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A general class of loop quantizations for anisotropic models is introduced and discussed, which
enhances loop quantum cosmology by relevant features seen in inhomogeneous situations. The main new
effect is an underlying lattice which is being refined during dynamical changes of the volume. In general,
this leads to a new feature of dynamical difference equations which may not have constant step-size,
posing new mathematical problems. It is discussed how such models can be evaluated and what lattice
refinements imply for semiclassical behavior. Two detailed examples illustrate that stability conditions
can put strong constraints on suitable refinement models, even in the absence of a fundamental
Hamiltonian which defines changes of the underlying lattice. Thus, a large class of consistency tests of
loop quantum gravity becomes available. In this context, it will also be seen that quantum corrections due
to inverse powers of metric components in a constraint are much larger than they appeared recently in
more special treatments of isotropic, free scalar models where they were artificially suppressed.
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I. INTRODUCTION

Loop quantum cosmology [1] was designed to test char-
acteristic effects expected in the full framework of loop
quantum gravity [2– 4]. Implementing symmetries at the
kinematical quantum level allows explicit treatments of the
dynamical equations while preserving basic features such
as the discreteness of spatial geometry [5]. (See also [6–
11] for recent work on symmetry reduction in quantum
theories.) Indeed, several new, initially surprising results
were derived in different applications in cosmology and
black hole physics. By now many such models have been
studied in detail.

As the relation of dynamics to that of a possible full
framework without symmetries is not fully worked out,
detailed studies can be used to suggest improvements of
the equations for physically viable behavior. Comparing
results with full candidates for quantum dynamics can then
provide stringent self-consistency tests of the overall
framework. It is to be seen if, and how, such alterations
of quantization procedures naturally result from a full
quantization. The first example of this type related to the
stability behavior of solutions to the difference equations
of isotropic loop quantum cosmology, which was studied in
[12,13] and was already restrictive for models with non-

zero intrinsic curvature. Another limitation, realized early
on [14], occurs in the presence of a positive cosmological
constant �. In an exact isotropic model, the extrinsic

curvature scale is given by k � _a �
������������������������
8�Ga2�=3

p
which,

due to the factor of a2, can be large in a late universe
although the local curvature scale � might be small.
Extrinsic curvature plays an important role since in a flat
isotropic model it appears in holonomies on which loop
quantizations are based in such a way that only ei�k with
� 2 R can be represented as operators, but not k itself
[15]. Large values of k would either require one to use
extremely small � in the relevant operators, or imply
unexpected deviations from classical behavior. In fact,
holonomies as basic objects imply that the Hamiltonian
constraint is quantized to a difference rather than differen-
tial equation [16] since k in the Hamiltonian constraint (as
in the Friedmann equation) is not directly quantized but
only exponentials ei�k. These are shift operators instead of
differential operators. For a large, semiclassical universe a
Wheeler-DeWitt wave function should be a good approxi-
mation to the basic difference equation of loop quantum
cosmology [17] which, in a representation as a function of
the momentum p � a2 conjugate to k, would be oscillating
on scales of the order �a

����
�
p
��1. This scale becomes shorter

and shorter in an expanding universe, eventually falling
below the discreteness scale of the difference equation of
loop quantum cosmology. At such a point, discreteness of
spatial geometry would become noticeable in the behavior
of the wave function (independently of how physical ob-
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servables are computed from it) although the universe
should be classical.

This does not pose a problem for the general formalism,
because it only shows that the specific quantization of the
exact isotropic model used reaches its limits. Physically,
this can be understood as a consequence of a fixed spatial
lattice being used throughout the whole universe evolution.
Exponentials ei�k in isotropic models derive from holono-
mies he�A� � P exp�

R
e A

i
a�i _eadt� of the Ashtekar connec-

tion along spatial curves e. All the freedom contained in
choosing edges to capture independent degrees of freedom
of the full theory reduces, in isotropic models, to the single
parameter � which suffices to separate isotropic connec-
tions through all functions ei�k. The parameter �, from the
full perspective, is thus related to the edge length used in
holonomies. Using a fixed and constant � is analogous to
using only edges of a given coordinate length, as they
occur, for instance, in a regular lattice. In the presence of
a positive cosmological constant, for any � a value of k
will then be reached such that ei�k differs strongly from
i�k. From the lattice perspective, this means that the local
curvature radius becomes comparable to or smaller than
the fixed lattice scale corresponding to �. Such a fixed
lattice ceases to be able to support all small-scale oscilla-
tions relevant for a semiclassical geometry.

This is not problematic if it occurs in a quantum regime
where dynamics is indeed expected to differ from the
classical one, but it poses a problem in semiclassical
regimes. A better treatment has to refer to changing latti-
ces, which is not easy to implement in a straightforward
quantization of purely homogeneous models. In a dynami-
cal equation closer to what is expected from the full frame-
work, lattice refinements would take place during the
evolution since full Hamiltonian constraint operators gen-
erally create new vertices of a lattice state in addition to
changing their edge labels [18–20]. While k increases with
increasing volume, the corresponding � decreases since
the lattice is being refined all the time. For a suitable lattice
refinement, the increase in k can be balanced by the de-
crease of � such that �k stays small and semiclassical
behavior is realized for any macroscopic volume even with
�> 0. This provides an interesting relation between the
fundamental Hamiltonian, which is responsible for the
lattice refinement, and semiclassical properties of models.
Testing whether an appropriate balance between increasing
k and lattice refinements can be reached generically can
thus provide stringent tests on the fundamental dynamics
even without using a precise full Hamiltonian constraint
operator.

This feature of lattice refinements was not mimicked in
the first formulations of loop quantum cosmology
[14,15,21–23] since the main focus was to understand
small-volume effects such as classical singularities
[24,25]. In this context, lattice refinements appear irrele-
vant because only a few action steps of the Hamiltonian,

rather than long evolution, are sufficient to probe a singu-
larity. By now, perturbative regimes around isotropic mod-
els have been formulated in loop quantum cosmology
which are inhomogeneous and thus must take into account
lattice states and, at least at an effective level, lattice
refinements [9]. One special version, corresponding to
lattices with a number of vertices growing linearly with
volume in a specific way referring to the area operator, has
been studied in detail in isotropic models with a free,
massless scalar [26]. Although the complicated relation
to a full, graph-changing Hamiltonian constraint is still
not fully formulated, such models allow crucial tests of
the local dynamics.

