
Spin evolution of accreting neutron stars: Nonlinear development of the r-mode instability

Ruxandra Bondarescu, Saul A. Teukolsky, and Ira Wasserman
Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14853, USA

(Received 5 April 2007; published 20 September 2007)

The nonlinear saturation of the r-mode instability and its effects on the spin evolution of low mass x-ray
binaries (LMXBs) are modeled using the triplet of modes at the lowest parametric instability threshold.
We solve numerically the coupled equations for the three modes in conjunction with the spin and
temperature evolution equations. We observe that very quickly the mode amplitudes settle into quasista-
tionary states that change slowly as the temperature and spin of the star evolve. Once these states are
reached, the mode amplitudes can be found algebraically and the system of equations is reduced from
eight to two equations: spin and temperature evolution. The evolution of the neutron star angular velocity
and temperature follow easily calculated trajectories along these sequences of quasistationary states. The
outcome depends on whether or not the star will reach thermal equilibrium, where the viscous heating by
the three modes is equal to the neutrino cooling (H � C curve). If, when the r-mode becomes unstable,
the star spins at a frequency below the maximum of the H � C curve, then it will reach a state of thermal
equilibrium. It can then either (1) undergo a cyclic evolution with a small cycle size with a frequency
change of at most 10%, (2) evolve toward a full equilibrium state in which the accretion torque balances
the gravitational radiation emission, or (3) enter a thermogravitational runaway on a very long time scale
of � 106 years. If the star does not reach a state of thermal equilibrium, then a faster thermal runaway
(time scale of � 100 years) occurs and the r-mode amplitude increases above the second parametric
instability threshold. Following this evolution requires more inertial modes to be included. The sources of
damping considered are shear viscosity, hyperon bulk viscosity, and viscosity within the core-crust
boundary layer. We vary proprieties of the star such as the hyperon superfluid transition temperature Tc,
the fraction of the star that is above the threshold for direct URCA reactions, and slippage factor, and map
the different scenarios we obtain to ranges of these parameters. We focus on Tc * 5� 109 K where
nonlinear effects are important. Wagoner [R. Wagoner, Astrophys. J. 578, L63 (2002).] has shown that a
very low r-mode amplitude arises at smaller Tc. For all our bounded evolutions the r-mode amplitude
remains small�10�5. The spin frequency of accreting neutron stars is limited by boundary layer viscosity
to �max � 800 Hz�Sns=�M1:4R6�	

4=11T�2=11
8 . Fast rotators are allowed for �Sns=�M1:4R6�	

4=11T�2=11
8 � 1

and we find that in this case the r-mode instability would be active for about 1 in 1000 LMXBs and that
only the gravitational waves from LMXBs in the local group of galaxies could be detected by advanced
LIGO interferometers.
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I. INTRODUCTION

r-modes are oscillations in rotating fluids that are due to
the Coriolis effect. They are subject to the classical
Chandrashekar-Friedman-Shutz instability [1,2], which is
driven by the gravitational radiation backreaction force.
Andersson [3] and Friedman and Morsink [4] showed that,
in the absence of fluid dissipation, r-modes are linearly
unstable at all rotation rates. However, in real stars there is
a competition between internal viscous dissipation and
gravitational driving [5] that depends on the angular ve-
locity � and temperature T of the star. Above a critical
curve in the �� T plane the n � 3,m � 2 mode, referred
to as ‘‘the r-mode’’ in this work, becomes unstable. At first,
an unstable r-mode grows exponentially, but soon it may
enter a regime where other inertial modes that couple to the
r-mode become excited and nonlinear effects become im-
portant. Roughly speaking, nonlinear effects first become
significant as the amplitude passes its first parametric in-
stability threshold, which is very low (� 10�5). Modeling
and understanding the nonlinear effects is crucial in deter-

mining (1) the final saturation amplitude of the r-mode and
(2) the limiting spin frequency that neutron stars can
achieve. The r-mode amplitude and the duration of the
instability are among the main factors that determine
whether the associated gravitational radiation could be
detectable by laser interferometers on Earth.

The r-mode instability has been proposed as an expla-
nation for the sub-breakup spin rates of both low mass
x-ray binaries (LMXBs) [6,7] and young, hot neutron stars
[5,8]. The idea that gravitational radiation could balance
accretion was proposed independently by Bildsten [6] and
Andersson et al. [7]. Cook, Shapiro, and Teukolsky [9,10]
model the recycling of pulsars to millisecond periods via
accretion from a Keplerian disk onto a bare neutron star
withM � 1:4M
 when � � 0. Depending on the equation
of state they found that spin frequencies of between
� 670 Hz and 1600 Hz could be achieved before mass
shedding or radial instability set in (these calculations
predated the realization that the r-mode instability could
limit the spin frequency). For comparison, the highest
observed spin rate of millisecond pulsars is 716 Hz for
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PSR J1748� 2446ad [11,12]. PSR B1937� 21, which
was discovered in 1982, was the previous fastest known
radio pulsar with a spin rate of 642 Hz [13]; that this
‘‘speed’’ record stood for 24 years suggests that neutron
stars rotating this fast are rare. Moreover, based on a
Bayesian statistical analysis of the spin frequencies of the
11 nuclear-powered millisecond pulsars whose spin peri-
ods are known from burst oscillations, Chakrabarty et al.
[14] claimed a cutoff limit of �max � 760 Hz (95% con-
fidence). A more recent analysis, which added two more
pulsars to the sample, found �max � 730 Hz [15].

At first sight, one might conclude that mass shedding or
radial instability sets �max, and that it is just above the
record � � 716 Hz determined for PSR J1748� 2446ad.
However, the nuclear equations of state consistent with this
picture all have rather large radii � 16–17 km for non-
rotating 1:4M
 models; see Table 1 in Cook et al. [9]. For
these equations of state, the r-mode instability should lead
to �max somewhat below 716 Hz; see Eq. (33) in Sec. V
below. Thus, the r-mode instability may prevent recycling
by accretion from reaching mass shedding or radial insta-
bility. In other words, the detection of the 716 Hz rotator is
consistent with accretion spin-up mitigated by the r-mode
instability only for equations of state for which mass
shedding or radial instability would permit even faster
rotation. Ultimately, this may be turned into useful con-
straints on nuclear equations of state. However, at present
the uncertainty in the physics of internal dissipation is a
significant hindrance in establishing such constraints.

Since a physical model to follow the nonlinear phase of
the evolution was initially unavailable, Owen et al. [16]
proposed a simple one-mode evolution model in which
they assumed that nonlinear hydrodynamics effects satu-
rate the r-mode amplitude at some arbitrarily fixed value.
According to their model, once this maximum allowed
amplitude is achieved, the r-mode amplitude remains con-
stant and the star spins down at this fixed amplitude (see
Eqs. (3.16) and (3.17) in Ref. [16]). They used this model to
study the impact of the r-mode instability on the spin
evolution of young hot neutron stars assuming normal
matter. In their calculation they include the effects of shear
viscosity and bulk viscosity for ordinary neutron star mat-
ter composed of neutrons, protons, and electrons. They
found that the star would cool to approximately 109 K
and spin down from a frequency close to the Kepler
frequency to about 100 Hz in a period of �1 yr [16].

Most subsequent investigations that did not perform
direct hydrodynamic simulations used the one-amplitude
model of Ref. [16] for studying the r-mode instability.
Levin [17] used this model to study the limiting effects
of the r-mode instability on the spin evolution of LMXBs,
assuming an r-mode saturation amplitude of �1; he
adopted a modified shear viscosity to match the maximum
LMXB spin frequency of 330 Hz known in 1999. Levin
found that the neutron star followed a cyclic evolution in

the �� T phase plane. The star spins up for several
million years until it crosses the r-mode stability curve,
whereupon the r-mode becomes unstable and the star is
viscously heated for a fraction of a year until the r-mode
reaches its saturation amplitude (� 1). At this point the
spin and r-mode amplitude evolution equations are
changed, following the prescription of Ref. [16] to ensure
constant amplitude. The star then spins down by emitting
gravitational radiation for another fraction of a year until it
crosses the r-mode stability curve again and the instability
shuts off. The time period during which the r-mode is
unstable was found to be about 10�6 times shorter than
the spin-up time, and Levin concluded that it is unlikely
that any neutron stars in LMXBs in our galaxy are cur-
rently spinning down and emitting gravitational radiation.
However, following work by Arras et al. [18] showing that
nonlinear effects become significant at small r-mode am-
plitude, Heyl [19] varied the saturation amplitude and
found that the duration of the spin-down depends sensi-
tively on it. He predicted that the unstable phase could be
as much as 30% of the cyclic evolution for an r-mode
saturation amplitude of � � 10�5, and that this would
make some of the fastest spinning LMXBs in our galaxy
detectable by interferometers on Earth.

Jones [20] and Lindblom and Owen [21] pointed out that
if the star contains exotic particles such as hyperons (mas-
sive nucleons where an up or down quark is replaced with a
strange quark), internal processes could lead to a very high
coefficient of bulk viscosity in the cores of neutron stars.
While this additional high viscosity coefficient could
eliminate the instability altogether in newly born neutron
stars [20–23], Nayyar and Owen [23] proposed that it
would enhance the probability of detection of gravitational
radiation from LMXBs by blocking the thermal runaway.

