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I. INTRODUCTION

There are several aspects of the cosmological constant
problem. One of them is the dynamical nature of dark
energy, often parametrized by its equation of state p �
w�. This shall be referred to as the inverse cosmological
constant problem, in the sense that there are data to be
explained by a theoretical construct. A pure cosmological
constant corresponds to w � �1. This aspect is mainly
cosmological, and progress on it can hopefully be made by
refining the observational data, which nowadays seem to
strongly favor �� � 0:7, corresponding to a mass scale

 MDE � 10�12 GeV (1)

and w��1 [1].
Even if a dynamical component such as quintessence is

discovered that explains fully the acceleration of the
Universe, other problems remain. For example, it would
still not be understood why the vacuum energy due to
spontaneous symmetry breaking in quantum field theory
does not produce a much larger cosmological constant.
This shall be designated as the direct cosmological con-
stant problem, in the sense that it refers to an unfulfilled
theoretical prediction.

A drastic possibility is that the way spontaneous sym-
metry breaking occurs in quantum physics is not under-
stood at all. It has been suggested, in particular, by R. L.
Jaffe [2], that even the experimental confirmation of the
Casimir energy [3] should not be considered as a proof of
the existence of (zero point) vacuum energy in quantum
field theory. This seems to be an extreme viewpoint. A
clear experimental signal of vacuum energy as well as of
the strength of its gravitational coupling would be most
welcome.

As a matter of fact, even allegedly uncontroversial
breakings contribute to the problem. For instance, chiral
symmetry breaking due to the quark condensate yields a
contribution of the order of �QCD, which is 11 orders of
magnitude1 above the purported range of observed values
for the cosmological constant.

Turning again to the general aspects of the direct prob-
lem, the status is as follows. In order to not strongly
disagree with observations, there are essentially two pos-
sibilities: either there is a cancellation in such a way that
the low energy vacuum energy is very small (in natural
units) or else there is a modification of gravity such that
vacuum energy does not gravitate (or gravitates less than
ordinary matter). This viewpoint has been advocated, for
example, in [4], but the theories proposed there are badly
nonlocal. Still (as has also been hinted at by those authors)
there is an intriguing relationship between their approach
and unimodular theories in general which has not been
fully elucidated yet.

The purpose of the present work is to explore in some
detail a setting in which the relative weight of the vacuum
energy with respect to the kinetic energy can be tuned at
will, and indeed in an extreme case the vacuum energy
does not weigh at all. This will be done in a local theory
that is a minor modification of general relativity (GR), in
the sense that the gauge group is not the full set of general
coordinate transformations (GC) [which will be interpreted
in the active sense as diffeomorphisms spanning the group
Diff(M)], but rather those that enjoy unit Jacobian. These
particular transformations have been called unimodular
transformations, and in a preceding paper the name trans-
verse diffeomorphisms (TDiffs) spanning a subgroup
TDiff(M) has been used. Please refer to [5] where other
relevant references can also be found. To be specific,
transverse diffeomorphisms (TDiffs) in a spacetime mani-
fold whose points are described in a particular coordinate
chart by x��P�, � � 0; 1; . . . ; n� 1 are those diffeomor-
phisms

 x� ! y� (2)

such that the determinant of the Jacobian matrix equals
unity:

 D�y; x� � det
�
@y�

@x�

�
� 1: (3)

In the linearized approximation, the Diff is expressed
through a vector field

 y� � x� � ���x�; (4)
1Those figures get multiplied by a factor of four if the energy

density is the quantity to be compared.
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and the above mentioned condition is equivalent to

 @��� � 0: (5)

This is the reason of the qualifier transverse applied to
them. Usually tensor densities of weight w are defined in
such a way that they get an extra factor of the Jacobian to
the power w in the tensorial transformation law. For ex-
ample, a scalar density transforms as a one-dimensional
representation of Diff(M), namely,

 �0w�y� � �D�y; x��
w�w�x�: (6)

Whenever there is a metric (in the usual sense, a rank two
tensor and not a tensor density), the determinant g �
detg�� behaves as a scalar density of weight w � �2.

