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To study noncommutativity properties of the open string with constant B field, we construct a
mechanical action that reproduces classical dynamics of the string sector under consideration. It allows
one to apply the Dirac quantization procedure for constrained systems in a direct and unambiguous way.
The mechanical action turns out to be the first order system without taking the strong field limit B! 1. In
particular, it is true for the zero mode of the string coordinate, which means that the noncommutativity is
an intrinsic property of this mechanical system. We describe the arbitrariness in the relation existing
between the mechanical and the string variables and show that noncommutativity of the string variables on
the boundary can be removed. This is in correspondence with the result of Seiberg and Witten on the
relation among noncommutative and ordinary Yang-Mills theories. The recently developed soldering
formalism helps us to establish a connection between the original open string action and the Polyakov
action.
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I. INTRODUCTION

Noncommutative Yang-Mills theory arises in a definite
limit of string theory [1]. It has been extracted by Seiberg
and Witten [2] starting from the open string in the presence
of a B field [3–9], with the action for the corresponding
sector being [2]

 S � �
1

4��0
Z
d2��@axi@axi � 2��0�ab@axi@bxjBij�;

(1)

where we adopted Euclidean metrics both on the world
sheet and in spacetime. An extremum of the action is
supplied by

 �@2
� � @

2
��x

i � 0; (2)

 f@�x
i � 2��0@�x

jBj
igj�����0 � 0: (3)

An open string propagator with the boundary conditions
(3) contains an antisymmetric matrix [3,6], which gives
rise to noncommutativity of the string coordinate on the
boundaries [2,7]. It was suggested [8–11] that the non-
commutative geometry can be reproduced in the elemen-
tary framework of constrained systems as a result of the
Hamiltonian quantization of the system (2) and (3), by
analogy with the noncommutativity arising for coordinates

of a charged particle in the lowest Landau level [12–14].
To achieve this, rather radical modifications [8,11] of the
Dirac procedure for constrained systems were proposed.
There is some discrepancy among the results obtained in
different approaches, which was discussed in [8–11,15–
17]. Let us talk about these issues for a while in order to put
our work into perspective.

In [8] the authors analyze the connection among the
various appearances of noncommutativity in string theory,
M theory and the M(atrix) model. The work relates the
noncommutativity in M(atrix) compactification to a phe-
nomenon of noncommutativity of space due to mixed
boundary conditions in string theory (see [8] and referen-
ces therein). It was shown that the noncommutativity of the
canonical commutation relations of the space coordinates
of the mixed membrane reflects the zero brane distribution
inside the D membrane and therefore is closely related to
the noncommutativity of the D-brane dynamics. The pres-
ence of a Kalb-Ramond field requires the consideration of
wrapping the mixed branes over a torus in order to recover
the noncommutativity of the torus of the M(atrix) model
compactification. The T duality helps to obtain the mass
spectrum of the open strings compactified on a noncom-
mutative torus.

The generalization for the case of aD string on a torus in
a nonzero B�� background field, i.e., a moving D string
with a nonzero electric field, was obtained in [9] using a
Dirac-Born-Infeld action in a B-field background that
gives the dynamics of D strings. The Hamiltonian formu-
lation helps in the construction of the mass spectrum of the
membrane and the full Bogomol’nyi-Prasad-Sommerfield
monopoles spectrum. It was shown that the noncommuta-
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tivity of brane coordinates comes about naturally in the
formulation of open strings in the background B field, as
well as the noncommutativity of the torus. The C� algebra
of functions on the noncommutative torus was constructed
using the noncommutative open string position operators.

In both papers above it was shown that noncommutativ-
ity can be derived within the string theory by embedding
branes with background Bij field on the compactification
torus. In [10] the authors used the basic principles of Dirac
quantization in order to discuss the noncommutativity of
the internal coordinates of branes. It was shown that the
noncommutativity of the coordinates of the open string-
brane system is intrinsic, namely, there is no gauge in
which the noncommutativity can be removed. There are
alterations in the noncommutativity of the system since the
gauge keeps changing, but it never disappears. And the
position of noncommutativity is always on the brane. In
[10], the mixed boundary conditions were treated as the
Dirac constraints and the quantization was obtained
through the Dirac method without mode expansions.

On the other hand, in [11], the mixed boundary condi-
tions make the canonical quantization of the theory non-
trivial. An inconsistency was obtained when standard
commutation relations were imposed. This inconsistency
was removed through the relaxation of the commutativity
of the space coordinates of the open strings along the
direction of the brane described by mixed boundary con-
ditions. The analysis was based on a time averaged sym-
plectic form. The conclusion was that mixed open strings
are noncommutative only at the end, where open strings are
attached to the brane, and the center of the mass coordi-
nates is commuting. Moreover, the noncommutative end
coordinates lead to the conclusion that the D-brane world-
volume is a noncommutative space. And the D-brane
worldvolume does not need to be a compact space in order
to have noncommutativity. The quantization method used
in [11] was based on the string mode expansion.