The cyclic evolution found by Levin [17] and general-
ized by Heyl [19] arises when shear or boundary layer
viscosity dominates the r-mode dissipation. In the evolu-
tionary picture of Nayyar and Owen [23], the r-mode first
becomes unstable at a temperature where shear and bound-
ary layer viscosity dominate, but the resulting thermal
runaway halts once hyperon bulk viscosity becomes domi-
nant. The key feature behind the runaway is that shear and
boundary layer viscosities both decrease with increasing
temperature, so the instability speeds up as the star grows
hotter. However, if the bulk viscosity is sufficiently large
the star can cross the r-mode stability curve at a point
where the viscosity is an increasing function of tempera-
ture. Such scenarios were studied by Wagoner [24] for
hyperon bulk viscosty with low hyperon superfluid transi-
tion temperature; similar evolution was found for strange
stars by Andersson, Jones, and Kokkotas [25]. In this
picture, the star evolves near the r-mode stability curve
until an equilibrium between accretion spin-up and gravi-
tational radiation spin-down is achieved. The value of the
r-mode amplitude remains below the lowest instability

BONDARESCU, TEUKOLSKY, AND WASSERMAN PHYSICAL REVIEW D 76, 064019 (2007)

064019-2



threshold found by Brink et al. [26–28] for modes with
n < 30, and hence in this regime nonlinear effects may not
play a role.

Schenk et al. [29] developed a formalism to study the
nonlinear interaction of the r-mode with other inertial
modes. They assumed a small r-mode amplitude and
treated the oscillations of the modes with weakly nonlinear
perturbation theory via three-mode couplings. This as-
sumption was tested by Arras et al. [18] and Brink et al.
[26–28]. Arras et al. proposed that a turbulent cascade
would develop in the strong driving regime. They esti-
mated that r-mode amplitude was small and could have
values between 10�1–10�4. Brink et al. modeled the star as
incompressible and calculated the coupling coefficients
analytically. They computed the interaction of about
5000 modes via approximately 1:3� 106 couplings of
the 109 possible couplings among the modes with n �
30. The couplings were restricted to mode triplets with a
fractional detuning �!=�2��< 0:002 since near reso-
nances promote modal excitation at very small amplitudes.
Brink et al. showed that the nonlinear evolution saturates at
a very small amplitude, generally comparable to the lowest
parametric instability threshold that controls the initiation
of energy sharing among the sea of inertial modes.
However, Brink et al. did not model accretion spin-up or
neutrino cooling in their calculation and only included
minimal dissipation via shear viscosity.

In this paper we begin a more complete study of the
saturation of the r-mode instability including accretion
spin-up and neutrino cooling. We use a simple model in
which we parameterize uncertain properties of the star
such as the rate at which it cools via neutrino emission
and the rate at which the energy in inertial modes dissipates
via boundary layer effects [30] and bulk viscosity. In order
to exhibit the variety of possible nonlinear behaviors, we
explore a range of models with different neutrino cooling
and viscous heating coefficients by varying the free pa-
rameters of our model. In particular, we vary: (1) the
slippage factor Sns, which regulates the boundary layer
viscosity, between 0 and 1 (see for example [31–33] for
some models of the interaction between the oscillating
fluid core and an elastic crust); (2) the fraction of the star
that is above the density threshold for direct URCA reac-
tions fdU, which is taken to be between 0 (0% of the star
cools via direct URCA) and 1 (100% of the star is sub-
jected to direct URCA reactions), and in general depends
on the equation of state used; and (3) the hyperon super-
fluidity temperature Tc, which is believed to be between
109–1010 K. (We use a single, effective Tc rather than
modelling its spatial variation.) We focus on Tc *

5� 109 K for which nonlinear effects are important. For
low Tc & 3� 109 K, Wagoner [24] showed that the evo-
lution reaches a steady state at amplitudes below the lowest
parametric instability threshold found by Brink et al. [28].
It is important to note that all our evolutions start on the

part of the r-mode stability curve that decreases with
temperature and that the bulk viscosity does not play a
role in any of our bound evolutions.

We include three modes: the r-mode at n � 3 and the
two inertial modes at n � 13 and n � 14 that become
unstable at the lowest parametric instability threshold
found by Brink et al. [28]. We evolve the coupled equa-
tions for the three-mode system numerically in conjunction
with the spin and temperature evolution equations. The
lowest parametric instability threshold provides a physical
cutoff for the r-mode amplitude. In all cases we investi-
gate, the growth of the r-mode is initially halted by energy
transfer to the two daughter modes. We observe that the
mode amplitudes settle into a series of quasistationary
states within a period of a few years after the spin fre-
quency of the star has increased above the r-mode stability
curve. These quasistationary states are algebraic solutions
of the three-mode amplitude equations [see Eqs. (6)] and
change slowly as the spin and the temperature of the star
evolve. Using these solutions for the mode amplitudes, one
can reduce the eight evolution equations (six for the real
and imaginary parts of the mode amplitudes, which are
complex [29]; one for the spin, and one for the tempera-
ture) to two equations governing the rotational frequency
and the temperature of the star. Our work can be regarded
as a minimal physical model for modeling amplitude satu-
ration realistically.

The outcome of the evolution is crucially dependent on
whether the star can reach a state of thermal equilibrium.
This can be predicted by finding the curve where the
viscous heating by the three modes balances the neutrino
cooling, referred to below as the Heating � Cooling (H �
C) curve. The H � C curve can be calculated prior to
carrying out an evolution using the quasistationary solu-
tions for the mode amplitudes. If the spin frequency of the
star upon becoming unstable is below the peak of the H �
C curve, then the star will reach a state of thermal equilib-
rium. When such a state is reached we find several possible
scenarios. The star can (1) undergo a cyclic evolution;
(2) reach a true equilibrium in which the accretion torque
is balanced by the rate of loss of angular momentum via
gravitational radiation; or (3) evolve in thermal equilib-
rium until it reaches the peak of the H � C curve, which
occurs on a time scale of about 106 yr, and subsequently
enter a regime of thermal runaway. On the other hand, if
the star cannot find a state of thermal equilibrium, then it
enters a regime of thermogravitational runaway within a
few hundred years of crossing the r-mode stability curve.
When this happens, the r-mode amplitude increases be-
yond the second parametric instability, and more inertial
modes would need to be included to correctly model the
nonlinear effects. This will be done in a later paper.

This paper focuses on showing how nonlinear mode
couplings affect the evolution of the temperature and
spin frequency of a neutron star once it becomes prone to
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the r-mode Chandrashekar-Friedman-Shutz instability. We
do this in the context of three-mode coupling, which may
be sufficient for large enough dissipation. To illustrate the
types of behavior that arise, we adopt a very specific model
in which the mode frequencies and couplings are computed
for an incompressible star, modes damp via shear viscosity,
boundary layer viscosity and hyperon bulk viscosity, and
the star cools via a mixture of fast and slow processes. This
model involves several parameters that are uncertain, and
we vary these to find ‘‘phase diagrams’’ in which different
generic types of behavior are expected. Moreover, the
model itself is simplified: (1) A more realistic treatment
of the modes could include buoyant forces and also mix-
tures of superfluids or of superfluid and normal fluid in
different regions. (2) Dissipation rates, particularly from
bulk viscosity, depend on the composition of high density
nuclear matter, which could differ from what we assume.

Nevertheless, although the quantitative details may dif-
fer from what we compute, we believe that many features
of our calculations ought to be robust. More sophisticated
treatment of the modes of the star will still find a dense set
of modes confined to a relatively small range of frequen-
cies. Most importantly, this set will exhibit numerous
three-mode resonances, which is the prerequisite for strong
nonlinear effects at small mode amplitudes. Thus, when-
ever the unstable r-mode can pass its lowest parametric
instability threshold, it must start exciting its daughters.
Whether or not that occurs depends on the temperature
dependence of the dissipation rate of the r-mode; for the
models considered here, where bulk viscosity is relatively
unimportant, soon after the star becomes unstable its
r-mode amplitude passes its first parametric instability
threshold. Once that happens, the generic types of behavior
we find—cycles, steady states, slow and fast runaway—
ought to follow suit. The details of when different behav-
iors arise will depend on the precise features of the stellar
model, but the principles we outline here (parametric in-
stability, quasisteady evolution, competition between heat-
ing and cooling) ought to apply quite generally.

In Sec. II we describe the evolution equations of the
three modes, the angular frequency and the temperature of
the neutron star. We first show how the equations of motion
for the modes of Schenk et al. couple to the rotational
frequency of the star in the limit of slow rotation. We then
give a short review of the parametric instability threshold
and the quasistationary solutions of the three-mode system.
The thermal and spin evolution of the star is discussed next.
This is followed by a description of the driving and damp-
ing rates used. Section III provides an overview of the
results, which includes a discussion of each evolution
scenario and of the initial conditions and input physics
that lead to each scenario. Section IVA discusses cyclic
evolution in more detail. An evolution that leads to an
equilibrium steady state is presented next in Sec. IV B.
The two types of thermal runaway are then discussed in

Sec. IV C. The prospects for detecting gravitational radia-
tion for the evolutions in which the three-mode system
correctly models the nonlinear effects are considered in
Sec. V. We summarize the results in the conclusion.
Appendix A sketches a derivation of the equations of
motion for the three modes and Appendix B contains a
stability analysis of the evolution equations around the
thermal equilibrium state.