This means that as long as we assume that TDiff is the
basic symmetry of nature, we do not distinguish tensor
densities among themselves. In particular, given a certain
scalar field, ��x�, all dressed fields f�g���x� also behave
as scalars under TDiff.

Vector fields inducing TDiffs can then be represented as

 �� � ���2...�n@�2
��3...�n

� ���2...�nr�2
��3...�n

; (7)

where ��1�2...�n is the contravariant Levi-Civita tensor, and
��3...�n

is completely antisymmetric, i.e., they are the
components of a �n� 3�-form.

II. SOME SIMPLE MODELS

We shall study a particular class of theories which enjoy
TDiff (as opposed to full Diff) invariance. As explained
before, we can dress the gravitational and the matter sec-
tors with different functions of the determinant of the
metric, namely,

 S �
Z
dnx

�
�

1

2�2 f�g�R� fm�g�Lm�g��;�
�wi�
i ; g�

�
: (8)

In this formula, �2 � 8	Gn, Gn being the n-dimensional
Newton’s constant.�i (i � 1 . . .N) represent matter fields,
which enjoy arbitrary weights wi on top of their own
transformation properties under the group Diff(M). The
determinant of the metric, g, is counted as a matter field
with w � �2 for those purposes.

The simplest instance posits Lm as a full scalar, which
will be assumed by simplicity not to depend on derivatives
of the metric (so that all matter fields are minimally
coupled). More general terms involving @�g are not in-
cluded for the time being since they introduce additional
unnecessary complications. That is, the Lagrangian to be
considered in the present paper is

 S �
Z
dnx

�
�

1

2�2 f�g�R� fm�g�Lm�g��;�i�

�
(9)

(with all weights wi � 0).
It should be remarked from the start than this action

principle is not fully covariant; if it is assumed valid in a

certain reference system (RS), in general coordinates it
reads

 S �
Z
dnx

1

C�x�

�
�

1

2�2 f�g�x�C�x�
2�R�x�

� fm�g�x�C�x�
2�Lm�g���x�; �i�x��

�
; (10)

where C�x� � D�x; �x� is the determinant of the Jacobian
matrix with respect to some privileged original coordinates
denoted here by �x. The field C�x� can also be viewed as the
determinant of the four vector fields A�

� ���, constructed from
the derivatives of the coordinate functions with respect to
the fiducial functions �x��x�. As long as the field C�x� is
kept in the Lagrangian, formal Diff invariance is ensured
by the chain property

 C�y� � det
@y
@ �x
� det

@y
@x

det
@x
@ �x
� D�y; x�C�x�; (11)

i.e., the composite field

 g�x�C�x�2 (12)

is a gauge invariant construct under the gauge group
Diff(M). This type of field is sometimes [6] called a
compensator field. A notorious example is the
Stueckelberg field which renders gauge invariant massive
electrodynamics. The original theory can always be recov-
ered in the analogue of the unitary gauge

 C�x� � 1: (13)

A. The source of gravity

There are several energy-momentum tensors of interest
in this case. Actually, they are in general not true tensors
under GC, only densities. The true energy-momentum
tensor (that is, the source of the gravitational equations), is

 T�� �

Sm

g��

�




g��
Z
dnxfmLm: (14)

In order to study its conservation law, let us perform a
TDiff (cf. [5]), under which

 
g�� � L���g�� � ��@�g�� � g��@��� � g��@���:

(15)

The use of covariant derivatives is best avoided for the time
being. The fact that the quantities considered are not
tensors under Diff has already been mentioned, and this
can obscure the reasoning. Performing a TDiff on the
matter action,
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 0 � 
T�diffSm

�
Z
dnx����2...�n@�2

��3...�n
@�g��

� g��@�����2...�n@�2
��3...�n

�

� g��@���
��2...�n@�2

��3...�n
��T��: (16)