While isotropic models can easily be understood in
terms of wave functions on a 1-dimensional discrete min-
isuperspace in terms of oscillation lengths [27], anisotropic
models with higher-dimensional minisuperspaces can be
more subtle. In such models, limitations similar to that of a
cosmological constant have been observed as possible
instabilities of solutions in classical regions or the lack of
a sufficient number of semiclassical states [28–30]. For the
partial difference equations of anisotropic models in loop
quantum cosmology, stability issues can be much more
severe than in isotropic models and thus lead to further
consistency tests which might help to restrict possible
quantization freedom (see, e.g., [31]). In this paper we
therefore introduce the general setting of anisotropic mod-
els taking into account lattice refinements of Hamiltonian
constraint operators, focusing mainly on the anisotropic
model which corresponds to the Schwarzschild interior. As
we will see, the type of difference equations in general
changes since they can become nonequidistant. This leads
to new mathematical problems which we address here
briefly, leaving further analysis for future work. The ex-
amples presented here already show that one can distin-
guish different refinement models by their stability
properties. The refinement model corresponding to [26]
turns out to give unstable evolution of the Schwarzschild
interior, while a new version, whose vertex number also
grows linearly with volume, is stable. Compared to iso-
tropic models which are sensitive only to how the vertex
number of a state changes with volume, anisotropic models
allow one to test much more detailed properties.

An appendix discusses subtleties in how homogeneous
models faithfully represent inhomogeneous states, mainly
regarding the magnitude of corrections arising from quan-
tizations of inverse metric components which often plays a
large role in cosmological applications.

II. DIFFERENCE EQUATION FOR THE
SCHWARZSCHILD INTERIOR WITH VARYING

DISCRETENESS SCALE

Basic variables of a loop quantization are holonomies
along lattice links and fluxes over transversal surfaces. For
the Schwarzschild interior [32], the connection used for
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holonomies and the densitized triad used for fluxes take the
form
 

Aia�idx
a � ~c�3dx� �~a�1 � ~b�2�d#

� ��~b�1 � ~a�2� sin#d’� �3 cos#d’ (1)

 Eai �
i @
@xa
� ~pc�3 sin#

@
@x
� �~pa�1 � ~pb�2� sin#

@
@#

� ��~pb�1 � ~pa�2�
@
@’

: (2)

Coordinates �x; #; ’� are adapted to the symmetry, with
polar angles # and ’ along orbits of the rotational sym-
metry subgroup, and �j � �

i
2�j in terms of Pauli matri-

ces. Spatial geometry is determined by the spatial line
element, which in terms of the densitized triad components
is

 d s2 �
~p2
a � ~p2

b

j~pcj
dx2 � j~pcjd�2 (3)

obtained from qab � Eai E
b
i =j detEcj j. We will also use the

cotriad eia, i.e., the inverse of eai � Eai =
����������������
j detEbj j

q
,

 

eia�idxa � ec�3dx� �ea�1 � eb�2�d#

� ��eb�1 � ea�2� sin#d’ (4)

with components

 ea �

���������
j~pcj

p
~pa������������������

~p2
a � ~p2

b

q ;

eb �

���������
j~pcj

p
~pb������������������

~p2
a � ~p2

b

q and ec �
sgn~pc

������������������
~p2
a � ~p2

b

q
���������
j~pcj

p :

(5)

The phase space is spanned by the spatial constants
�~a; ~b; ~c; ~pa; ~pb; ~pc� 2 R6 with nonvanishing Poisson
brackets

 f~a; ~pag � �G=L0; f~b; ~pbg � �G=L0;

f~c; ~pcg � 2�G=L0

where G is the gravitational constant and � the Barbero-
Immirzi parameter [33,34]. Moreover, L0 is the size of a
coordinate box along x used in integrating out the fields in

 

1

8��G

Z
d3x _AiaEai �

L0

2�G
_~c~pc �

L0

�G
_~b~pb �

L0

�G
_~a~pa

to derive the symplectic structure. The SU(2)-gauge trans-
formations rotating a general triad are partially fixed to
U(1) by demanding the x component of Eai to point in the
internal �3 direction in (2). The U(1)-gauge freedom allows

one to set ~a � 0 � ~pa, still leaving a discrete residual
gauge freedom �~b; ~pb�� ��~b;�~pb�. The remaining var-
iables can be rescaled by

 �b; c� :� �~b; Lo~c�; �pb; pc� :� �Lo ~pb; ~pc� (6)

to make the canonical structure L0-independent:

 fb; pbg � �G; fc; pcg � 2�G: (7)

This rescaling is suggested naturally by holonomies, as
written below, and fluxes which are considered the basic
objects in loop quantizations.

To express the elementary variables through holono-
mies, which unlike connection components will be pro-
moted to operators, it suffices to choose curves along the x
direction of coordinate length �L0 and along # of coor-
dinate length � since this captures all information in the
two connection components,

 h���x �A� � exp
Z �Lo

0
dx~c�3 � cos

�c
2
� 2�3 sin

�c
2

(8)

 h���# �A� � exp
Z �

0
d# ~b�2 � cos

�b
2
� 2�2 sin

�b
2
: (9)

The quantum Hilbert space is then based on cylindrical
states depending on the connection through countably
many holonomies, which can always be written as almost
periodic functions f�b; c� �

P
�;�f�;� expi2 ��b� �c� of

two variables. These form the set of functions on the
double product of the Bohr compactification of the real
line, which is a compact Abelian group. Its Haar measure
defines the inner product of the (nonseparable) Hilbert
space, in which states

 hb; cj�; �i � e�i=2���b��c� �; � 2 R (10)

form an orthonormal basis. Holonomies simply act by
multiplication on these states, while densitized triad com-
ponents become derivative operators

 p̂ b � �i�‘
2
P

@
@b
; p̂c � �2i�‘2

P

@
@c

(11)

using the Planck length ‘P �
�������
G@
p

. They act as

 p̂ bj�; �i �
1

2
�‘2

P�j�; �i; p̂cj�; �i � �‘2
P�j�; �i;

(12)

immediately showing their eigenvalues.
To formulate the dynamical equation, one has to quan-

tize the Hamiltonian constraint

 H �
1

�2

Z
d3x�ijk��F

k
ab � �

2�k
ab�

EaiEbj��������������
j detEj

p (13)

where �k
ab�kdx

a ^ dxb � � sin#�3d# ^ d’ is the intrin-
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sic curvature of 2-spheres, while Fkab is the curvature
computed from Aia ignoring the spin connection term
sin#�3d’. Following standard procedures a Hamiltonian
constraint operator can be expressed in the basic operators.
First, one replaces the inverse determinant of Eai by a
Poisson bracket, following [19],

 �ijk�
i E

ajEbk��������������
j detEj

p �
�1

4��G

X
K2fx;#;’g

1

‘K0
�abc!K

c h
���
K fh

����1
K ; Vg

(14)

with edge lengths ‘x0 � �L0 and ‘#=’0 � �, and left-
invariant 1-forms !K

c on the symmetry group manifold.
For curvature components Fkab one uses a holonomy
around a closed loop

 F i
ab�x��i �

!I
a!