II. EVOLUTION EQUATIONS

A. Three-mode system: coupling to uniform rotation

In this section we review the equations of motion for the
three-mode system in the limit of slow rotation. In terms of
rotational phase � for the time variable with d� � �dt
Eq. (2.49) of Schenk et al. [29] can be rewritten as
 

dC�
d�
� i ~!�C� �

��
�
C� �

2i ~!�~������
�
p C�C�;

dC�
d�
� i ~!�C� �

��
�
C� �

2i ~!�~������
�
p C�C?�;

dC�
d�
� i ~!�C� �

��
�
C� �

2i ~!�~������
�
p C�C

?
�:

(1)

Here the scaled frequency ~!j is defined to be ~!j � !j=�,
the dissipation rates of the daughter modes are �� and ��,
�� is the sum of the driving and damping rates of the
r-mode �� � �GR � ��v, and the dimensionless coupling
is ~� � �=�MR2�2�. These amplitude variables are com-
plex and can be written in terms of the variables of
Ref. [29] as Cj�t� �

����������
��t�

p
cj�t� [see Appendix A for a

derivation of Eqs. (1)]. The index j loops over the three
modes j � �, �, �, where � labels the r-mode or parent
mode and � and � label the two daughter modes in the
mode triplet.

When the daughter mode amplitudes are much smaller
than that of the parent mode, one can approximate the
parent mode amplitude as constant. Under this assumption
one performs a linear stability analysis on Eqs. (1) and
finds the r-mode amplitude when the two daughter modes
become unstable (see Eqs. (B5–B7) of Ref. [28] for a full
derivation). This amplitude is the parametric instability
threshold

 jC�j
2 �

����
4~�2 ~!� ~!��

�
1��2

�
� ~!

�� � ��

�
2
�
; (2)

where the fractional detuning is � ~! � ~!� � ~!� � ~!�.
Thorough explorations of the phase space of damped
three-mode systems were performed by Dimant [34] and
Wersinger et al. [35].

For the three modes at the lowest parametric instability
threshold, ~!� � 0:66, ~!� � 0:44, ~!� � 0:22, ~� � 0:19,
and j� ~!j � 3:82� 10�6. Note that ~! is twice the w of
Brink et al. [26–28]. Here � labels the mode with n � 13,
m � �3 and � labels the n � 14, m � 1 mode. The
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amplitude the r-mode has to reach before exciting these
two daughter modes is jC�j � 1:5� 10�5

�����
�
p

[28].
We next rescale the rotational phase � by the fractional

detuning as ~� � �j� ~!j and the mode amplitudes by

 jC�j0 �
j� ~!j

�������
�c

p
4~�

��������������
~!� ~!�

p ; jC�j0 �
j� ~!j

�������
�c

p
4~�

�������������
~!� ~!�

p ;

jC�j0 �
j� ~!j

�������
�c

p
4~�

��������������
~!� ~!�

p ;

(3)

which for the r-mode is, up to a factor of
�����
~�

p
�

��������������
�=�c

p
,

the no-damping limit of the parametric instability thresh-
old below which no oscillations will occur. The coupled
equations become
 

d �C�
d~�
�
i ~!�

j� ~!j
�C� �

~��
j� ~!j ~�

�C� �
i

2
�����
~�

p �C� �C�;

d �C�
d~�
�
i ~!�

j� ~!j
�C� �

~��
j� ~!j ~�

�C� �
i

2
�����
~�

p �C� �C?�;

d �C�
d~�
�
i ~!�

j� ~!j
�C� �

~��
j� ~!j ~�

�C� �
i

2
�����
~�

p �C� �C?�;

(4)

with �Cj � Cj=jCjj0 and ~�j � �j=�c being the newly
rescaled amplitudes and dissipation/driving rates,
respectively.

1. Quasistationary solution

In terms of amplitudes and phase variables Cj �
jCjje

i�j Eqs. (4) can be rewritten as
 

dj �C�j
d~�

�
~��

~�j� ~wj
j �C�j�

sin�j �C�jj �C�j

2
�����
~�

p ;

dj �C�j

d~�
��

~��
~�j� ~wj

j �C�j �
sin�j �C�jj �C�j

2
�����
~�

p ;

dj �C�j

d~�
��

~��
~�j� ~wj

j �C�j�
sin�j �C�jj �C�j

2
�����
~�

p ;

d�
d~�
�

� ~!
j� ~!j

�
cos�

2
�����
~�

p �
j �C�jj �C�j

j �C�j
�
j �C�jj �C�j

j �C�j
�
j �C�jj �C�j

j �C�j

�
;

(5)

where we have defined the relative phase difference as� �
�� ��� ���. These equations have the stationary solu-
tion
 

j �C�j2 �
4~�� ~��
~�j� ~!j2

�
1�

1

tan2�

�
;

j �C�j
2 �

4~�� ~��
~�j� ~!j2

�
1�

1

tan2�

�
;

j �C�j2 �
4~�� ~��
~�j� ~!j2

�
1�

1

tan2�

�
;

tan� �
~�� � ~�� � ~��

~�j� ~!j
:

(6)

Note that in the limit in which �� � �� 
 �� the sta-
tionary solution for the r-mode amplitude jC�j is the same
as the parametric instability threshold.

B. Temperature and spin evolution

The spin evolution equation is obtained from conserva-
tion of total angular momentum J, where

 J � I�� Jphys: (7)

Following Eq (K39–K42) of Schenk et al. [29] the physical
angular momentum of the perturbation can be written as

 �Jphys �
X
AB

C?BCA
Z
d3x	

�
��̂� 
?B� � ��̂� 
A�

� i
� ~!A � ~!B�

2

?B � ��̂� 
A�

�
: (8)

Since the eigenvectors 
A / eimA� the cross-terms will
vanish for modes with different magnetic quantum num-
bers m as

R
ei�mA�mB��d� � 0 for mA � mB. Equation (8)

can be rewritten for our triplet of modes as

 Jphys � MR2�k��jC�j
2 � k��jC�j

2 � k��jC�j
2�; (9)

where k�� is defined as
 

k�� �
1

MR2

Z
d3x	���̂� 
?�� � ��̂� 
��

� i ~!�

?
� � ��̂� 
��	 (10)

and similarly for k�� and k��. In terms of the scaled
variables �Cj � Cj=jCjj0 [with jCjj0 defined in Eq. (3)]
the angular momentum of the perturbation can be written
as
 

Jphys �
MR2�cj� ~!j2

�4~k�2 ~!� ~!� ~!�

�k��j �C�j2 ~!� � k��j �C�j2 ~!�

� k�� ~!�j �C�j2�: (11)

We chose the same normalization for the eigenfuctions as
Refs. [18,26–29] so that at unit amplitude all modes have
the same energy �� � MR2�2. The energy of a mode � is
E� � MR2�2jc�j

2 � MR2�jC�j
2. The rotating frame

energy is the same as the canonical energy and physical
energy [29]. The canonical angular momentum and the
canonical energy of the perturbation satisfy the general
relation Ec � ��!=m�Jc [2].

Angular momentum is gained because of accretion and
lost via gravitational waves emission

 

dJ
dt
� 2�GRJc rmode � _M

������������
GMR
p

; (12)

where Jc rmode � ��m�=!����jc�j2 � �3MR2�jc�j2 �
�3MR2jC�j2. Equation (12) can be rewritten in terms of
the scaled variables �Cj as

SPIN EVOLUTION OF ACCRETING NEUTRON STARS: . . . PHYSICAL REVIEW D 76, 064019 (2007)

064019-5



 

dJ
d~�
� �

6~�GR

~�

MR2�cj� ~!j

�4~k�2 ~!� ~!�

j �C�j2 �
_M

������������
GMR
p

�c
~�j� ~!j

: (13)

Thermal energy conservation gives the temperature evolu-
tion equation

 

C�T�
dT
dt
�
X
j

2Ej�j � Kn _Mc2 � L��T�

� 2MR2����vjC�j
2 � ��jC�j

2 � ��jC�j
2�

� Kn _Mc2 � L��T�: (14)

The three terms on the right-hand side of the equation
represent viscous heating, nuclear heating, and neutrino
cooling. The specific heat is taken to be C�T� �
1:5� 1038T8 erg K�1, where T � T8 � 108 K. Nuclear
heating occurs because of pycnonuclear reactions and
neutron emission in the inner crust [36]. At large accretion
rates such as that of the brightest LMXBs of _M �
10�8M
=yr, the accreted helium and hydrogen burns sta-
bly and most of the heat released in the crust is conducted
into the core of the neutron star, where neutrino emission is
assumed to regulate the temperature of the star [36,37].
The nuclear heating constant is taken to be Kn � 1� 10�3

[36]. Following Ref. [24], we take the neutrino luminosity
to be

 

L� � LdUT
6
8RdU�T=Tp� � LmUT

8
8RmU�T=Tp�

� Le�iT
6
8 � Ln�nT

8
8 � LCpT7

8 ; (15)

where the constants for the modified and direct URCA
reactions are defined by LmU � 1:0� 1032 erg sec�1,
LdU � fdU � 108LmU [38,39], and the electron-ion,
neutron-neutron neutrino bremsstrahlung and Cooper pair-
ing of neutrons are given by Le�i � 9:1� 1029 erg sec�1

[36], Ln�n � 0:01LmU, LCp � 8:9� 1031 erg sec�1 [40].
The fraction of the star fdU that is above the density
threshold for direct URCA reactions is in general depen-
dent on the equation of state [41] and in this work we treat
fdU as a free parameter with values between 0 and 1.