Taking into account that ��1...�n is independent of the
metric, and denoting

 !�� � ����3...�n��3...�n
; (17)

the aforementioned condition is equivalent to

 0 �
Z
dnx!����@�g��@�T

�� � 2@�@�T�
��: (18)

This means that

 @�g��@�T�� � @�g��@�T��

� 2�@�@�T�
� � @�@�T�

��; (19)

which does imply

 @�T�
� �

1

2
@�g��T

�� � @��; (20)

where � is an arbitrary function. Using the well-known
formula (valid for any symmetric tensor)2

 r�S�� �
1������
jgj

p @��
������
jgj

q
S��� �

1

2
@�g��S��; (21)

this can be rewritten as

 r�

�T��������
jgj

p �
�

1������
jgj

p @�� (22)

in the understanding that the covariant derivative is to be
taken as if T�� were a true tensor. Note in passing that (19)
also implies

 @�T�� �
1

2
g��@�T�� � @��0: (23)

And the difference between both arbitrary functions is just
the trace of the energy-momentum tensor

 �0 �� � g��T
�� � T: (24)

On the other hand, it is clear from its definition that

 T�� � fm

Lm

g��

� gf0mLmg��: (25)

We have used the abbreviation 
Lm

g�� instead of the most

accurate


R
dnxLm

g�� . It is interesting to study the nature of this

tensor since as we have seen it is not possible to deduce its
covariant conservation using only invariance under TDiffs.

B. Energy-momentum tensors

The label energy-momentum tensor for the above con-
struct (25) can indeed be questioned for very good reasons.
It is a metric (Rosenfeld) tensor which is not conserved,
and consequently, it does not reduce in flat space to the
canonical one, or to its equivalent Belinfante form (cf. [8]
for a lucid discussion of the standard situation). That is, the
tensor (25) does not convey the Noether current corre-
sponding to translation invariance. In order to illustrate
this, let us consider the simplest example, namely, a real
scalar field without coupling to the determinant of the
metric, i.e., fm�g� � 1,

 Sm �
Z
dnxLm �

Z
dnx

1

2
g��@��@��: (26)

The energy-momentum tensor as defined before is

 T�� �
1

2
@��@��: (27)

Using the equation of motion (EM) of the scalar

 


Sm

�

� @��g
��@��� � 0; (28)

it can be shown that

 

������
jgj

q
r�

�T��������
jgj

p �
�

1

2
r�Lm; (29)

conveying that fact that this energy-momentum is not
covariantly conserved, and thus it cannot act as a consistent
source of Einstein’s equations. What is worse, T�� does not
reduce in flat space to the canonical one

 Tcan
�� � @��@���

1

2
Lm��; (30)

which is well-known to be conserved. This does not hap-
pen of course with the usual covariant Lagrangian

 Scov �
Z
dnx

������
jgj

q 1

2
g��@��@�� (31)

whose energy-momentum tensor

 TGR
�� �

2������
jgj

p �
1

2

������
jgj

q
@��@���

1

4

������
jgj

q
g��g��@��@��

�
(32)

is both covariantly conserved thanks to the new EM and
reduces to the canonical one in flat space.

C. The GR template

It is instructive to check all this setup applying it to the
case of general relativity. On general grounds Diff(M)
invariance forces f � fm �

������
jgj

p
. The corresponding

energy-momentum tensor is then

 TDiff
�� �

������
jgj

q �

Lm

g��

�
1

2
Lmg��

�
: (33)2This formula is attributed by Eisenhart in [7] to none other

than Einstein himself (1916).
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As an exercise we will derive the well-known conservation
of the GR energy-momentum tensor with our present
techniques. Performing a Diff on the matter action and
demanding it to be stationary,

 0 � 
DiffS

�
Z
dnx���@�g�� � g��@��� � g��@����T

��
Diff : (34)

Conveying the fact that

 0 � @�g��T
��
�Diff� � @�T

�Diff��
� � @�T��Diff��

� �2
������
jgj

q
r�

�
T�Diff��
� ������
jgj

p �
: (35)