J
b

A�IJ�
�h���IJ � 1� �O��b2 � c2�3=2

������
A
p
�

(15)

with

 h���IJ � h���I h
���
J �h

���
I �
�1�h���J �

�1 (16)

and AIJ being the coordinate area of the loop, using the
corresponding combinations of ‘I0. In these expressions, a
parameter � has been chosen which specifies the length of
edges with respect to the background geometry provided
by the symmetry group. Putting all factors together and
replacing Poisson brackets by commutators, one has

 

Ĥ��� � 2i��3�3‘2
P�
�1 tr

�X
IJK

�IJKĥ���I ĥ
���
J ĥ

����1
I ĥ����1

J ĥ���K �ĥ
����1
K ; V̂� � 2�2�2�3ĥ

���
x �ĥ

����1
x ; V̂�

�

� 4i��3�3‘2
P�
�1

�
8 sin

�b
2

cos
�b
2

sin
�c
2

cos
�c
2

�
sin
�b
2
V̂ cos

�b
2
� cos

�b
2
V̂ sin

�b
2

�

�

�
4sin2 �b

2
cos2 �b

2
� �2�2

��
sin
�c
2
V̂ cos

�c
2
� cos

�c
2
V̂ sin

�c
2

��
(17)

which acts as
 

Ĥ���j�; �i � �2�3�3‘2
P�
�1�2�V���;� � V���;���j�� 2�; �� 2�i � j�� 2�; �� 2�i � j�� 2�; �� 2�i

� j�� 2�; �� 2�i� � �V�;��� � V�;�����j�� 4�; �i � 2�1� 2�2�2�j�; �i � j�� 4�; �i��

on basis states. This operator can be ordered symmetrically, defining Ĥ���symm :� 1
2 �Ĥ

��� � Ĥ���y�, whose action is [35]
 

Ĥ���symmj�; �i � �2�3�3‘2
P�
�1��V���;� � V���;� � V��3�;��2� � V���;��2��j�� 2�; �� 2�i

� �V���;� � V���;� � V��3�;��2� � V���;��2��j�� 2�; �� 2�i

� �V���;� � V���;� � V���;��2� � V��3�;��2��j�� 2�; �� 2�i

� �V���;� � V���;� � V���;��2� � V��3�;��2��j�� 2�; �� 2�i

�
1

2
�V�;��� � V�;��� � V��4�;��� � V��4�;����j�� 4�; �i � 2�1� 2�2�2��V�;��� � V�;����j�; �i

�
1

2
�V�;��� � V�;��� � V��4�;��� � V��4�;����j�� 4�; �i�: (18)

Transforming this operator to the triad representation obtained as coefficients of a wave function j i �
P
�;� �;�j�; �i in

the triad eigenbasis and using the volume eigenvalues

 V�;� � 4�
������������������
j�p̂c��;�j

q
�p̂b��;� � 2���‘2

P�
3=2

������
j�j

p
�;

a difference equation
 

�3=2�3

�‘P
�Ĥ���symmj i��;� � 2��

������������������
j�� 2�j

p
�

������
j�j

p
�� ��2�;��2� �  ��2�;��2��

� �
����������������
j�� �j

p
�

����������������
j�� �j

p
����� 2�� ��4�;� � 2�1� 2�2�2�� �;� � ��� 2�� ��4�;��

� 2��
������������������
j�� 2�j

p
�

������
j�j

p
�� ��2�;��2� �  ��2�;��2�� � 0 (19)

results for physical states. (For small � the equation has to be specialized further due to the remaining gauge freedom; see
[32]. This is not relevant for our purposes.)
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A. Relation to fixed lattices

Although there are no spatial lattices appearing in the
exactly homogeneous context followed here, the construc-
tion of the Hamiltonian constraint mimics that of the full
theory. States are then associated with spatial lattices, and
holonomies refer to embedded edges and loops. The pa-
rameter � is the remnant of the loop size (in coordinates)
used to act with holonomies on a spatial lattice. As one can
see, this parameter is important for the resulting difference
equation, determining its step-size. The above construc-
tion, using a constant �, can be seen as corresponding to a
lattice chosen once and for all such that the loop size is not
being adjusted even while the total volume increases. As
described in the introduction, this ignores the possible
creation of new lattice vertices and links, and can be too
rigid in certain semiclassical regimes.

To express this clearly, we now construct holonomies
which are not simply along a single edge of a certain length
�, but which are understood as holonomies along lattice
links. We keep our coordinate box of size L0 in the x
direction as well as the edge length ‘0. If this is a link in
a uniform lattice, there are N x � L0=‘0 lattice links in
this direction, and a link holonomy appears in the form

 hx � exp�‘0~c�3� � exp�‘0c�3=L0� � exp�c�3=N x�

(20)

when computed along whole lattice edges. Thus, a constant
coefficient 1=N x in holonomies corresponds to a fixed
lattice whose number of vertices does not change when the
volume increases. Lattice refinements of an inhomogene-
ous lattice state, on the other hand, can be mimicked by a
parameter N x which depends on the phase space varia-
bles, most important the triad components. If this is carried
through, as we will see explicitly below, the step-size of the
resulting difference equation is not constant in the triad
variables anymore.

B. Lattice refinements

Let us now assume that we have a lattice with N
vertices in a form adapted to the symmetry, i.e., there are
N x vertices along the x direction (whose triad component
pc gives rise to the label �) and N 2

# vertices in spherical
orbits of the symmetry group (whose triad component pb
gives rise to the label �). Thus, N �N xN

2
# .

Since holonomies in such a lattice setting are computed
along single links, rather than through all of space (or the

whole cell of size L0), basic ones are hx � exp�‘x0~c�3� and
h# � exp�‘#0 ~b�2�, denoting the edge lengths by ‘I0 and
keeping them independent of each other in this anisotropic
setting. Edge lengths are related to the number of vertices
in each direction by ‘x0 � L0=N x and ‘#0 � 1=N # . With
the rescaled connection components c � L0~c and b � ~b
we have basic holonomies

 hx � exp�‘x0L
�1
0 c�3� � exp�c�3=N x�; (21)

 h# � exp�‘#0 b�2� � exp�b�2=N #�: (22)

Using this in the Hamiltonian constraint operator then
gives a difference equation whose step-sizes are 1=N I.

So far, we only reinterpreted � in terms of vertex num-
bers. We now turn our attention to solutions to the
Hamiltonian constraint which, in the full theory, usually
changes the lattice by adding new edges and vertices while
triad eigenvalues increase. For larger � and �, the
Hamiltonian constraint thus acts on a finer lattice than
for small values, and the parameter N for holonomies
appearing in the constraint operator is not constant on
phase space but triad dependent. Because of the irregular
nature of lattices with newly created vertices such a refine-
ment procedure is difficult to construct explicitly. But it is
already insightful to use an effective implementation, using
the derivation of the Hamiltonian constraint for a fixed
lattice, but assuming the vertex number N ��; �� to be
phase space dependent. Moreover, we include a parameter
� as before, which now takes a value 0< �< 1 and arises
because a graph-changing Hamiltonian does not use whole
lattice edges but only a fraction, given by � [36].
Effectively assuming in this way that the lattice size is
growing through the basic action of the Hamiltonian con-
straint, we will obtain a difference equation whose step-
size �=N is not constant in the original triad variables.