The proton superfluid reduction factors for the modified
and direct URCA reactions are taken from Ref. [39] (see
Eqs. (32) and (51) in Ref. [39]):

 

RdU�T=Tp� � �0:2312�
���������������������������������������������������
�0:76880�2 � �0:1438v�2

q
	5:5

� exp�3:427�
�����������������������������
�3:427�2 � v2

q
�;

RmU�T=Tp� � �0:2414�
�������������������������������������������������
�0:7586�2 � �0:1318v�2

q
�7

� exp�5:339�
�����������������������������������
�5:339�2 � �2v�2

q
�; (16)

where the dimensionless gap amplitude v for the singlet
type superfluidity is given by

 v �

���������������
1�

T
Tp

s �
1:456� 0:157

������
Tp
T

s
� 1:764

Tp
T

�
: (17)

Similar to Ref. [24], we use Tp � 5:0� 109 K. In terms of
the scaled variables Eq. (14) becomes
 

C�T�
dT
d~�
�

2MR2�2
cj� ~!j

�4~��2 ~!� ~!� ~!�
� ~!� ~��vj �C�j2 � ~!� ~��j �C�j2

� ~!� ~��j �C�j
2� �

Kn _Mc2 � L��T�

�c
~�j� ~!j

: (18)

C. Temperature and spin evolution with the
mode amplitudes in quasistationary states

Assuming that the amplitudes evolve through a series of
spin- and temperature-dependent steady states, i.e.,
dCi=d~� � 0, the spin and thermal evolution equations
can be rewritten by taking J � I� and using Eqs. (6) in
Eq. (13)
 

d ~�

d~�
� �

6~�GR

~�2j� ~wj

~�� ~��
4~k2~I ~!� ~!�

k��

�
1�

1

tan2�

�

�
_M

�2
c

������������
GMR
p

MR2~I ~� j� ~!j
; (19)

where ~I � I=�MR2�. The thermal evolution of the system
is given by
 

C�T�
dT
d~�
�

2MR2�2
c

�4~��2 ~!� ~!� ~!�

~�� ~�� ~��
~�j� ~!j

�

�
~!� ~��;v

~��
� ~!� � ~!�

��
1�

1

tan2�

�

�
Kn _Mc2 � L��T�

�c
~�j� ~!j

: (20)

By setting the right-hand side of the above equation to
zero, one can find the Heating � Cooling (H � C) curve.
Below, we find that Eqs. (19) and (20) describe the evolu-
tion very well throughout the unstable regime. These equa-
tions are a minimal physical model for the effects of
nonlinear coupling on r-mode evolution.

D. Sources of driving and dissipation

The damping mechanisms are shear viscosity, boundary
layer viscosity, and hyperon bulk viscosity; for modes j �
�, �, � we write

 �jv��; T� � �j sh�T� � �j bl��; T� � �j hb��; T�: (21)

The r-mode is driven by gravitational radiation and
damped by these dissipation mechanisms, while the pair
of daughter modes (n � 13,m � �3 labeled as� and n �
14, m � 1 labeled as �) is affected only by the viscous
damping. Brink et al. [26–28] determined that this pair of
modes is excited at the lowest parametric instability thresh-
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old. Their model uses the Bryan [42] modes of an incom-
pressible star, which has the advantage that the mode
eigenfrequencies (and eigenfunctions) are known analyti-
cally. This enables them to find near resonances efficiently.
We are using their results, but we include more realistic
effects such as bulk viscosity, whose effect vanishes in the
incompressible limit [�1 ! 1 in Eq. (27)].

For our benchmark calculations, we adopt the neutron
star model of Owen et al. Ref. [5] (n � 1 polytrope, M �
1:4M
, �c � 8:4� 103 rad sec�1, and R � 12:53 km)
and use their gravitational driving rate and shear viscous
damping rate for the r-mode

 �GR��� ’
~�6

3:26
sec�1; �� sh�T� ’

1

�sh

1

T2
8

; (22)

where �sh � 2:56� 106 sec . (In Sec. V we consider ap-
proximate scalings with M and R.)

The damping rate due to shear viscosity for the two
daughter modes is calculated using the Bryan modes for
a star with the same mass and radius

 �� sh�T� ’ 3:48� 10�4 sec�1 1

T2
8

;

�� sh�T� ’ 4:52� 10�4 sec�1 1

T2
8

:

(23)

The geometric contribution �sh=� of the individual modes
increases significantly with the degree n of the mode
scaling approximately like n3 for large n (see Eq. (29) of
Brink et al. [27] for an analytic fit to the shear damping
rates computed for the 5000 modes in their network), and
hence the inertial modes with n � 13 and n � 14 have
shear damping rates about 3 orders of magnitude larger
than that of the r-mode.

The damping due to boundary layer viscosity is calcu-
lated using Eq. (4) of Ref. [30],

 �� bl�T;�� ’ 0:009 sec�1S2
ns

�����
~�

p
T8

;

�� bl�T;�� ’ 0:028 sec�1S2
ns

�����
~�

p
T8

;

�� bl�T;�� ’ 0:021 sec�1S2
ns

�����
~�

p
T8

:

(24)

Analogous to Wagoner [24], we allow the slippage
factor Sns to vary. The slippage factor is defined by
Refs. [24,31,43] to be S2

ns � �2S
2
n � S

2
s �=3, with Sn being

the fractional difference in velocity of the normal fluid
between the crust and the core [31] and Ss the fractional
degree of pinning of the vortices in the crust [43]. Note that
�� bl and �� bl are both greater than 2� �� bl and can
easily be comparable to �GR in the unstable regime.

The damping rate due to bulk viscosity produced by out-
of-equilibrium hyperon reactions for the r-mode is found
by fitting the results of Nayyar and Owen [23]. This rate is

taken to have a form similar to that taken by Wagoner [24]

 �� hb � fhb
t�2
0� ��T�

~�4

1� � ~!����T��2
; (25)

and for the daughter modes

 �� hb � fhb

t�2
0���T� ~!

2
�

1� � ~!����T��2
; (26)

and similarly for ��hb. The relaxation time scale

 ��T� �
t1T�2

8

Rhb�T=Tc�
: (27)

The reduction factor is taken to be the product of two
single-particle reduction factors [22,23]
 

Rhb single�T=Tc� �
a5=4 � b1=2

2

� exp�0:5068�
���������������������������
0:50682 � y2

q
� (28)

where a � 1� 0:3118y2, b � 1� 2:566y2, and y �������������������������
1:0� T=Tc

p
�1:456� 0:157

�����������
Tc=T

p
� 1:764Tc=T�. The

constants t1 � 10�4 sec and t0� � 0:000 58 sec are found
by fitting the results of Ref. [23]. The factor fhb allows for
physical uncertainties; we take fhb � 1 throughout the
body of the paper since Tc, which enters �j hb exponen-
tially, is also uncertain. For the daughter modes, the dis-
sipation energy due to bulk viscosity is calculated using the
modes for the incompressible star. In the slow rotation
limit, it is given to leading order in ��2

1 by

 � _EBj �
�
!2

j

�2
1

�Z
d3x

��������
j � rpp

��������2
: (29)

This approximation was proposed by Cutler and Lindblom
[44] and adopted by Kokkotas and Stergioulas [45] for the
r-mode and by Brink et al. [27] for the inertial modes. The
adiabatic index �1 is regarded as a parameter; we use �1 �
2. The damping rate is

 �j hb � �
_EBj
�
; (30)

where � � MR2�2 is the mode’s energy in the rotating
frame at unit amplitude and j � �, �. Using this proce-
dure, we calculate

 t0� � 1:4� 10�5 sec; t0� � 1:0� 10�5 sec : (31)

III. SUMMARY OF RESULTS

Figure 1(a) shows possible evolutionary trajectories of a
neutron star in the angular velocity-temperature ~�� T8

plane, where T � T8 � 108 K is the core temperature, and
~� � �=�c � �=

�����������
�G �	
p

with �	 the mean density of the
neutron star. Figure 1(b) displays the regions in fdU � Sns
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in which the trajectories occur. Here fdU represents the
fraction of the star that is above the density threshold for
direct URCA reactions and Sns is the slippage factor that
reduces the relative motion between the crust and the core
taking into account the elasticity of the crust [31]. The
stability regions are shown at fixed hyperon superfluidity

temperature, Tc � 5:0� 109 K. The initial part of the
evolution is similar in all scenarios and can be divided
into phases.

Phase 0.—Spin-up below the r-mode stability curve at
T8 � T8 in such that nuclear heating balances neutrino
cooling.

Phase 1.—Linear regime. The r-mode amplitude grows
exponentially. The phase ends when the r-mode reaches
the parametric instability.

Phase 2.—The triplet coupling leads to quasisteady
mode amplitudes. The star is secularly heated at approxi-
mately constant � because of viscous dissipation in all
three modes.