Please note that precisely for this reason the energy-
momentum tensor is usually defined without the

������
jgj

p
factor (and with a conventional factor of 2 as well),

 TGR
�� �

2������
jgj

p TDiff
�� : (36)

III. THE GRAVITATIONAL EQUATIONS OF
MOTION

Once we have discussed in detail the source of gravity in
these models, let us turn our attention to the complete
equation. Including in the Einstein-Hilbert sector an arbi-
trary weight f�g�, the gravitational equation of motion
reads
 


S

g��

� �
1

2�2

�
fR�� � gf

0Rg�� �
������
jgj

q
�r��r��

� r2g���
f������
jgj

p �
� T�� � 0: (37)

It is worth stressing that the EM (37) is not a tensor
equation with respect to GC. This means that it must be
solved in one RS, and the results in another RS are not the
same if the transformation from one to the other is not a
TDiff. This poses interesting problems of principle, many
of them already discussed some time ago (cf. for example,
the discussion of harmonic coordinates in [9]).3

In the absence of matter (implying T�� � 0 since we
have not considered a cosmological constant term), the
trace reads

 

�
1� n

gf0

f

�
R � �1� n�

������
jgj

p
f
r2 f������

jgj
p : (41)

In the simplest case that f �
������
jgj

p
the equation is tensorial

in character and coincides with the GR case. This auto-
matically implies Ricci flatness, supposing n � 2.
Concerning the general case, f �

������
jgj

p
, in the absence of

sources from the preceding trace equation we are not able
to deduce that the scalar curvature vanishes. This is generi-
cally incompatible with the well-known solar system test
of GR and is the main reason why we consider f �

������
jgj

p
in

the following. The equation with sources is then

 G�� �
2�2������
jgj

p T��: (42)

A small paradox can be now disposed of. Let us assume,
as seems obvious, that G�� is really a tensor, the Einstein
tensor. Then it must obey Bianchi identities, which ensure
that

 r�G
�
� � 0; (43)

so from the previous Eq. (42)4

 r�

�T��������
jgj

p �
� 0; (48)

precisely the same integrability condition that appears in
GR, where Diff invariance combined with the EM of
matter imply covariant conservation of the energy-
momentum tensor independently of Bianchi identities.

3It is worth noticing that when

 f � fm � jgj
1=n (38)

the EM are somewhat similar to Einstein’s 1919 traceless equa-
tions (cf. [5]), namely,

 R�� �
1

n
Rg�� � jgj�n�2�=2n�r��r�� � r

2g���jgj�2�n�=2n

� 2�2jgj�1=nT��: (39)

The second member is not automatically tracefree; consistency
demands that

 �1� n�
������
jgj

q
r2jgj��n�2�=2 � 2�2T � 0: (40)

4When the true physical invariance is restricted TDiff, the
same argument we used to arrive at (22) leads to

 r�

�E��������
jgj

p �
�

1������
jgj

p @��; (44)

where

 E�
� � f�g�R�

� � gf0R
�� �
������
jgj

q
�r�r� �r

2
���
f������
jgj

p (45)

is such that, when f �
������
jgj

p
, it reduces to the Einstein tensor

multiplied by the square root of the determinant of the metric:

 E�� �
������
jgj

q
G�

� (46)

and the gravitational equations of motion simply demand that

 @���� 2�2�� � 0: (47)

It is nevertheless true that when f �
������
jgj

p
there is an enhanced

Diff symmetry in the pure gravitational sector, so that it is to be
expected that Bianchi identities remain valid.
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From the TDiff viewpoint this is an extra condition that
should be added for consistency but one that looks a bit
mysterious.