For the Schwarzschild interior, we have step-sizes
�=N # for � and �=N x for �. Going through the same
procedure as before, we end up with an operator containing
flux-dependent holonomies instead of basic ones, e.g.,
N x��; ��hx �N x��; �� exp�c�3=N x��; ��� which re-
duces to an N x-independent connection component c in
regimes where curvature is small. Keeping track of all
prefactors and holonomies in the commutator as well as
the closed loop, one obtains the difference equation

 

C���; ��� ��2�N # ��;���1;��2�N x��;���1 �  ��2�N # ��;���1;��2�N x��;���1�

� C0��; ������ 2�N #��; ��
�1� ��4�N # ��;���1;� � 2�1� 2�2�2N #��; ��

�2�� �;� � ��� 2�N #��; ��
�1�

�  ��4�N # ��;���1;�� � C���; ��� ��2�N # ��;���1;��2�N x��;���1 �  ��2�N # ��;���1;��2�N x��;���1� � 0 (23)
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with
 

C	��;�� � 2�N #��;��
�1

��
�������������������������������������������
j�	 2�N x��;��

�1j
q

�
������
j�j

p
�;

C0��;�� �
����������������������������������������
j���N x��;���1j

q
�

����������������������������������������
j���N x��;���1j

q
:

(24)

(A total factor N xN
2
# for the number of vertices drops

out because the right-hand side is zero in vacuum, but
would multiply the left-hand side in the presence of a
matter term.)

III. SPECIFIC REFINEMENT MODELS

For further analysis one has to make additional assump-
tions on how exactly the lattice spacing is changing with
changing scales � and �. To fix this in general, one would
have to use a full Hamiltonian constraint and determine
how its action balances the creation of new vertices with
increasing volume. Instead of doing this, we will focus here
on two geometrically motivated cases. Technically sim-
plest is a quantization where the number of vertices in a
given direction is proportional to the geometrical area of a
transversal surface. Moreover, the appearance of transver-
sal surface areas is suggested by the action of the full
Hamiltonian constraint which, when acting with an edge
holonomy, creates a new vertex along this edge (changing
N I for this direction) and changes the spin of the edge
(changing the area of a transversal surface). It also agrees
with [26,37], although the motivation in those papers,
proposing to use geometrical areas rather than coordinate
areas AIJ in (16), is different.

Geometrically more intuitive is the case where the num-
ber of vertices in a given direction is proportional to the
geometrical extension of this direction [38]. The resulting
difference equation will be more difficult to deal with due
to its nonconstant step-size, but naturally gives rise to
Misner-type variables. This case will also be seen to have
improved stability properties compared to the first one
using areas. In both cases, N / V is assumed, i.e., the
lattice size increases proportionally to volume. This is not
necessary in general, and we choose these two cases
mainly for illustrative purposes. In fact, constant N as
in [15] and N / V first used in [26] are two limiting cases
from the full point of view, the first one without creating
new vertices and the second one without changing spin
labels along edges since local lattice volumes V=N re-
main constant. In general, both spin changes and the cre-
ation of new vertices happen when acting with a
Hamiltonian constraint operator. Thus, one expects N /
V� with some 0<�< 1 to be determined by a detailed
analysis of the full constraint and its reduction to a homo-
geneous model. Even assuming a certain behavior of
N �V� without analyzing the relation to a full constraint

leaves a large field to be explored, which can give valuable
consistency checks. We will not do this systematically in
this paper but rather discuss a mathematical issue that
arises in any such case: initially, one has to deal with
difference equations of nonconstant step-size which can
be treated either directly or by tranforming a nonequidis-
tant difference equation to an equidistant one. We first
illustrate this for ordinary difference equations since partial
ones, as they arise in anisotropic models, can often be
reduced to this case.

A. Ordinary difference equations of varying step-size

Let us assume that we have an ordinary difference
equation for a function  �, which appears in the equation
with �-dependent increments  ���N 1����1 . To transform
this to a fixed step-size, we introduce a new variable ~����
such that ~���� �=N 1���� � ~���� � � ~�0=N 1��� �
O��2� has a constant linear term in �. (For the isotropic
equation, N 1 is the vertex number only in one direction.
The total number of vertices in a 3-dimensional lattice is
given by N �N 3

1.) This is obviously satisfied if we
choose ~���� :�

R
�N 1�	�d	. We then have

  ���=N 1��� �
~ ~�����=N 1����

� ~ ~����
P
1

i�2
�1=i!��iN �i�1�

1 =N i
1

� ~ ~��� �
1

2
�2 N

0
1

N 2
1

~ 0 �O��3� (25)

where N �i�
1 denotes the i-th derivative of N 1. Thus, up to

terms of order at least �2 the new equation will be of
constant step-size for the function ~ ~� :�  �� ~��. (The de-
rivative ~ 0 by ~� may not be defined for any solution to the
difference equation. We write it in this form since such
terms will be discussed below in the context of a contin-
uum or semiclassical limit where derivatives would exist.)

It is easy to see that, for refining lattices, the additional
terms containing derivatives of the wave function are of
higher order in @ and thus correspond to quantum correc-
tions. For N 1��� / �q as a positive power of �, which is
the expected case from lattice refinements related to the
increase in volume, we have

 

N 0
1

N 2
1

�
q

�N 1���
� q

�
4��‘2

P

3p

�
1�q

relating� to an isotropic triad component p � 4��‘2
P�=3

as it occurs in isotropic loop quantum gravity [14].
Moreover,

 

~ 0 �
d ~ 
d ~�
�

d�
d ~�

d 
d�
�

1

N 1���
d 
d�
� �

i
2

1

N 1���
ĉ 

in terms of a curvature operator ĉ � 8�i�G@=3d=dp �
2id=d� which exists in a continuum limit [17]. Thus,
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N 0
1

N 2
1

~ 0 /
�
@

p

�
1�2q

ĉ ~ :

With q positive (or just larger than �1=2) for a refining
lattice, there is a positive power of @, showing that addi-
tional terms arising in the transformation are quantum
corrections.

