological constant ��, but it points in the direc-
tion of decreasing radii in the anti-de Sitter spacetime with
cosmological constant ��. The net effect of the tunnelling
process, which starts from the already discussed initial
state, is thus to inflate the pretunnelling compact spacetime
into a similar, but much larger, one (note that for graphical
reasons the scales in the pretunnelling and post-tunnelling
parts of the diagram are different; we remember that the
maximum radius of the pretunnelling state will be much
smaller than any other length scale in the problem). The
various diagrams are in Fig. 12.

The final type A diagram is the A3 one. This is very
much as the A1 type, only that now �� � �1; in both
spacetimes the normal to the shell trajectory points in the
direction of increasing radii. Thus (apparently) the role of
M� is interchanged, as shown in Fig. 13 where the dark
and light gray parts look complementary to those in
Fig. 11; on the other hand, now we have �<�1 so that
�� > ��. The global spacetime structure in the bottom left
corner of Fig. 13 implies that an observer crossing the
brane in the direction of increasing values of the radius,
perceives again a transition from a more negative to a less

FIG. 12. Case A2: AdS/AdS, �� � �1; �� � �1.
FIG. 13. Case A3: AdS/AdS, �� � �� � �1.
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negative value of the cosmological constant. So this dia-
gram describes exactly the same process described by
type A1, as it is possible to see from the diagram in Fig. 13.

2. Type B

The type B solutions, B1 and B2, correspond to the
junction of a part of a de Sitter spacetime, M�, with a
part of anti-de Sitter spacetime, M�. Although the pre-
tunnelling picture does not change very much, the configu-
rations before the tunnelling are now de Sitter–anti-de
Sitter junctions.

Let us first discuss the case B1, shown in Fig. 14. In both
spacetimes, the normal to the shell points in the direction
of decreasing radii, since we have �� � �1. The M� part
of spacetime corresponds to the region of de Sitter com-
plementary to the region between r � 0 and the brane’s
world volume, whereas the anti-de Sitter part M� is the
bounded region in the upper right picture of Fig. 14. Thus
the spacetime M shows a transition from a negative to a
positive value of the cosmological constant for an observer
crossing the shell in the direction of increasing radius. The
configuration before the tunnelling has been described
above; the tunnelling process again ‘‘inflates’’ an anti-de
Sitter–de Sitter junction with small volume to a much
larger one, as shown in the bottom right diagram of Fig. 14.

We then come to the case B2, shown in Fig. 15. Since in
this case the signs which fix the orientation of the normals
are �� � �1, the situation for M� is as in the previous
case, but the M� part of spacetime changes because of the
change in the sign of ��. This gives for the junction the
diagram in the bottom left part of Fig. 15. The configura-

tion before and after the tunnelling is shown in the bottom
right corner of Fig. 15. The situation is very similar to the
one in the previous case.

3. Type C

Type C solutions are the ‘‘de Sitter counterpart’’ of the
type A solution. The main difference (not related to the
spacetime structure) is that whereas for anti-de Sitter junc-
tions the values of the cosmological constant are restricted
(i.e. given two arbitrary values a junction might not exist)
de Sitter junctions exists for all values of the cosmological
constants �� (this is clear from Fig. 10). Please, also
remember that now the pretunnelling diagram will consist
of a junction of two de Sitter spacetimes with different
cosmological constants and with all the other properties
described above.

Let us start with case C1, shown in Fig. 16. For this
junction, the signs are �� � �1, so in both de Sitter
spacetimes the normals to the brane point in the direction
of decreasing radii. Moreover, since in this case �> 1, the
cosmological constant in M� will be bigger than the
cosmological constant in M�, so that the cosmological
horizon H� will be smaller than H�. The diagram for the
junction is shown in the bottom left part of Fig. 16. It is
interesting to see some effects of the brane on the space-
time structure. There are observers that crossing the brane
can move behind the cosmological horizon of M� without
going throughH�. They can also come out, by crossing the

FIG. 15. Case B2: dS/AdS, �� � �1; �� � �1.

FIG. 14. Case B1: dS/AdS, �� � �� � �1.
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brane in the opposite direction. At the same time observers,
by moving accurately and with proper timing, might end
up behind the cosmological horizon of M� without cross-
ing any horizon but using the shell as a ‘‘gate.’’11 As usual
no additional considerations are required for the before
tunnelling configuration. We note, instead, that the semi-
classical transition has again the effect of ‘‘inflating’’ a
small quantum spacetime region, as clearly shown in
Fig. 16.