The role of the compensators

In order to clarify the situation, let us consider the
formally invariant theory defined with the compensator
field. Introducing the compensator C�x� changes the matter
Lagrangian in the simplest case of a scalar to

 Sm �
Z dnx
C�x�

fm�g�x�C�x�2�Lm; (49)

and the EM for the compensator is simply

 


Sm

C�x�

� �
1

C2 fmLm �
1

C
@fm
@C

Lm � 0; (50)

the only solutions being either Lm � 0 or fm � C. This last
solution implies fm �

������
jgj

p
, as one should expect because

it corresponds to Diff invariance and the compensator is
just looking for it. If we do not want to impose Diff
invariance from the very beginning, we are forced to
impose the constraint

 Lm � 0: (51)

The meaning of this is that in this sector, the TDiff energy-
momentum tensor is a consistent source of Einstein’s
equations: the constraint ensures the integrability condition
(48) holds, although it is somewhat stricter than necessary
[see (29)]. In any case, from this more elegant point of
view, conservation of the energy-momentum tensor in the
sense of (48) is just a consequence of compensator
dynamics.

Similar results are obtained when the model is general-
ized by allowing matter fields ��w� to become scalar den-
sities of weight w and considering Diff invariant
Lagrangians

 Sm �
Z
dnx

1

C�x�
fm�g�x�C�x�

2�Lm��
�w�C�x��w�: (52)

The EM for the compensator now takes the form

 


Sm

C�x�

� �
1

C2 fmLm �
1

C
@fm
@C

Lm �
1

C
fm

Lm

C
� 0:

(53)

But given the functional dependence of Lm on the combi-
nation ��w�C�x��w it is easy to convince oneself that

 


Lm

C

/

Lm

��w�

: (54)

Therefore, (50) is recovered under the assumption that the
scalar field verifies its EM.

IV. TDIFF FRIEDMANN MODELS

A. Weight one

Let us study in detail the extreme case in which the
matter Lagrangian does not couple to the determinant of
the metric. This means fm � 1 in our previous notation.

Let us stress that we do not expect these models to be
realistic. In practice fm � fg. Our aim in this paragraph is a
sort of existence proof; i.e., to show that it is possible to
build theoretically consistent models in the unimodular
framework in which the potential energy does not weigh
at all, and consequently, models that solve the direct cos-
mological constant problem.

The simplest example is again a minimally coupled
scalar field:

 Lm �
1

2
g��@��@��� V���; (55)

where V��� is a polynomial representing the potential
energy, and which does not contribute to the gravitational
EM (this is the main motivation for assuming fm � 1).
This point is so important that it is worth emphasizing: not
all energy is a source of the gravitational field in TDiff
theories, but only the kinetic part of it.

The preceding paragraph would be exactly true were it
not for the compensators. Actually, all energy interacts
with the gravitational field through compensator exchange.
This point shall be hopefully clarified in the sequel.

In the final section of this paper we will introduce a
framework which allows in principle an experimental test
of this hypothesis and, in general, of the strength of the
coupling of the potential energy to the gravitational field.

The energy-momentum tensor reads

 T�� �
1

2
@��@��: (56)

This means that it is not only the constant piece, but rather
the full potential energy density that does not generate
gravitational field. The matter EM are

 @��g
��@��� � V

0��� � 0: (57)

Plus the EM for the compensator, which is again

 Lm � 0: (58)

This equation is the one that feeds back the potential
energy into the gravitational equations, although in a
very unusual way.

B. Friedmann

In order to get an idea of the simplest cosmological
consequences of the TDiff viewpoint, it would be conve-
nient to assume a (spatially) flat Friedmann metric:

 ds2 � dt2 � R�t�2
ijdxidxj

� dt2 � R�t�2�dx2 � dy2 � dz2�: (59)

UNIMODULAR COSMOLOGY AND THE WEIGHT OF ENERGY PHYSICAL REVIEW D 76, 064013 (2007)

064013-5



This particular form of the metric is written, however, in
the so-called synchronous gauge

 g00 � 1; g0i � 0 (60)

(defining what are known as Robertson-Walker5 coordi-
nates) which is not accessible in general using TDiffs only,
since we have now less gauge freedom than in general
relativity because of the transversality condition, or equiv-
alently we have already partially fixed the gauge by choos-
ing C�x� � 1.