This has two important implications. First, it shows that
the correct classical limit is obtained if lattices are indeed
refined, rather than coarsened, since q is restricted for
corrections to appear in positive powers of @. In anisotropic
models, as we will see, the behavior is more complicated
due to the presence of several independent variables. An
analysis of the semiclassical limit can then put strong
restrictions on the behavior of lattices. Second, we can
implicitly define a factor ordering of the original constraint
giving rise to the nonequidistant difference equation by
declaring that all quantum correction terms arising in the
transformation above should cancel out with factor order-
ing terms. We then obtain a strictly equidistant equation in
the new variable ~�. For example, a function N 1��� ��������
j�j

p
gives ~� / j�j3=2 such that the transformed difference

equation will be equidistant in volume rather than the
densitized triad component. For this special case, factor
orderings giving rise to a precisely equidistant difference
equation have been constructed explicitly in [26,37].

B. Number of vertices proportional to transversal area

A simple difference equation results if the number of
vertices is proportional to the square root of the transversal
area in any direction [39]. In the x direction we have
transversal surfaces given by symmetry orbits of area pc,
using the line element (3), and thus N x /

������
j�j

p
. Surfaces

transversal to a given angular direction, spanned by the x
direction and the other angular direction, have area pb,
giving N # /

����
�
p

. This way, the total number of vertices,
N xN

2
# , is proportional to the total volume. Each minis-

uperspace direction has a step-size which is not constant
but independent of the other dimension. Moreover, due to
the simple form one can transform the equation to constant
step-size by using independent variables �2 and �2 instead
of � and �. Illustrating the general procedure given before,
a function ~ �3=2;�3=2 acquires constant shifts under the basic
steps,

 

~ ���n�= ���p �3=2;���m�=
���
�
p
�3=2 � ~ �3=2��3=2�n��


;�3=2��3=2�m��




� ~ �3=2��3=2�n�;�3=2��3=2�m�

�O���3=2� �O���3=2�

up to terms which can be ignored for large � and �. This is
sufficient for a straightforward analysis in asymptotic re-
gimes. Moreover, higher order terms in the above equation
come with higher derivatives of the wave function in the
form

 

~ 0

�3=2
�
�3=2‘3

P

p3=2
c

~ 0 / �i
��‘2

P�
2

p2
c

ĉ ~ 

since q � 1=2 compared to the discussion in Sec. III A.
Because of the extra factors of @ (or even higher powers in
further terms in the Taylor expansion) any additional term
adding to the constant shift of ~ �3=2;�3=2 can be attributed to
quantum corrections in a semiclassical limit. Accordingly,
such terms can be avoided altogether by a judicious choice
of the initial factor ordering of operators.

C. Number of vertices proportional to extension

Geometrically more intuitive, and as we will see below
dynamically more stable, is the case in which the number
of vertices in each direction is proportional to the extension
of that direction measured with the triad itself. This gives
N # /

������
j�j

p
and N x / �=

������
j�j

p
, using the classical cotriad

(4). (One need not worry about the inverse � since the
effective treatment of lattice refinements pursued here is
not valid close to a classical singularity where an already
small lattice with a few vertices changes. Singularities in
general can only be discussed by a direct analysis of the
resulting difference operators. Since only a few recurrence
steps are necessary to probe the scheme around a classical
singularity, equidistant difference operators are not essen-
tial in this regime. They are more useful in semiclassical
regimes where one aims to probe long evolution times as in
the examples below. Similar remarks apply to the horizon
at � � 0 which, although a classical region for large mass
parameters, presents a boundary to the homogeneous
model used for the Schwarzschild interior.) The behavior
is thus more complicated than in the first case since the
step-size of any of the two independent variables depends
on the other variable, too. First, it is easy to see, as before
with quadratic variables, that the volume label ! � �

������
j�j

p
changes (approximately) equidistantly with each iteration
step which is not equidistant for the basic variables � and
�. But it is impossible to find a second, independent
quantity which does so, too. In fact, such a quantity
f��; �� would have to solve two partial differential equa-
tions in order to ensure that

 f��� n�N #��; ��
�1; ��m�N x��; ��

�1� � f��; ��

� n�N #��; ���1@�f��; ��

�m�N x��; ��
�1@�f��; ��

changes only by a constant independent of � and �. This
implies @�f��; �� /

������
j�j

p
and @�f��; �� / �=

������
j�j

p
whose

only solution is f��; �� / �
������
j�j

p
which is the volume !.

We thus have to deal with nonequidistant partial differ-
ence equations in this case which in general can be com-
plicated. A possible procedure to avoid this is to split the
iteration in two steps since an ordinary difference equation
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can always be made equidistant as above (cancelling quantum corrections by reordering). We first transform � to the
volume variable ! which gives, up to quantum corrections, constant iteration steps for this variable. With the second
variable still present, a higher order difference equation

 

C0��;!2=�2��1� 2�=!�� ��1�4�=!�;!�4� � C���;!2=�2� ��1�2�=!�;!�3� � C���;!2=�2� ��1�2�=!�;!��

� 2C0��;!
2=�2��1� 2�2�2�2=!2�� �;! � C���;!

2=�2� ��1�2�=!�;!�� � C���;!
2=�2� ��1�2�=!�;!�3�

� C0��;!
2=�2��1� 2�=!�� ��1�4�=!�;!�4� � 0 (26)

results with

 C0��;!2=�2� �
!
�

� �������������
1�

�
!

s
�

�������������
1�

�
!

s �
(27)

 C	��;!
2=�2� � 2�

�
1�

���������������
1	

2�
!

s �
(28)

derived from the original coefficients (24). The structure of
this difference equation is quite different from the original
one: not only is it of higher order, but now only one value
of the wave function appears at each level of!, rather than
combinations of values at different values of �. Note also
that only the coefficient of the unshifted  �;! depends on
�. This form of the difference equation is, however, a
consequence of the additional rotational symmetry and is
not realized in this form for fully anisotropic Bianchi
models as we will see below.

Proceeding with this specific case, we have to look at
wave functions evaluated at shifted positions ��1�
m�=!� with integer m. At fixed ! � !0, we are thus
evaluating the wave function at values of � multiplied
with a constant, instead of being shifted by a constant as
in an equidistant difference equation. This suggests to use
the logarithm of � instead of � itself as an independent
variable, which is indeed the result of the general proce-
dure. After having transformed from � to ! already, we
have to use � as a function of� and! in the vertex number
N # , which is ���;!� � �!=��2 after using ! � �

���
�
p

.
Thus, N #��; ���;!�� �

����������������
���;!�

p
� !=� is no longer a

positive power of the independent variable �, and we will
have to be more careful in the interpretation of correction
terms after performing the transformation. (The lattice is
coarsened with increasing anisotropy at constant volume.)
Naively applying the results of Sec. III A to q � �1 would
suggest that corrections come with inverse powers of
@ which would certainly be damaging for the correct
classical limit. However, the factors change due to the
presence of the additional variable !0 even though it is
treated as a constant. We have N 0

#=N
2
# � �1=!0 �

���‘2
P=2�3=2=V0 in terms of the dimensionful volume V,

while it would just be a constant �1 without the presence
of !. The additional factor of @3=2 ensures that corrections

come with positive powers of @ for the correct classical
limit to be realized.