We now discuss case C2, in which the signs are �� �
�1. Then the normal to the brane in the de Sitter space with
cosmological constant �� points in the direction of in-
creasing radii, whereas the normal to the brane in the de
Sitter space with cosmological constant �� points in the
direction of decreasing radii. We have again two regions of
spacetime of the de Sitter type but with a different cosmo-
logical constant joined across the brane (bottom right part
of Fig. 17). The full picture of the tunnelling process
requires the consideration of the same initial configuration
used in case C1 above. We also point out that in this case,
the sign of � is not fixed, so either of the cosmological
constants �� may be the bigger. In particular, the junction
in the bottom left corner of Fig. 17 shows the situation in
which �� < ��, so thatH� >H�. In the bottom right part
of Fig. 17 a representation of the tunnelling process is
shown.

The last junction of the C type is C3, for which the usual
set of diagrams is shown in Fig. 18. As all C type ones, this

is a junction between two de Sitter spacetimes and since
�<�1 the relation between the cosmological constants is
�� > ��, so that H� <H�. At this stage we might won-
der if this junction is the same as C1 (mirroring what
happens between the junctions of the A1 and A3 type).
We will see that this is indeed the case. The normals now
point in both spacetimes toward the direction of increasing
radii (since �� � �1). Thus the junction is as in the
bottom left part of Fig. 18. When we consider also the

FIG. 17. Case C2: dS/dS, �� � �1; �� � �1.

FIG. 18. Case C3: dS/dS, �� � �� � �1.

FIG. 16. Case C1: dS/dS, �� � �� � �1.

11These considerations might be modified if we consider the
influence of the observer on spacetime. To neglect this influence,
as a first approximation, is fairly common in the literature to
obtain some hints about the global spacetime structure.
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configuration before tunnelling, we see that the diagram in
the bottom right part of Fig. 16 is the ‘‘switched color and
reflected’’ version of the one in the bottom right part of
Fig. 18: we remember now that in the C1 case �� in the
light gray part was bigger than �� in the dark side, but now
exactly the opposite happens. Thus, despite the different
coloring, case C3 represents the same physical situation of
case C1. This observation makes it interesting to complete
the analysis for the remaining two cases, which is done in
the following subsection.

4. Type D

To conclude the analysis of the global spacetime struc-
ture we have to analyze what happens for the last kind of
junctions, those of type D. These are junctions between de
Sitter and anti-de Sitter spacetimes, so that the pretunnel-
ling configuration will also change accordingly, as we have
discussed for the previous cases.

The case of the junction of type D2 is characterized by
the following signs: �� � �1. This means that in the anti-
de Sitter side the normal points in the direction of increas-
ing radii, whereas in the de Sitter part, it points in the
direction of decreasing radii. Thus the junction, shown in
the bottom left corner of Fig. 19, is the mirror image of the
B2 case. Again, the considerations in Sec. IV determine the
geometry before the tunnelling. This brings, in complete
analogy with the B2 case, to the picture of the tunnelling
process given in the bottom right part of Fig. 19; again,

apart from the different colors, this case is the same as B2
also in connection with the semiclassical tunnelling
process.

We have thus only one case left, which is quickly dealt
with, namely, D3. It is now not difficult to anticipate that
this process will turn out to be identical to B1, that appears
in Fig. 14. Indeed the signs are now �� � �1, so that in
both spacetime the normals point in the direction of in-
creasing radii. By the usual procedure we are thus led to the
spacetime diagram shown in the bottom left part of Fig. 20.
Part of this diagram will constitute the final state of the
tunnelling process. The initial state is obtained as usual and
the picture of the tunnelling process is as in the bottom
right part of Fig. 20.

5. Comments

From the analysis developed so far we have seen that,
although in principle we have ten different tunnelling
processes, in fact process A1 is the same as A3, process
B1 is the same as D3, process B2 is the same as D2, and
process C1 is the same as C3. We are thus left with only six
distinct processes. From ‘‘symmetry considerations,’’ it is
natural to notice that j�j, not � itself, is the relevant
quantity (together with �) to classify the possible tunnel-
ling configurations. We will thus not be surprised if the
tunnelling amplitude will be a function of j�j, or, which is
the same, an even function of �. We would also like to note
already here that all the tunnelling processes can be inter-
preted as a very large expansion of a small quantum region
of spacetime.

FIG. 19. Case D2: AdS/dS, �� � �1; �� � �1.

FIG. 20. Case D3: AdS/dS, �� � �� � �1.
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