The simplest form of a metric that can be reached with
TDiff is

 ds2 � a�t�dt2 � R�t�2
ijdx
idxj

� a�t�dt2 � R�t�2�dx2 � dy2 � dz2�: (61)

The corresponding Einstein tensor is

 G00 � 3
_R2

R2 � 3H�t�2;

Gij �
_a _RR� 2a �RR� a _R2

a2 
ij:

(62)

So the spacelike sector of Einstein’s equations then imply
that

 @i� � 0; (63)

and the gravitational equations take the simple form (using
the compensator EM)
 

3H2 �
�2

a1=2R3
_�2 �

2a1=2�2

R3 V���;

3aH2 � 2a _H � _aH � 0:
(64)

Since we have now an additional constraint imposed by the
EM of the compensator, or in other language by the con-
servation of the energy-momentum tensor, it is interesting
to check the compatibility of the whole system of equa-
tions. The usual counting of degrees of freedom in GR is as
follows. In four dimensions the metric has 10 independent
components, 4 of which can be gauge fixed. Then one has 6
variables for 10 Einstein’s equations, but again using the
Bianchi identities it is certain that four of them are combi-
nations of the others, so finally one is left with 6 equations
for 6 variables.

When we consider a TDiff model such as the one above,
the freedom to fix the gauge is smaller so that we have to
determine 7 components of the metric. The Bianchi iden-
tities are nevertheless satisfied and then there are 6
Einstein’s equations. The consistency is saved finally by
the EM of the compensator that provides the 7th equation
for the 7 variables. Let us prove this assertion in the

particular model considered, i.e., the scalar Lagrangian
(55) with the metric (61). Conservation of the energy-
momentum tensor forces the Lagrangian to be a constant,
so differentiating (55) with respect to time,

 

1

2

d
dt

� _�2

a

�
� V 0��� _� � 0: (65)

Using the EM of the scalar to eliminate the potential, after
some straightforward algebra we get the condition (sup-
posing _� � 0)

 

��
_�
�

3

4

_a
a
: (66)

On the other hand, the first of the Einstein’s equations in
(64) implies

 

��
_�
�

_H
H
�

3

2

_R
R
�

1

4

_a
a
: (67)

Finally, equating these last two expressions allows us to
derive the second Einstein’s equation in (64). We conclude
that the system of equations must be compatible and the
three functions (��t�, a�t�, R�t�) can be determined. This
same consistency is not found if we choose a�t� � 1 from
the beginning,6 except in the particular case in which the
potential is a constant, and this will be related with the
impossibility to get exponential expansion, as we will see.

It is easy to find the explicit solution in the absence of
potential. If the matter Lagrangian is fixed to be a constant
Lm � L (the freedom to fix the constant is lost when the
EM for the compensator is used so that L � 0), then the
component of the metric a � a0 is also constant and the
scale factor goes as

 H�t� �
H0

1� 3
2H0t

) R�t� � R0

�
1�

3

2
H0t

�
2=3
; (68)

where R3
0 �

2a1=2
0 �2L
3H2

0
. The time evolution of the scalar is

linear and given by

 ��t� � �0 �
�����������
2La0

p
t: (69)

Once we choose to impose the constraint L � 0 the only
solution if the potential vanishes is a constant field with
null Hubble constant, but a remains undetermined.

C. The GR template

These equations ought to be contrasted with the standard
GR ones, where the synchronous gauge a � 1 is fully
accessible. The symmetry of the situation enforces again
@i� � 0 so that for a general potential they read

5The use of a specific set of Robertson-Walker coordinates is
not as innocent as it seems, and physics does depend on this
choice to a certain extent in the present framework.