For any !0, we thus transform ~ ��1�m�=!0�
to equidis-

tant form by using ~~ ~� � ~ �� ~�� with ~���� � log�. This
transformation is possible since the second label !0 is now
treated as a constant, rather than an independent variable of
a partial difference equation. (Recall that for the type of
difference equation discussed here there is only one vari-
able, the volume, which is equidistant under all of the
original discrete steps.) Despite negative powers of some
variables in the vertex numbers, we have the correct clas-
sical limit in the presence of !. As before, the transforma-
tion is exact up to higher order terms which are quantum
and higher order curvature corrections. Defining the origi-
nal constraint operator ordering implicitly by the require-
ment that all those terms are cancelled allows us to work
with an equidistant difference equation.

D. Bianchi models

As mentioned before, the transformed difference equa-
tion does not become higher order for fully anisotropic
Bianchi models. In this case, we have three independent
flux labels �I, I � 1, 2, 3, and vertex numbers N I. Using
vertex numbers proportional to the spatial extensions
for each direction gives N 1 �

���������������������
�2�3=�1

p
, N 2 ����������������������

�1�3=�2

p
, and N 3 �

���������������������
�1�2=�3

p
. As in the difference

equation for the Schwarzschild interior, the difference
equation for Bianchi models [23] uses values of the wave
function of the form  �1�2�=N 1;�2�2�=N 2;�3

. One can

again see easily that the volume ! �
���������������������
j�1�2�3j

p
behaves

equidistantly under the increments,

 !��1 � 2�=N 1; �2 � 2�=N 2; �3�

�

������������������������������������������������������������������������������������
�1 � 2�

������������
�1

�2�3

s ��
�2 � 2�

������������
�2

�1�3

s �
�3

vuut
�

������������������������������������������������������������������
�1�2�3 � 4�

������������������
�1�2�3
p

� 4�2
q

� !� 2��O��2�:

The leading order term of the difference equation in !
results from a combination
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 C1 �1;�2�2�=N 2;�3�2�=N 3
� C2 �1�2�=N 1;�2;�3�2�=N 3

� C3 �1�2�=N 1;�2�2�=N 2;�3

� C1
~ �1;�2�2�=N 2;!�2� � C2

~ �1�2�=N 1;�2;!�2� � C3
~ �1�2�=N 1;�2�2�=N 2;!�2�

� C1
~ �1;�2�1�2�=!�;!�2� � C2

~ �1�1�2�=!�;�2;!�2� � C3
~ �1�1�2�=!�;�2�1�2�=!�;!�2� �: Ĉ� ~ !�2���1; �2�

where we used 1=N 1 �
���������������������
�1=�2�3

p
� �1=! and defined

the operator Ĉ� acting on the dependence of  on �1 and
�2. Thus, unlike for the Schwarzschild interior the differ-
ence equation does not become higher order in !, and the
highest order term does have a difference operator coeffi-
cient in the remaining independent variables.

The recurrence proceeds as follows: We have a partial
difference equation of the form

 Ĉ� ~ !�2���1; �2� � Ĉ0
~ !��1; �2� � Ĉ� ~ !�2���1; �2�

with difference operators Ĉ	 and Ĉ0 acting on the depen-
dence on�1 and�2. In terms of initial data at two slices of
! we can solve recursively for Ĉ0

~ !��1; �2� �

Ĉ� ~ !�2���1; �2� �: 
��1; �2� and then, in each !
step, use boundary conditions to solve the ordinary differ-
ence equation

 Ĉ� ~ !�2���1; �2� � 
��1; �2�:

Although the operator Ĉ� itself is not equidistant, this
remaining ordinary difference equation can be transformed
to an equidistant one by transforming �1 and �2 as in
Sec. III A (using that ! is constant and fixed for this
equation at any recursion step). With �3��1; �2; !� �
!2=�1�2, we have lattice spacings N 1��1; �2; !� �
!=�1 and N 2��1; �2; !� � !=�2 in terms of ! which
are already independent of each other. The two remaining
variables �1 and �2 are thus transformed to equidistant
ones by taking their logarithms as encountered before.

Note the resemblance of the new variables, volume and
two logarithms as the metric components at constant vol-
ume, to Misner variables [40]. This observation may be of
interest in comparisons with Wheeler-DeWitt quantiza-
tions where Misner variables have often been used, making
the Wheeler-DeWitt equation hyperbolic.

IV. APPLICATION: STABILITY OF THE
SCHWARZSCHILD INTERIOR

Now that we have several possibilities for the lattice
spacings, we consider their effect on the solutions of the
Hamiltonian constraint. In particular, these solutions may
have undesirable properties reminiscent of numerical in-
stabilities, as it was indeed noticed for the original quan-
tization of the Schwarzschild interior in [29]. Also
problems in the presence of a positive cosmological con-
stant, described in the introduction, are of this type. Recall
that when one wishes to solve an ordinary differential
equation, for example, there are various discrete schemes
that ensure errors do not propagate as the number of time

steps increases. Here we are in the opposite situation—
instead of having the freedom to pick the discrete version
of a continuous equation, the discrete equation itself is
what is fundamental. Thus, like a badly chosen numerical
recipe, some choices of the functions N� and N# in the
constraint equation may quickly lead to solutions that are
out of control, and increase without bound. To test for this,
we will use a von Neumann stability analysis [29] on the
possible recursion relations. The essential idea is to treat
one of the relation parameters as an evolution parameter,
and decompose the rest in terms of orthogonal functions,
representing ‘‘spatial’’ modes of the solution. This will
give rise to a matrix that defines the evolution of the
solution; if the matrix eigenvalues are greater than unity
for a particular mode, that mode is unstable. In particular, a
relation

PM
k��M an�k n�k � 0 is equivalent to a vector

equation of the form ~vn � Q�n� ~vn�1, where the column
vector ~vn � � n�M;  n�M�1; 
 
 
 ;  n�M�1�

T . The evolu-
tion of an eigenvector ~w of the matrix Q�n� is given by
~wn � �w ~wn�1. Thus, when the size of the corresponding
eigenvalue j�wj> 1, the values in the sequence associated
to ~w will grow as well.