Phase 3.—Several trajectories are possible depending
on how the previous phase ends.

a. Fast runaway.—The star fails to reach thermal equi-
librium when the trajectory passes over the peak of the
Heating � Cooling (H � C) curve. This leads to rapid
runaway. The daughter modes damp eventually as bulk
viscosity becomes important, and the r-mode grows ex-
ponentially until the trajectory hits the r-mode stability
curve again. This scenario ends as predicted by Nayyar and
Owen [23]. However, the r-mode passes its second para-
metric instability threshold soon after it starts growing
again. This requires the inclusion of more modes to follow
the evolution, which is the subject of future work.

b.—The star reaches thermal equilibrium. There are then
three possibilities:

(i) Cycle.—The star cools and spins down slowly, de-
scending the H � C curve until it crosses the r-mode
stability curve again. At this point the instability shuts
off. The star cools back to T8in at constant ~� and then
the cycle repeats itself. At Tc � 5:0� 109 K this scenario
occurs for values of Sns < 0:50 and large enough values of
fdU. However, if Tc is larger, the cycle region in the fdU-Sns

phase space increases dramatically [see Fig. 9(a)]. Note
that our cycles are different from those obtained by Levin
[17] in that the spin-down phase does not start when the
r-mode amplitude saturates (or in our case when it reaches
the parametric instability threshold), but rather when the
system reaches thermal equilibrium. The r-mode ampli-
tude does not grow significantly above its first parametric
instability threshold, remaining close to �105 and so the
part of the cycle in which the r-mode is unstable also lasts
longer than in Ref. [17]. Also, our cycles are narrow.
During spin-down the temperature changes by less than
20% and ~� changes by less than 10% of the initial value.
(See Sec. 2 for a detailed example.)

(ii) Steady state.—For small Sns and large enough fdU

[fdU * 5� 10�5, Sns & 0:04; see Fig. 1(b)] the star
evolves towards an ~� equilibrium. The trajectory either
ascends or descends the H � C curve (spins up and heats
or spins down and cools). The evolution stops when the
accretion torque equals the gravitational radiation
emission.

FIG. 1. (a) Typical trajectories for the four observed evolution
scenarios are shown in the ~�� T8 phase space, where ~� �
�=�c. The dashed lines (H � C curves) represent the points in
the ~�� T8 phase space where the dissipative effects of the
heating from the three modes exactly compensate the neutrino
cooling for the given set of parameters �Sns; fdU; Tc; . . .� of each
evolution. (b) The corresponding stability regions for which
these scenarios occur are plotted at fixed hyperon superfluidity
temperature Tc � 5:0� 109 K, while varying fdU and Sns. The
position of the initial angular velocity and temperature
� ~�in; T8 in� with respect to the maximum of this curve determines
the stability of the evolution. (I) ~�in > ~�H�Cmax. Trajectory R1.
Fast-runaway region. After the r-mode becomes unstable the star
heats up, does not find a thermal equilibrium state and continues
heating up until a thermogravitational runaway occurs. (II)
~�in < ~�H�Cmax. The evolutions are either stable or, if there is
a runaway, it occurs on time scales comparable to the accretion
time scale. The possible trajectories are (1) Trajectory C. Cycle
Region. (2) Trajectories S1 and S2. Steady-state region.
(3) Trajectory R2. Slow-runaway region.
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(iii) Slow runaway.—For small Sns and very small fdU

(Sns & 0:03, fdU < 5� 10�5) the star ascends the H � C
curve until the peak is overcome and subsequently a run-
away occurs. The daughter modes eventually damp and the
r-mode grows exponentially until it crosses its second
parametric instability threshold and more modes need to
be included.

Bulk viscosity only affects the runaway evolutions; the
cyclic and steady-state evolutions found here would be the
same if there were no hyperon bulk viscosity. For large
Tc � 1010, or for models with no hyperons at all, there
would be no runaway region [See Fig. 9(a) for an fdU � Sns

scenario space with a larger Tc � 6:5� 109 K where the
fast-runaway region has shrunk dramatically and the slow-
runaway region has disappeared.]

IV. POSSIBLE EVOLUTION SCENARIOS

In this section we examine examples of the different
types of evolution in more detail. We assume _M �
10�8M
=yr and Tc � 5:0� 109 K.

A. Cyclic evolution

In this subsection we present the features of typical
cyclic trajectories of neutron stars in the angular
velocity-temperature plane in more detail. We focus on
two cases: (C1) Sns � 0:10 and fdU � 0:15 and
(C2) Sns � 0:35 and fdU � 0:142. In this scenario the
three-mode system is sufficient to model the nonlinear
effects and successfully stops the thermal runaway. The
numerical evolution is started once the star reaches the
r-mode stability curve. The initial temperature of the star is
at the point where nuclear heating equals neutrino cooling
in Eq. (18) that is approximately T8 in � 3:29 for both
cases. The initial � is the angular velocity that corresponds
to this temperature on the r-mode stability curve, which
differs for the different Sns ( ~�in � 0:183 for C1 and ~�in �
0:288 for C2).

Figures 2(a) and 2(b) display the cyclic evolution for
trajectories C1 and C2 of Fig. 1(b). In leg a1 ! b1 of the
trajectory the r-mode and, once the r-mode amplitude
increases above the first parametric instability threshold,
the two daughter modes it excites, viscously heat up the
star until point b1 when the neutrino cooling balances the
viscous dissipation. This part of the evolution occurs at
constant angular velocity over a period of theat�up � 100 yr
and a total temperature change ��T�a1�b1

� 0:80 ( � 24%
of T8 in). The points where the viscous heating compensates
the neutrino cooling are represented by the H � C curve.
This is determined by setting Eq. (18) to zero and using the
quasistationary solutions given by Eq. (6) for the three
modes on the right-hand side. The star continues to evolve
on the H � C curve for part b1 ! c1 of the trajectory as it
spins down and cools down back to the r-mode stability
curve. This spin-down stage lasts a time tspin�down b1�c1

�

23 000 yr that is much longer than the heat-up period. This
time scale is very sensitive to changes in the slippage factor
and can reach 106 yr for smaller values of Sns that are close
to boundary of the steady-state region. The cycle is very
narrow in angular velocity with a total angular velocity
change of less than 4%, �� ~��b1�c1

� 0:0066. The tem-

FIG. 2. Two cyclic trajectories in the ~�� T8 plane are dis-
played for a star with Tc � 5:0� 109 K and (a) fdU � 0:15 and
Sns � 0:10, and (b) fdU � 0:142 and Sns � 0:35, which is close
to the border between the stable and unstable region [see
Fig. 1(b)]. The thick solid line labeled as the H � C curve is
the locus of points in this phase space where the neutrino cooling
is equal to the viscous heating due to the unstable modes. The
other solid line representing the r-mode stability curve is defined
by setting the gravitational driving rate equal to the viscous
damping rate. The part of the curve that decreases with T8 is
dominated by boundary layer and shear viscosity, while the part
of the curve that has a positive slope is dominated by hyperon
bulk viscosity. In portion a1 ! b1 of the trajectory the star heats
up at constant ~�. Part b1 ! c1 represents the spin-down stage,
which occurs when the viscous heating is equal to the neutrino
cooling. c1 ! d1 shows the star cooling back to the initial T8.
Segment d1 ! a1 displays the accretional spin-up of the star
back to the r-mode stability curve. The cycle a2 ! d2 proceeds
in the same way. This cycle is close to the peak of the H � C
curve. Configurations above this peak will run away.
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perature also changes by only about 2%, ��T8�b1�c1
�

0:08 in this spin-down period. Segment c1 ! d1 represents
the cooling of the star to the initial temperature on a time
scale of �2000 yr. In part d1 ! a1 the star spins up by
accretion at constant temperature back to the original
crossing point on the r-mode stability curve. This last
part of the trajectory is the longest-lasting one, taking
� 200 000 yr at our chosen _M of 10�8M
 yr�1. The cycle

C2 in Fig. 2(b) proceeds in a similar fashion. It is important
to note that this configuration is close to the border be-
tween the ‘‘fast-runaway’’ and ‘‘cycle’’ regions and there-
fore close to the peak of the H � C curve. Configurations
above this peak (e.g., with the same fdU and higher Sns)
will go through a fast runaway.

Figure 3(a) shows the evolution of the three modes in the
first few years after the star first reaches the r-mode stabil-
ity curve. In this region the r-mode is unstable and initially
grows exponentially. Once it has increased above the first
parametric instability threshold the daughter modes are
excited. The oscillations of the three modes display some
of the typical dynamics of a driven three-mode system.
When the r-mode transfers energy to the daughter modes
they increase exponentially while the r-mode decreases.
Similarly, when daughter modes decrease the r-mode in-
creases. The viscosity damps the oscillations and the
r-mode amplitude settles at a value close to the parametric
instability threshold. Figure 3(b) displays the evolution of
the r-mode amplitude divided by the parametric instability
threshold on a longer time scale. It can be seen that the
r-mode never grows significantly beyond this first thresh-
old. Figure 3(c) shows the evolution of the parametric
instability threshold as a function of time. The threshold
increases as the temperature increases and the star is
viscously heated by the three modes. When the star spins
down in thermal equilibrium, the threshold decreases to a
value close to its initial value.