6The inconsistency is between conservation of the energy-
momentum tensor, or compensator’s EM, and the scalar EM.
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3H�t�2 � �2

�
1

2
_�2 � V���

�
;

2 _H�t� � 3H�t�2 � ��2

�
1

2
_�2 � V���

�
;

(70)

together with the GR equation of motion for the scalar field

 

��� 3H�t� _�� V 0��� � 0: (71)

When the potential vanishes, the system is easy to solve
giving a Hubble constant

 H�t� �
H0

1� 3H0t
) R�t� � R0�1� 3H0t�

1=3 (72)

and a time dependence for the scalar field

 ��t� � �0 �

���
6
p

3�
log�1� 3H0t�: (73)

On the other hand, solutions that describe an exponen-
tially expanding universe are very interesting phenomeno-
logically. It is well-known what is the origin of exponential
expansion in GR: a positive constant energy density V0

yields

 R�t� � R0e
�
����������
�V0=3�
p

t: (74)

D. No TDiff exponential expansion

It is of interest to examine now the conditions under
which there is exponential expansion in TDiff cosmology;
that is, conditions for which TDiff behaves physically in a
way similar to GR with a cosmological constant. When
_H � 0 but H � H0 itself is nonvanishing,

 R � R0e
H0t; (75)

and the second of the Eqs. (64) yields

 a � a0e3H0t: (76)

We can immediately solve for the scalar

 ��t� � �0 �
4

9�
�3a1=2

0 R3
0�

1=2�e�9=4�H0t � 1�; (77)

which corresponds (using the compensator’s EM) to a
potential

 V��� �
3H2

0R
3
0

2�2a1=2
0

�
1�

9�

4�3a1=2
0 R3

0�
1=2
����0�

�
2=3
: (78)

This expansion is, however, not exponential with respect to
comoving proper time defined by

 dT � a1=2dt: (79)

In order for the expansion to be exponential in T, it would
have to obey

 

dR

a1=2dt
� RH0: (80)

This yields in the second equation of the set (64)

 3a2H2
0 � 0: (81)

This means that there is no truly (proper time) exponential
expansion in this class of TDiff cosmologies, so that the
direct cosmological constant problem appears in a new
light: not only a constant term in the potential does not
gravitate, but there is no way to get the gravitational field
which is produced by such a term in GR.

E. Adjustable coupling gravity/potential energy

Let us consider the general case in which the matter
Lagrangian (55) is coupled to the determinant of the metric
to an arbitrary power, i.e., the action takes the form

 Sm �
Z
dnxgb

�
1

2
g��@��@��� V���

�
: (82)

This framework allows us to search for solutions that
depend on the strength of the coupling between matter
and the determinant of the metric parametrized in b and
at the end hopefully measurable physical consequences.

Conservation of the energy-momentum tensor in the
sense of (48) forces the Lagrangian to verify the integra-
bility condition

 gb�1=2

�
1

2
� b

�
@�Lm � bLm@�g

b�1=2; (83)

where we have used the scalar equation of motion

 @��gbg��@��� � gbV 0 � 0: (84)

The previous equation is less restrictive than the one
coming from the compensator EM, as we have already
mentioned, but is also less motivated. Note that it is iden-
tically verified for the GR case which corresponds to b �
1
2 . The condition of a constant Lagrangian corresponding to
b � 0, i.e., the model studied before, is also reproduced.
Using these last two equations together with the timelike
sector of Einstein’s equations

 3H2 � 2�2ab�1=2R6�b�1=2�a
�
�1� b�

_�2

2a
� bV

�
; (85)

one can reproduce in a similar way as before the spacelike
Einstein’s equation

 _aH � 3aH2 � 2a _H � 2b�2ab�1=2R6�b�1=2�a2

� _�2

2a
� V

�
(86)

under the assumption b � 1, 1
2 . The GR limit has been

studied in the previous subsection, and the case b � 1 is
somehow special. Apart of these subtleties, the consistency
of the system of equations is ensured. In fact, in the
absence of potential it is easy to find the solution as a
function of b
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 H�t� �
H0