With this in mind, we consider the choices of Nx and N#
discussed previously, starting with the case Nx /

���
�
p

and
N# /

����
�
p

. In the large �, � limit for this choice, the
coefficients of the Hamiltonian constraint become

 C	��; �� � 4�

����
�
�

s
; C0��; �� �

�
�
:

In the asymptotic limit, the coefficients of the  �	2�=
���
�
p

;�

and  �;� terms go to C0��; ���. As we saw in Sec. III B,
we can choose a different set of variables in which the step-
sizes are constant (up to ordering of the operators).
Plugging these asymptotic values into the Hamiltonian
constraint, and changing variables to ~� � �3=2 and ~� �
�3=2 gives

 4~�� ~��2�;~��2� �  ~��2�;~��2� �  ~��2�;~��2�

�  ~��2�;~��2�� � ~�� ~��4�;~� � 2 ~�;~� �  ~��4�;~��

� 0:

Because all the step-sizes now are constants depending on
�, we define new parameters m, n such that ~� � 2m� and
~� � 2n�. Using m as our evolution parameter and n as the
spatial direction, we decompose the sequence as
 2m�;2n� � um exp�in!�. With this new function, the re-
cursion relation is written as
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 2in�un�1 � un�1� � �m sin��un � 0:

This is equivalent to the vector equation

 

un�1

un

� �
�
� im

2n sin� 1
1 0

� �
un
un�1

� �
� Q�m; n�

un
un�1

� �
:

(29)

The eigenvalues of the matrix Q are

 �	 �
�im sin�	

���������������������������������
16n2 �m2sin2�
p

4n
:

When the discriminant 16n2 �m2sin2�  0, then j�j � 1,
and the solution is stable; however, there are unstable
modes when 16n2 �m2sin2� < 0. The most unstable
mode corresponds to the choice sin� � 1, giving instabil-
ities in terms of the original variables when�> 2�. In this
regime, all solutions behave exponentially rather than os-
cillating. This region includes parts of the classical solu-
tions for the Schwarzschild interior even for values of �
and � for which one expects classical behavior to be valid.
The presence of instabilities implies, irrespective of the
physical inner product, that quantum solutions in those
regions cannot be wave packets following the classical
trajectory, and the correct classical limit is not guaranteed
for this quantization, which is analogous to that introduced
in [26,37].

The situation is different when we consider the choices
N# /

������
j�j

p
and Nx / �=

������
j�j

p
, where we will find a lack of

instability. There is no choice of variables that allows us to
asymptotically approach a constant spacing recursion rela-
tion, because of the mixing of the � and � variables in the
step-size functions. Thus, we will make the assumption
that in the large �, � limit, the solution does not change
much under step-sizes �N�1

x and �N�1
# . To see how this

affects the resulting stability of the solutions, we will look
at a simpler example first. If we start with the Fibonacci
relation R� �  ��1 �  � �  ��1 � 0, then the two inde-
pendent solutions are of the form  � � �, where  is
either the golden ratio 
 � �1�

���
5
p
�=2 or else �
�1.

Only the latter solution meets the criterion for stability,
since j
j> 1. When we change this relation to

 

~R � �  ��1=�n �  � �  ��1=�n � 0; (30)

with n � 1, the situation changes—only one of the two
solutions outlined above will solve the relation asymptoti-
cally. In particular, when we examine the error ~R� we get
when we plug � into the altered relation (30), i.e.,

 

~R � � ��1=�n � 1� �1=�n�;

the error is proportional to  � itself. As �!1, therefore,
the error for the  � 
 solution grows without bound,
while that of  � �
�1 goes to zero. Thus, we see in
this situation a relation between the stability and the
asymptotic behavior of a solution.

Returning to the Schwarzschild relation, in the large �,
� limit the coefficient functions of the recursion relation
are to leading order

 C	��; �� � 4�; C0��; �� �
�
�
:

In turn, the relation itself becomes
 

4� ��2�=
��
�
p
;��2�

��
�
p
=� �  ��2�=

��
�
p
;��2�

��
�
p
=�

�  ��2�=
��
�
p
;��2�

��
�
p
=� �  ��2�=

��
�
p
;��2�

��
�
p
=��

� � ��4�=
��
�
p
;� � 2 �;� �  ��4�=

��
�
p
;�� � 0:

From this point on, we assume that we have a solution to
this relation which does not vary greatly when, for ex-
ample, � is changed by 	2�=

����
�
p

, and similarly for �.
Both Nx and N# are constant to first order in shifts �	
2�N�1

x and similarly for �, in the asymptotic limit. Thus,
we assume that � � 2�N�1

x and � � 2�N�1
# are con-

stants, and use the scalings � � �m and � � �n. When
this is done, we get an equation similar to the case when
Nx /

���
�
p

and N# /
����
�
p

, but with constant coefficients;
this is the crucial difference that allows stable solutions
to the case here. Using the decomposition  �m;�n �
un exp�im��, we arrive at the matrix equation

 

un�1

un

� �
�
� i

2 sin� 1
1 0

� �
un
un�1

� �
: (31)

The matrix here has eigenvalues � with j�j � 1 for all m,
n, so the solution is stable. Using arguments as in the
Fibonacci example, the nonequidistant equation of the
second scheme is shown to be stable.

V. CONCLUSIONS

Following [9], we explicitly introduced loop quantum
cosmological models which take into account the full
lattice structure of inhomogeneous states. Such lattices
are in general refined by adding new vertices when acting
with the Hamiltonian constraint. Thus, also dynamical
equations even in homogeneous models should respect
this property. Several interesting features arose: One ob-
tains nonequidistant difference equations which, when im-
posed for functions on the whole real line as in isotropic
loop quantum cosmology, are more restrictive than equi-
distant ones due to the absence of superselected sectors.
This leaves the singularity issue unchanged since for this
one only needs to consider a few steps in the equation. But
a stability analysis of solutions and the verification of the
correct classical limit in all semiclassical regimes can be
more challenging. We presented an example for such an
analysis, but also introduced a procedure by which one can
transform the resulting equations to equidistant ones up to
quantum corrections, which is sufficient for a semiclassical
analysis. Interestingly, properties of the transformation
itself provide hints to the correct semiclassical behavior.
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As a side-result, we demonstrated that one particular ver-
sion of lattice refinements naturally gives rise to Misner-
type variables.

It is our understanding that this general procedure of
defining lattice refining models mostly agrees with the
intuition used specifically in isotropic models in [26],
and adapted to anisotropic ones in [37,41]. However, there
are some departures from what is assumed in [26]. First, we
do not see indications to refer to the area operator while the
area spectrum was not only used in [26] to fix the constant
� and the volume dependence of the step-size but in fact
provided the main motivation. Second, due to this motiva-
tion [26] presents a more narrow focus which from our
viewpoint corresponds to only one single refinement
model. It has a vertex number proportional to volume,
which is a limiting case not realized by known full Hamil-
tonian constraints, and puts special emphasis on geomet-
rical areas to determine the vertex number. Finally, com-
mutators for inverse volume operators are to be treated
differently from [26], taking into account a lattice refining
model which would not be possible in a purely homoge-
neous formulation. As shown in the Appendix, this en-
larges expected quantum corrections to the classical
functions.