B. Steady-state evolution

This subsection focuses on evolutions that lead to a
steady equilibrium state in which the rate of accretion of
angular momentum is balanced by the rate of loss via
gravitational radiation emission. This scenario is restricted
to stars with small slippage factor [Sns & 0:04, see
Fig. 1(b)] and boundary layer viscosity. A typical trajectory
of a star that reaches such an equilibrium is shown in Fig. 4.
As always, we start the evolution at the point on the r-mode
stability curve at which the nuclear heating balances neu-
trino cooling. Above the r-mode stability curve the gravi-
tational driving rate is greater than the viscous damping
rate and the r-mode grows exponentially until nonlinear
effects become important. In this case, as in the cyclic
evolution, the triplet of modes at the lowest parametric
instability threshold is sufficient to stop the thermal run-
away. The r-mode remains close to the first instability
threshold for the length of the evolution and after a few
oscillations the three modes settle into their quasistationary
states, which change only secularly as the spin and tem-
perature of the star evolve. The modes heat the star vis-
cously at constant ~� in segment a! b of the trajectory for
theat�up � 1100 yr. At point b, the star reaches a state of
thermal balance. In leg b! c the star continues its evolu-
tion in thermal equilibrium and slowly spins up due to
accretion until the angular velocity evolution also reaches

FIG. 3. (a) The amplitudes of the r-mode jC�j and of the n �
13, m � �3 and n � 14, m � 1 inertial modes jC�j and jC�j
are shown as a function of time for a star that executes a cyclic
evolution (same parameters as in Fig. 2). The lowest parametric
instability threshold is also displayed. (b) The ratio of the
r-mode amplitude to the parametric instability threshold is
plotted as a function of time. It can be seen that once the
r-mode crosses the parametric instability threshold it remains
close to it for the rest of the evolution. (c) The parametric
instability threshold is displayed as a function of time. Its value
changes as the angular velocity and temperature evolve.
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an equilibrium. The time scale to reach an equilibrium
steady state is tsteady � 3:5� 106 yr for this set of
parameters.

Figure 5 displays the possible initial values for the
angular velocity ~� and temperature T8 of the star that

lead to a balancing between the accreted angular momen-
tum and the angular momentum emitted in gravitational
waves. The fraction of the star that is above the threshold
for direct URCA reactions and the slippage factor are
varied within the corresponding ‘‘steady-state’’ region of
Fig. 1(b). The final equilibrium values are also displayed
and cluster in a narrower region than the initial values.
Because viscosity is so small in this regime, the values of
� also tend to be small. Thus, although an interesting
physical regime, this case is most likely not relevant to
recycling by accretion to create pulsars with spin frequen-
cies as large as 716 Hz. Note that a steady state can be
achieved when Sns � 0. This is the probable end state of
the problem first calculated by Levin [17]. The reason we
do not find a cycle at low Sns is twofold: (1) the shear
viscosity we are using is lower (shear viscosity in Ref. [17]
is amplified by a factor of 244), and (2) the nonlinear
couplings keep all mode amplitudes small.

C. Thermal runaway evolutions

We now consider evolutions in which the three-mode
system is not sufficient to halt the thermal runaway. We
observe two such scenarios. In the first scenario, the star is
unable to reach thermal equilibrium. The runaway occurs
on a period much shorter than the accretion time scale and
so the whole evolution is at approximately constant angular
frequency. In the second scenario, the star reaches a state of
thermal equilibrium but the spin evolution does not reach a
steady state. The star continues to spin up by accretion until
it climbs to the peak of the H � C curve, thermal equilib-
rium fails, and a runaway occurs.

1. Fast runaway

A typical trajectory of a star that goes through a rapid
thermal runaway is displayed in Fig. 6. This star has Sns �
0:25 and fdU � 0:058. Initially, the growth of the r-mode is
halted by the two daughter modes once the lowest para-
metric instability threshold is crossed, and the three modes
settle in the ��; T�-dependent quasistationary states of
Eqs. (6). They viscously heat up the star until hyperon
bulk viscosity becomes important for the daughter modes.
As the amplitudes of the daughter modes decrease, the
coupling is no longer strong enough to drain enough en-
ergy to stop the growth of the r-mode. The daughter modes
are completely damped and the r-mode increases exponen-
tially. The system goes back to the one-mode evolution
described by Ref. [23].

Figures 6(a) and 6(b) compare both the temperature
evolution and the trajectory in the ~�� T8 plane of the
star for a simulation solving the full set of equations to a
simulation that assumes quasistationary solutions for the
three amplitudes and evolves only the angular velocity and
temperature of the star. It can be seen that the steady-state
approximation is very good until the thermal runaway
occurs. Afterward, the temperature evolution of the re-

FIG. 4. The trajectory of a neutron star in the ~�� T8 phase
space is shown for a model with Tc � 5:0� 109 K, fdU � 0:03,
and Sns � 0:03 that reaches an equilibrium steady state. The star
spins up until it crosses the r-mode stability curve and the
r-mode becomes unstable. The r-mode then quickly grows to
the first parametric instability threshold and excites the daughter
modes. In leg a! b of the trajectory the star is viscously heated
by the mode triplet until the system reaches thermal equilibrium.
Segment b! c shows the star continuing to heat and spin up in
thermal equilibrium until the accretion torque is balanced by the
gravitational radiation emission. The r-mode stability curve
represents the points in phase space where the viscous driving
rate is equal to the gravitational driving rate. The H � C curve is
the locus of points where the viscous dissipation due to the mode
triplet balances the neutrino cooling.

FIG. 5. The � ~�; T8� initial values (region delimited by the solid
line) that lead to equilibrium steady states and their correspond-
ing final steady-state values (region enclosed by the dashed line)
are shown. Since both the initial and final values of T8 are low,
these evolutions are roughly independent of Tc.
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duced equations is offset slightly from the quasisteady
result and intersects the r-mode instability curve sooner.
This evolution is similar to that described by Nayyar and
Owen [23]. However, the r-mode crosses its second lowest
parametric instability much earlier in the evolution (see the
‘‘X’’ in the figure), and at that point more modes need to be
included to model the instability accurately. Thus, we
cannot be sure that a runaway must occur in this case.
We shall return to this issue in a subsequent paper.

2. Slow runaway

In this section we examine evolutions in which the
neutron star has both a very small slippage factor, Sns &

0:03, and only a small percentage of the star is above the
threshold for direct URCA reactions, fdU < 5� 10�5. A
trajectory for this kind of evolution is displayed in Fig. 7.
After the star crosses the r-mode stability curve, the
r-mode increases beyond the first parametric instability
threshold, and its growth is temporarily stopped by energy
transfer to the daughter modes. As in the previous scenar-
ios, the star is viscously heated by the mode triplet at
constant � in part a! b of the trajectory on a time scale
of about 5000 yr. At point b, it reaches thermal equilib-
rium. In leg b! c of the trajectory, the star continues its
evolution by ascending the H � C curve and spinning up
because of accretion for about 2� 106 yr without finding
an equilibrium state for the angular momentum evolution.
Once it reaches the peak of theH � C curve, the cooling is
no longer sufficient to stop the temperature from increasing
exponentially and a thermal runaway occurs. The cross
mark ‘‘X’’ on the trajectory shows the point at which the
r-mode amplitude crosses its second lowest parametric
instability threshold. At this stage more inertial modes
need to be included to model the rest of this evolution
correctly. As for the cases that evolve to steady states, these
long time scale runaways tend to occur at low spin rates.

FIG. 6. This plot compares the full evolution resulting from
solving Eqs. (4), (13), and (18) with the reduced �� T evolu-
tion that assumes the amplitudes go through a series of steady
states Eqs. (19) and (20) for a model with Tc � 5:0� 109 K,
fdU � 0:058, and Sns � 0:25. (a) The temperature is displayed
as a function of time for the two different methods. (b) The
angular velocity ~� � �=�c is shown as a function of tempera-
ture. The evolution occurs at constant spin frequency. It can be
seen that the steady-state amplitude approximation is extremely
good. The ‘‘X’’ shows the point at which the r-mode crosses its
second lowest parametric instability threshold, where additional
dissipation would become operative. FIG. 7. The trajectory of a neutron star in the ~�� T8 phase

space is shown for a model with Tc � 5:0� 109 K, fdU � 4:0�
10�5, and Sns � 0:02 that goes through a slow thermogravita-
tional runaway. Portion a! b of the trajectory shows the mode
triplet heating up the neutron star through boundary layer and
shear viscosity until the system reaches thermal equilibrium.
Segment b! c represents the accretional spin-up of the star in
thermal equilibrium. The dotted-dashed line is the locus of
points where the viscous dissipation of the mode triplet is equal
to the neutrino cooling and is labeled as the H � C curve. The
star reaches the maximum of this curve and fails to reach an
equilibrium between the accretion torque and gravitational emis-
sion. It then continues heating at constant angular velocity and
crosses its second lowest parametric instability threshold, at
which point more modes would need to be included to make
the evolution accurate. Eventually the star reaches the r-mode
stability curve again.
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V. PROBABILITY OF DETECTION

Figure 8 shows how the time the star spends above the
r-mode stability curve changes when Sns and fdU are
varied. For large enough values of Sns the boundary layer
viscosity dominates. In this region of phase space the spin-
down time scale can be approximated by
 

tspin�down �
Z c

b

dt

d ~�
d ~� �

~I�0
GR

6

�4~��2 ~!� ~!�

j� ~!j2
1

j �C�j2
� ~�

h ~�i6

� 250 yr
��kHz

h�kHzi
7

1

M1:4R4
6

�
jcth
� j

jc�j

�
2
; (32)

where M1:4 � M=�1:4M
�, R6 � R=�106 cm�, �kHz �
�=1 kHz, ~I � 0:261 [16], the r-mode amplitude at its
parametric instability threshold jcth

� j � j� ~!j=

�4~�
��������������
~!� ~!�

p
� � 1:5� 10�5, and �C� �

�����
~�

p
jc�j=jc�jth.