1� 3�b�1=2�
�b�1� H0t

) R�t�

� R0

�
1�

3�b� 1
2�

�b� 1�
H0t

�
�b�1�=3�b�1=2�

: (87)

Moreover, the temporal component of the metric is no
longer a constant but

 a�t� � a0

�
1�

3�b� 1
2�

�b� 1�
H0t

�
2b=��1=2��b�

; (88)

and the scalar goes linearly in time independently of b

 ��t� � �0 �

���������������������
3

�2�1� b�

s
H0a

1=2��1=2��b�
0 R3��1=2��b�

0 t: (89)

V. CONCLUSIONS

A family of models has been studied with slightly
smaller gauge symmetry than the full set of general coor-
dinate transformations of general relativity. Namely, they
enjoy symmetry under unimodular transformations, that is,
diffeomorphisms with unit determinant of the Jacobian
matrix. They generate a group that is called TDiff(M).

In some simplified TDiff cosmological models it has
been found that exponential expanding solutions are in-
consistent. This seems to alleviate the direct problem of the
cosmological constant.

The main reason, however, why those solutions are
physically interesting is that they allow us to tune, in a
precise sense, the relative weight of the kinetic and poten-
tial energy. There are models, in particular, in which the
potential energy (and a fortiori the vacuum energy) does
not couple to the gravitational field, so that it appears that it
does not weigh at all.7 This provides a framework to test
the gravity/potential energy coupling, which violates the
equivalence principle inasmuch as it is different from the
gravity/ kinetic energy coupling (cf. Damour’s contribu-
tion in [10]). Experiments are difficult but perhaps not
impossible (weighing the Casimir energy?).

The vacuum gravitational equations for the TDiff mod-
els studied in this paper are exactly the same as the GR

ones, so that all solar systems tests are also fulfilled. There
might be some subtle points with the derivation of the
binary pulsar tests [11] worth a detailed study.

Let us finally discuss if this framework could alter the
results of an Eötvös type experiment. If a WKB expansion
is performed [12] in the EM for the scalar field

 � � e
i
�

P
�n�n ; (90)

then, to dominant order (1=�2), and defining k� � @��0,
the mass shell condition

 k2 � m2 (91)

is recovered, as well as the geodesic equation in the form

 k�r�k� � 0: (92)

All this is quite similar to the GR template. The subtle
differences in the coupling to the gravitational field in the
scalar EM do not appear to this order in the WKB expan-
sion. The physical meaning of this result is that unimodular
cosmology predicts exactly the same results as GR for free
falling of test bodies (to which refer current experiments on
the equivalence principle).

Nevertheless, it has been claimed in [13] that the huge
body of data on the Eötvös experiment for different sub-
stances puts constraints (barring accidental cancellations)
on the possible violations of the equivalence principle on
the potential energy (less than 10�10) and the kinetic
energy separately (less than 10�7). This then puts corre-
sponding constraints on the ratio fm

fg
. Hypothetical positive

results could be interpreted in the framework of our
formalism.
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ENRIQUE ÁLVAREZ AND ANTÓN F. FAEDO PHYSICAL REVIEW D 76, 064013 (2007)

064013-8



Frontiers in Physics 58, 1 (1983).
[7] L. P. Eisenhart, Riemannian Geometry (Princeton

University Press, Princeton, NJ, 1964).
[8] T. Ortin, Gravity and strings (Cambridge University Press,

Cambridge, England, 2004).
[9] V. Fock, The Theory of Space Time and Gravitation

(Pergamon, New York, 1959).

[10] W. M. Yao et al. (Particle Data Group), J. Phys. G 33, 1
(2006).

[11] J. M. Weisberg and J. H. Taylor, arXiv:astro-ph/0407149.
[12] E. Alvarez and J. Conde, Mod. Phys. Lett. A 17, 413

(2002).
[13] S. Carlip, Am. J. Phys. 66, 409 (1998).

UNIMODULAR COSMOLOGY AND THE WEIGHT OF ENERGY PHYSICAL REVIEW D 76, 064013 (2007)

064013-9