We have discussed similar cases for illustration here, but
keep a more general viewpoint on the refinement as a
function of volume. A preliminary stability analysis for
the Schwarzschild interior, consistent with [42] indeed
suggests that a behavior different from what is suggested
in [26] is preferred, which indicates that models can pro-
vide tight conditions for the general analysis of quantum
dynamics. We emphasize that stability arguments as used
here are independent of physical inner product issues since
they refer to properties of general solutions. A general
analysis as started here allows detailed tests of the full
dynamics in manageable settings, which can verify the
self-consistency of the framework of loop quantum grav-
ity—or possibly point to limitations which need to be
better understood.
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APPENDIX A: INVERSE VOLUME TERMS IN
HOMOGENEOUS MODELS AND LATTICE

REFINEMENT

We have seen in this paper, following [9], that
Hamiltonian constraint operators with triad-dependent pa-
rameters in holonomies allow one to model lattice refine-

ments faithfully, with interesting results and some
improvements over the original nonrefining models.
However, as always there are also some features of inho-
mogeneous states and operators which are not present and
difficult to mimic in homogeneous models. Thus, even
models generalized in this way by allowing for lattice
refinement effects have to be interpreted with great care.
While qualitative effects can be investigated fruitfully to
test the full framework, there is no basis for drawing
quantitative conclusions. The prime example is that of
commutator terms which appear ubiquitously in composite
operators of loop quantum gravity, such as the coefficients
of difference equations or also matter Hamiltonians.

In the main construction of this paper we used holono-
mies associated with links of a lattice, rather than edges of
a fixed coordinate length. This allows us, effectively, to
take into account lattice refinements which change the
number of vertices. It applies to holonomies (16) along a
closed loop used to quantize curvature components which
determine the step-size of difference equations, but also to
the link holonomies used in commutators to quantize in-
verse triad components based on (14). What is not modeled
in homogeneous models is the fact that a lattice operator
makes use of the local volume V̂v at a given vertex vwhere
the commutator is acting, rather than the total volume V̂ �P
vV̂v of the whole box in which the lattice is embedded. In

a fully inhomogeneous setting the difference does not
matter since volume contributions from vertices not
touched by the edge used in a commutator drop out in
the end, �he; V̂� �

P
v2e�he; V̂v�. But in homogeneous

models there is a difference since volume contributions
from different vertices, in an exactly homogeneous setting,
are all identical. Thus, the total volume V �N Vv is the
number of vertices multiplied with the local volume Vv.
Then, �h; V̂v� rather than �h; V̂� is expected as the contri-
bution to constraint operators from the inhomogeneous
perspective. In homogeneous models as in [26], on the
other hand, �h; V̂� is more straightforward to use. We
now show that without corrections this would imply crucial
deviations from the inhomogeneous behavior.

It is easy to see that commutators differ depending on
whether the local or total volume is used. For simplicity of
the argument, we proceed with an isotropic situation where
V � jpj3=2 in terms of the basic isotropic densitized triad
component p. A local lattice flux, for a surface S intersect-
ing only a single link, would be � �

R
S d2y~p � ‘2

0p=L
2
0 �

p=N 2=3 for links of coordinate length ‘0, such that Vv �
j�j3=2 � jpj3=2=N is the local volume. (We again use a
coordinate box of size L2

0 and introduce rescaled flux
variables p � L2

0 ~p.) Isotropic states are spanned by
ei�c=2 where � 2 R is related to the triad eigenvalues by
p� � 4��‘2

P�=3. Using a link holonomy h� ei‘0 ~c=2 �

eic=2N 1=3
which as a multiplication operator increases� by

1=N 1=3, a commutator with the total volume will have
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eigenvalues of the form

 h�1�h; V̂� � V��� 1=N 1=3� � V��� 1=N 1=3�

� jp� 4��‘2
P=3N 1=3j3=2 � jp� 4��‘2

P=3N 1=3j3=2:

(A1)

If the local volume is used, on the other hand, we have to
refer to local edge labels �e � 3�=4��‘2

P, rather than
using the total p. Thus,
 

h�1
e �he; V̂v� � Vv��e � 1� � Vv��e � 1�

� j�� 4��‘2
P=3j3=2 � j�� 4��‘2

P=3j3=2

�N �1�jp� 4��‘2
PN

2=3=3j3=2

� jp� 4��‘2
PN

2=3=3j3=2�: (A2)

For large volume, p�N , both expressions give the
correct classical limit 3

2N
�1=3

�������
jpj

p
expected from

feic=2N1=3
; jpj3=2g. However, quantum corrections, i.e., de-

viations from this classical limit for finite p, are much
larger for the second version using the local volume as it
would occur in an inhomogeneous quantization. The
smooth classical function dV=dp in a Poisson bracket
appears in discretized form by the large step-size N2=3 in
(A2) rather than the small one N�1=3 in (A1). Perturbative
corrections, derived by Taylor expanding the difference
terms and keeping higher order corrections to the classical
expression, are thus larger. (This can have cosmological
implications [43– 45].) Nonperturbative effects as ob-
served for the inverse scale factor operator in isotropic
loop quantum cosmology which has an upper bound at
finite volume [46], start to arise for p�N 2=3 when the
local volume is used but only at the much smaller p�
N �1=3 for the total volume. Since only the local volume is

relevant for inhomogeneous quantizations, quantum cor-
rections from inverse volume operators can be large.

Unfortunately, this effect is more difficult to mimic in
exact homogeneous models unlike the behavior of holon-
omies under lattice refinements and has therefore been
overlooked in [26]. The connection components appearing
in holonomies can simply be divided by a function N of
triad components to implement shrinking edges due to
subdivision. For the volume itself it is not possible to use
a local version in a homogeneous model since, if we would
divide the total volume by the appropriate function of triad
components, only a constant would remain for an N
proportional to volume and the commutator would be
zero. The only way to have this effect faithfully imple-
mented in a homogeneous model is to use higher SU(2)
representations for holonomies in commutators but not for
holonomies used in the loop to quantize curvature compo-
nents. (This is not possible if one writes the constraint as a
single trace, tr�h�he�h

�1
e ; V̂��, but can easily be done using

the equivalent form tr��ih�� tr��ihe�h�1
e ; V̂��. We empha-

size that higher representations for commutators are advo-
cated here only in exactly homogeneous models to mimic
inhomogeneous effects. Fully inhomogeneous operators
usually need not refer to higher representations.) In a
representation of spin j, matrix elements of holonomies
contain exponentials exp�imc=2N 1=3� with �j � m � j,
which increases the shifts in volume labels resulting from
commutators. Resulting expressions for commutators can
be found in [47,48]. If the representation label j is of the
order N , effects as they result from lattice refinements and
using the local volume are correctly implemented.
Accordingly, corrections from inverse triad components
quantized through commutators are much larger than
they would otherwise be [49].
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