This approximation agrees with spin-up time scales ob-
tained from our simulations to �25%.

The maximum � is approximately the same as the initial
frequency and can be determined by equating the driving
and damping rate of the r-mode, since it is on the r-mode
stability curve

 �max � 800 Hz
�
Sns

M1:4R6

�
4=11 1

T2=11
8

: (33)

Thus, the spin-down time scale is very sensitive to

the slippage factor tspin�down / S
�24=11
ns ���kHz=�kHz�. The

dependences on fdU and accretion rate _M are
much weaker; a rough approximation, obtained by
matching direct URCA cooling and nuclear heating,
is T8 in / _M1=6f�1=6

dU R�1=6
6 M�1=9

1:4 , and �max /

S4=11
ns f1=33

dU
_M�1=33R�1=3

6 M�34=99
1:4 . The gravitational wave

amplitude measured at distance d [46,47] is

 h � 1:6
R
d

�������������
GM

�0
GRc

3

s
~�3jc�j

� 3� 10�25

�
10 kpc

d

�
M1:4R

3
6�

3
kHz

�
jc�j

cth
�

�
: (34)

Taking � � �max gives

 h / S12=11
ns M�1=33

1:4 R2
6f

1=11
dU

_M�1=11: (35)

The maximum distance at which sources could be detected
by advanced LIGO interferometers, assuming hmin �
10�27, [46] is

 dmax � 3 Mpc
�
10�27

hmin

�
M1:4R

3
6�

3
kHz

�
jc�j

jcth
� j

�

� 1:5 Mpc
�
10�27

hmin

�
S12=11

ns M�1=11
1:4 R21=11

6 T�6=11
8

�
jc�j

jcth
� j

�
:

(36)

Equations (33) and (36) imply that gravitational radia-
tion from the r-mode instability may only be detectable for
sources in the local group of galaxies. Equation (33) im-
plies that for accretion to be able to spin up neutron stars to
� * 700 Hz, we must require �Sns=M1:4R6

���������
T8 in

p
�4=11 * 1.

Assuming this to be true, dmax & 1–1:5 Mpc. However,
tspin�down � 1000 yr at most, making detection unlikely
for any given source. Moreover, unless Sns can differ
substantially from one neutron star to another, only those
with � given by Eq. (33) can be r-mode unstable. Slower
rotators, including almost all LMXBs, are still in their
stable spin-up phases.

Still more seriously, Fig. 1(b) shows that spin cycles are
only possible for Sns & 0:50, assuming Tc � 5:0� 109 K;
Eq. (30) then implies � & 450 Hz. This would restrict
detectable gravitational radiation to galactic sources,
although the duration of the unstable phase could be
longer.

Within the context of our three-mode calculation, Sns >
0:50, which is needed for explaining the fastest pulsars,
would imply fast runaway. There are two possible resolu-
tions to this problem. One is that including additional
modes prevents the runaway; we shall investigate this in
subsequent papers. The second is that Tc is larger, or that
neutron stars do not contain hyperons (e.g., because they
are insufficiently dense). Figure 9(a) shows the same phase
plane as Fig. 1(b) but with Tc � 6:5� 109 K, and Fig. 9(b)
shows the results for tspin�down analogous to Fig. 8. Larger

FIG. 8. The spin-down time scale is shown as slippage factor
Sns and fraction of the star subject to direct URCA fdU for cyclic
evolutions are varied for a fixed hyperon critical temperature of
Tc � 5:0� 109 K. This time scale dominates the heat-up time
scale and hence represents the time the star spends above the
r-mode instability curve. It increases as the viscosity is lowered
and the star gets closer to the steady-state region.
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Tc permits spin cycles for higher values of Sns (and hence
�), but the time spent in the unstable regime is shorter.

VI. CONCLUSIONS

In this paper, we model the nonlinear saturation of
unstable r-modes of accreting neutron stars using the
triplet of modes formed from the n � 3, m � 2 r-mode
and the first two near resonant modes that become unstable
(n � 13, m � �3 and n � 14, m � 1) by coupling to the
r-mode. This is the first treatment of the spin and thermal
evolution including the nonlinear saturation of the r-mode
instability to provide a physical cutoff by energy transfer to

other modes in the system. The model includes neutrino
cooling and shear, boundary layer, and hyperon bulk vis-
cosity. We allow for some uncertainties in neutron star
physics that is not yet understood by varying the superfluid
transition temperature, the slippage factor that regulates
the boundary layer viscosity, and the fraction of the star
that is above the density threshold for direct URCA reac-
tions. In all our evolutions we find that the mode ampli-
tudes quickly settle into a series of quasistationary states
that can be calculated algebraically, and depend weakly on
angular velocity and temperature. The evolution continues
along these sequences of quasisteady states as long as the
r-mode is in the unstable regime. The spin and temperature
of the neutron star can follow several possible trajectories
depending on interior physics. The first part of the evolu-
tion is the same for all types of trajectories: the star
viscously heats up at constant angular velocity.

If thermal equilibrium is reached, we find several pos-
sible scenarios. The star may follow a cyclic evolution and
spin down and cool in thermal equilibrium until the r-mode
enters the stable regime. It subsequently cools at constant
� until it reaches the initial temperature. At this point the
star starts spinning up by accretion until the r-mode be-
comes unstable again and the cycle is repeated. The time
the star spends in the unstable regime is found to vary
between a few hundred years (large Sns � 1) and 106 yr
(small Sns � 0:05). Our cycles are different from those
previously found by Ref. [17] in that our amplitudes re-
main small, �10�5, which slows the viscous heating and
causes the star to spend more time in the regime where the
r-mode instability is active. Furthermore, we find that the
star stops heating when it reaches thermal equilibrium and
not when the r-mode reaches a maximum value. The cycles
we find are narrow with the spin frequency of the star
changing less than 10% even in the case of high spin rates
�750 Hz. Other possible trajectories are an evolution
toward a full steady state in which the accretion torque
balances the gravitational radiation emission, and a very
slow thermogravitational runaway on a time scale of
�106 yr. These scenarios occur for very low viscosity
(Sns & 0:04). Although theoretically interesting, they do
not allow for very fast rotators of �700 Hz.

Alternatively, if the star does not reach thermal equilib-
rium, we find that it continues heating up at constant spin
frequency until it enters a regime in which the r-mode is no
longer unstable. This evolution is similar to that predicted
by Nayyar and Owen [23]. However, the r-mode grows
above its second parametric instability threshold fairly
early in its evolution and at this point more inertial modes
should be excited and the three-mode model becomes
insufficient. Modeling this scenario accurately is subject
of future work.

We have focused on cases with Tc * 5� 109 K. These
are cases for which the nonlinear effects are substantial. In
this regime, hyperon bulk viscosity is not important except

FIG. 9. (a) The stability regions are plotted at fixed hyperon
superfluidity temperature Tc � 6:5� 109 K, while varying fdU

and Sns. The steady-state region remains roughly the same as in
Fig. 1(b), the slow runaway region disappears, and the cycle
region increases dramatically while shrinking the fast runaway
region. (b) The spin-down time scale is shown for the cyclic
evolutions in part (a).
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for thermal runaways where we expect other mode cou-
plings, ignored here, to play important roles. Fast rotation
requires large dissipation, as has long been recognized
[17,30] and these models can only achieve � * 700 Hz if
boundary layer viscosity is very large. Alternatively, at
lower Tc & 3� 109 K, large rotation rates can be achieved
at r-mode amplitudes below the first parametric instability
threshold [24]. Nayyar and Owen found that increasing the
mass of the star for the same equation of state makes the
hyperon bulk viscosity become important at lower tem-
peratures [23]. Conceivably, there are accreting neutron
stars with relatively low masses that have lower central
densities and small hyperon populations. These could
evolve as detailed here and only spin up to modest fre-
quencies. Hyperons could be more important in more
massive neutron stars leading to larger spin rates and
very small steady-state r-mode amplitudes as found by
Wagoner [24].

Our models imply small r-mode amplitudes of �10�5

and therefore gravitational radiation detectable by ad-
vanced LIGO interferometers only in the local group
of galaxies up to a distance of a few Mpc. The
r-mode instability puts a fairly stringent limit on the spin
frequencies of accreting neutron stars of �max �

800 Hz�Sns=�M1:4R6�	
4=11T�2=11

8 . In order to allow for
fast rotators of * 700 Hz in our models a large boundary
layer viscosity with �Sns=M1:4R6

���������
T8 in

p
�4=11 � 1 is re-

quired. Slippage factors of order �1 lead to time periods
on which the r-mode is unstable with a time scale of at
most 1000 yr, which is about 10�3 times shorter than the
accretion time scale. This would mean that only about 1 in
1000 LMXBs in the galaxy are possible LIGO sources.
However, lower slippage factors lead to a longer duration
of the gravitational wave emission, but also lower frequen-
cies. We also note that in this model we have considered
only very fast accretors with _M� 10�8M
 yr�1 and most
LMXBs in our galaxy accrete at slower rates.
Investigations with more accurate nuclear heating models
are a subject for future work.