In [15] the authors obtained the same result as before in
[11] although using the Dirac constrained quantization
method. The constraints are also the boundary conditions
of the open string ending on a D brane. The appearance of
an ambiguity during the quantization process justifies the
use of a lattice regularization by replacing the interval
�0; �� by a lattice of N equidistant points with spacing � �
�=N. The conclusion is that a D brane in the B-field
background has a noncommutative worldvolume in the
sense that its worldvolume theory is the supersymmetric
Yang-Mills theory living on a noncommutative space. The
authors proposed that the arbitrariness of the regularization
can lead to different results in the literature. Therefore,
trying to make a comparison, we can say that in [10], the
nontrivial boundary condition in the presence of the B field
modifies the canonical commutation relations and leads to
noncommutativity on D-brane worldvolume. In [15] the
authors examine the symplectic form obtained in terms of

the mode expansion of the classical solutions. The detail
that characterizes the difference between both works is the
fact that the canonical Hamiltonian, instead of the primary
Hamiltonian, has been used in the stability condition of the
primary constraint, which is different from the usual Dirac
quantization formalism.

To understand the dynamics of a D brane with a B field,
the author in [16] used the canonical quantization. With
background B field one can obtain a mixed boundary
condition, which generates an infinite number of secondary
second-class constraints. These constraints were solved
explicitly in [16] in order to obtain a simple Hamiltonian
for the open string in the D-brane background. The
Hamiltonian found was a free Hamiltonian for an open
string in spacetime.

Finally, in [17] the Dirac constraint quantization of the
brane on the constant antisymmetric backgrounds was
reconsidered to obtain consistent noncommutative com-
mutators of the canonical variables including momenta.
The main difference between [10,15,17] is the choice of
the nonvanishing multiplier in the primary Hamiltonian.
The results disclose no secondary constraints and the single
primary constraint itself forms the second-class constraint
algebra. The final results show several kinds of interesting
commutators and expected noncommutative coordinates.

The aim of our work is to quantize the system (2) and (3)
following the standard methods [18,19] without any mod-
ifications. Canonical analysis of this system presents a
problem since the Dirac procedure is initially formulated
for the mechanical system (and then can be generalized for
a field with vanishing boundary conditions). Application of
the Dirac formalism to a field with nontrivial boundary
conditions on a compact manifold requires more careful
analysis (see [20] for the open string with the Neumann
boundary conditions). Consistent treatment of such a sys-
tem implies necessity to represent the initial dynamics in
terms of a mechanical system. Thus, we first rewrite
Eqs. (2) and (3) in the form of equations of motion for
mechanical variables cn���, n 2 Z, and then restore the
mechanical action that reproduces this dynamics. After
that, the Dirac procedure can be applied to the mechanical
system in a direct and unambiguous way. In particular,
�-function regularization is not necessary in this case.
The last step is to rewrite the results in terms of the string
coordinate xi��; ��, which gives the Hamiltonian formula-
tion associated with the theory (1)–(3).

Some of the results thus obtained are as follows. The
corresponding mechanical system turns out to be the first
order system without taking the strong field limit B! 1.
Thus, as a consequence of the mixed boundary conditions,
dynamics of the mechanical variables is governed by equa-
tions of the first order in time derivative. In particular, it is
true for the zero modes ci0��� of the string coordinate
xi��; ��. As a consequence, ci0 are canonically conjugated
to each other: fci0; c

j
0g � 0. It means that the noncommu-
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tativity is an intrinsic property of this mechanical system.
Brackets for the string coordinates turn out to be non-
commutative in the bulk and on the boundary. We study
the freedom in relation between the mechanical and the
string variables as well as freedom in choosing brackets,
which is always present in the Hamiltonian formalism.
This allows one to discuss the extent to which the non-
commutativity of the string coordinates can be avoided. We
show that the embedding coordinates of a D brane can be
made commutative; of course, one needs in this case to
transform simultaneously the Hamiltonian of the system.
This is in correspondence with the result of Seiberg and
Witten on the equivalence of noncommutative and com-
mutative Yang-Mills fields.

This paper is organized in the following manner: in
Sec. II we present a solution for the problem (2) and (3)
with our mechanical variables and consequently the equa-
tions of motion. In Sec. III we apply directly the Dirac
algorithm to the action obtained in Sec. II. Second-class
constraints are obtained and consequently we obtain the
Dirac brackets for the mechanical variables and the respec-
tive Hamiltonian. In Sec. IV, with the results obtained in
the previous sections, we construct a Hamiltonian formu-
lation for the open string with a B field and for the coor-
dinates on theD brane. In Sec. V we discuss the freedom in
the definition of the phase space bracket in the Hamiltonian
formalism. In Sec. VI we accomplish the soldering proce-
dure between different aspects of the open string with a B
field. In the final section we discuss our conclusions and
perspectives.