Our analysis could be made more realistic in several
ways, such as by including the effects of magnetic fields,
compressibility, multifluid composition [48], superfluidity,
superconductivity, etc. These features would render the
model more realistic, but its generic features ought to
persist, since the upshot would still be a dense set of
mode frequencies exhibiting three mode resonances and
parametric instabilities with low threshold amplitudes.
Although the behavior of the star would differ quantita-
tively in a model different from ours in detail, we expect
the qualitative behaviors we have found to be robust, as
they are well described by quasistationary mode evolutions
whose slow variations are determined by competitions
between dissipation and neutrino cooling, and accretion
spin-up and gravitational radiation spin-down. In our
model, it seems that three-mode evolution involving inter-

actions of the r-mode with two daughters at the lowest
parametric instability threshold is often sufficient to
quench the instability. Our treatment is inadequate to fol-
low what happens when the system runs away; for this,
coupling to additional modes is essential. For this regime, a
generalization of the work of Brink et al. [26–28] that
includes accretion spin-up, viscous heating, and neutrino
cooling would be needed. Such a calculation is formidable
even in a ‘‘simple’’ model involving coupled inertial
modes of an incompressible star.
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APPENDIX A

This appendix will sketch the derivation of Eqs. (1) from
the Lagrangian density. We follow closely Appendix A in
Schenk et al., which contains the derivation of the equa-
tions of motion for constant �.

The Lagrangian density as given by Eq. (A1) in Schenk
et al. [29] is

 L � 1
2

_
 � _
� 1
2

_
 � B � 
� 1
2
 �C � 
� aext�t� � 
; (A1)

where the operators B � 
 � 2�� 
 and

 	�C � 
�i � �ri��1prj
j� � riprj
j � 	ri��

�rjpri

j � 	
jrjri�� 	


jrjri�rot

(A2)

with �rot � ��1=2���� x�2. We are interested in a situ-
ation where the uniform angular velocity of the star
changes slowly on the time scale of the rotation period
itself. In order to remove the time dependence we define
the new displacement and time variables

 
 �
~
�����
�
p ; d� � �dt: (A3)

In terms of these new variables the Lagrangian density can
be written as
 

~L �
1

2
~
0 � ~
0 �

1

2
~
0 � �~B � ~
� �

�
�����
�
p
�00

2
�����
�
p j~
j2

�
1

2
~
 � ~C � ~
�

aext�t�

�3=2
� ~
; (A4)
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where the primes denote derivatives with respect to �, ~B �
��1B, and ~C � ��2C. The momentum canonically con-
jugated to ~
 is

 ~� �
@L

@~
0
� ~
0 � �̂� ~
: (A5)

The associated Hamiltonian density is
 

H �
1

2

�������� ~��
1

2
~B � ~


��������2
�
�
�����
�
p
�00

2
�����
�
p j~
j2 �

1

2
~
 � ~C � ~


�
aext

�3=2
� ~
: (A6)

Hamilton’s equations of motions can be written as

 

~
 0 � T � ~
 � F���; (A7)

where

 
 �
� ~


~�

�
;

the operator T is T � T0 � T1 with

 T0 �
� 1

2
~B 1

1
4

~B2 � ~C � 1
2

~B

 !

and

 T1 �
0 0

�
����
�
p
�00����

�
p 0

 !
;

and

 F ��� �
0

aext

�3=2

 !
:

We assume solutions of the form ~
��;x� � ei ~!t ~
�x�.
Specializing to the case of no forcing term aext � 0 leads
to the eigenvalue equation

 �T0 � i ~!�~
�x� � 0: (A8)

Since the operator T0 is not Hermitian it will have distinct
right and left eigenvectors. Similar to Schenk et al. [29] we
label the right eigenvectors of T as ~
A, and the associated
eigenfrequencies as ~!A � !A=�, and the eigenvalue
equation above becomes

 �T0 � i ~!A�~
A�x� � 0: (A9)

The left eigenvectors �A satisfy

 �Ty0 � i ~!?
A�~�A � 0; (A10)

where

 Ty0 �
1
2

~B 1
4

~B2 � ~C
1 1

2
~B

 !
:

For simplicity, in this appendix we specialize to the case of

no Jordan chains when the set of right eigenvectors forms a
complete basis. The orthonormality relation between right
and left eigenvectors is

 h~�A; ~
Bi �
Z
d3x	�x�~�yA � ~
B � �AB: (A11)

We can expand 
��;x� in this basis as

 
��;x� �
X
A

CA���
A�x�; (A12)

where the coefficients CA are given by the inverse of this
mode expansion

 CA��� � h~�A; ~
��;x�i: (A13)

Using Eqs. (A9), (A11), and (B2) in Eq. (A7) leads to the
equations of motion for the mode amplitudes

 C0A � i ~!ACA � g���
X
B

C?B

�
~�A;

0
~
B

� ��
� h~�A; F���i;

(A14)

where g��� � �
�����
�
p
�00=

�����
�
p

. Following Sec. IV of Schenk
et al. [29] we replace the externally applied acceleration by
the nonlinear acceleration given by Eq. (4.2) of Ref. [29].
The inner product can be written in terms of the displace-
ment variable ~
. The left eigenvectors are

 

~� A �
~�A
~�A

� �
;

where ~�A can be chosen to be proportional to ~
A because
they satisfy the same matrix equation.

 ~� A � �i~
A=~bA; (A15)

which corresponds to Eq. (A-45) in Schenk et al. [29] with
the proportionality constant ~bA � ��1bA � MR2= ~!A
(also given by Eq. (2.36) of Ref. [29]).

The equations of motion for the mode amplitudes be-
come

 C0A � i ~!ACA �
ig���

~bA

X
B

CB
Z
d3x ~
?A � ~
B

�
iMR2

~bA

X
BC

~�?ABCC
?
BC

?
C; (A16)

where the nonlinear coupling ~�ABC � �ABC=�MR
2�2� and

�ABC is explicitly give by Eq. (4.20) of Ref. [29]. The g���
integral mixes only modes with mA � mB because of the
eim� dependence of the displacement eigenvectors ~
.
(
R

2�
0 d�ei�mA�mB�� � 0 if mA � mB.) So, this term will

be zero for our mode triplet. Also, in the case of a single
mode triplet there is only one coupling and Eqs. (A16) take
the form of Eqs. (1).
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APPENDIX B

In this appendix we study the behavior of the mode
amplitudes and temperature near equilibrium assuming
constant angular velocity. We are performing a first order
expansion of Eqs. (5) and (18). Similar to Ref. [49], each of
the five variables is expanded about its equilibrium �Xj�e as
follows:

 Xj�~�� � fj �C�j; j �C�j; j �C�j; �; T8g � �Xj�e�1� 
j�~��	;

(B1)

where the perturbation j
jj � 1 and j � �, �, �, T. The
expansion leads to a first order differential equation for
each 
j
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(B2)

where the equilibrium amplitudes jCjje have been written in terms of the corresponding driving and damping rates using
Eqs. (6). Equation (B2) can be written in matrix form as

 

d
j
d~�
� Aij
i: (B3)

Let 
j / exp��~��. The determinant jjAij � ��ijjj � 0 leads to the eigenvalue equation

 �5 � a4�
4 � a3�

3 � a2�
2 � a1�� a0 � 0: (B4)

The coefficients aj with j � 0, 4 are
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1

tan�e

�
1�

1
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e

��
~!�

~��

�
@~��
@T8

�
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�

~!�

~��

�@~��
@T8

�
e
�

~!�

~��

�@~��
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�
e

�

�
4~�� ~�� ~��
� ~�j� ~!j�3

1

tan�e

1
~�j� ~!jC�Te�

�
dL�
dT8

�
e
:

(B5)

The eigenvalues can be approximated as

 �1;2 � �
a4

2
� �� i

���������������������������������������������
a1

�2 � w2 �

�
a4

2
� �

�
2

s
; �3;4 � �� iw; �5 � �

a0

a1
; (B6)

where � � �a2 � a3a4�=a4 and w �
�������������
a1=a3

p
. The system is unstable when a2 � a3a4 > 0 or a0 < 0. The first two

eigenvalues will have a negative real part as long as ~�� � ~�� > ~��. If the heating compensates the cooling of the star
a0 � 0 and becomes negative if the star cannot reach thermal equilibrium. The other critical stability condition a2 �
a3a4 � 0 can be written as
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�
~��

~�j� ~!j

�
3
�1� �� � �� � ��

2
� � �2

�� � ��� � ���
2��� � ���	 � 0; (B7)

where �� � ��=�� and �� � ��=��. Note that we have ignored the smaller terms of order O��~��=� ~�j� ~!j�	5�. This
condition can be rewritten by defining variables D1 � �� � �� and D2 � �� � ��

 2� 2D1 �D2
1 �D

2
2 � 2D2

2D1 � 0: (B8)

If D2 � 0 then the equation has one solution D1 � 1�
���
3
p

for D1 > 2, which corresponds to � � �� � �� � 1:37 and
matches the result of Wersinger et al. [35]. For the viscosity we consider (see Sec. II D) a2 � a3a4 < 0.
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