II. OPEN STRING WITH B FIELD IN TERMS OF
MECHANICAL VARIABLES

To start with, let us continue xi���, � 2 �0; �� on the
interval �0; 2�� such that ~xi��� � xi��� on �0; ��, @�~xj� �
~@�xj�; . . . , and ~xi�2�� � ~xi�0�, ~@�~xij2� � @��~xij0; . . . . It
can be further continued on � 2 ��1;1� as a periodic
function ~xi��� 2�n� � ~xi���. As a result, any solution of
the problem (2) and (3) can be presented in the form

 xi��; �� � ci0��� �
X1
n�1

1

n
�cin��� cosn�� ci�n��� sinn��;

(4)

where cin���, n 2 Z, are our mechanical variables.
Substitution in Eqs. (2) and (3) gives the equations of
motion

 �c i0 � 0; �cin � n2cin � 0; n � 0; (5)

 _c i0 � 0; _cjnBj
i �

n
2��0

ci�n � 0; n > 0; (6)

from which one finds the further consequence

 _c i�n � 2��0ncjnBj
i � 0: (7)

Consequently, the complete dynamics can be rewritten in
the equivalent form as

 _c i0 � 0; _cjnBj
i �

n
2��0

ci�n � 0;

_ci�n � 2��0ncjnBj
i � 0; n > 0;

(8)

which consists of equations of the first order only.
Equation (8) follows from the first order action

 Sf �
Z
d�
�

1

2
_ci0Bijc

j
0 �

X1
n�1

fn

�
��0 _cinBijc

j
n

�
1

4��0
_ci�nB

�1
ij c

j
�n � nci�nc

i
n

��
; (9)

where fn � 0, n > 0 are real numbers. While they can be
removed by shift of the variables cn, it is convenient to
keep them in the action. Starting from any particular Sf,
the variables cn can be taken as the ones that generate the
string coordinate (4); the latter will not depend on fn. At
the same time, brackets of cn and the Hamiltonian Hf will
depend on fn, so there appears to be a natural arbitrariness
in the induced bracket for xi��; ��. Choice of some par-
ticular form of the bracket implies that the corresponding
Hamiltonian Hf must be associated with the Lagrangian
formulation (1)–(3).

Another possibility is to take as independent Eqs. (5) and
(6) with n > 0. Then the action can be chosen in the second
order form
 

S �
Z
d�
�

1

2
_c0Bc0 �

X1
n�1

1

2
_cn _cn �

n2

2
cncn

�

�
_cnB�

n
2��0

c�n

�
	n

�
: (10)

It looks less natural since it involves the Lagrangian multi-
pliers 	n.

III. HAMILTONIAN ANALYSIS OF THE
MECHANICAL ACTION

Direct application of the Dirac algorithm to the action
(9), gives us the primary second-class constraints

 G0i 	 p0i �
1

2
Bijc

j
0 � 0;

Gni 	 pni � ��0fnBijc
j
n � 0;

G�ni 	 p�ni �
fn

4��0
B�1
ij c

j
�n � 0:

(11)

Their Poisson brackets are
 

fG0i; G0jg � �Bij; fGni; Gmjg � �2��0fnBij�n�m;0;

fG�ni; G�mjg �
fn

2��0
B�1
ij �n�m;0; (12)

and the corresponding Hamiltonian is
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H �
X1
n�1

�fnnc�ncn � 	0

�
p0 �

1

2
Bc0

�

� 	n�pn � ��
0fnBcn�

� 	�n

�
p�n �

fn
4��0

B�1c�n

�
: (13)

There are no secondary constraints in the problem. From
the consistency conditions that constraints do not evolve in
time, _G � 0, one obtains expressions for the Lagrangian
multipliers:

 	0 � 0; 	n � �
n

2��0
c�nB

�1;

	�n � 2��0ncnB:
(14)

To take into account the second-class constraints (11), one
introduces the Dirac bracket
 

fK;PgD � fK;Pg � fK;G0ig�B
�1�ijfG0j; Pg

�
X1
n�1

fK;Gnig
1

2��0fn
�B�1�ijfGnj; Pg

� fK;G�nig
2��0

fn
BijfG�nj; Pg: (15)

After that, the variables pin can be omitted from consid-
eration. The resulting Hamiltonian formulation for (9)
consists of the physical variables cin with the Dirac brackets
 

fci0; c
j
0gD � ��B

�1�ij;

fcin; c
j
mgD � �

1

2��0fn
�B�1�ij�n�m;0;

fci�n; c
j
�mgD �

2��0

fn
Bij�n�m;0; n; m > 0; (16)

whose dynamics is governed now by the Hamiltonian

 H � �
X1
n�1

fnnci�ncin: (17)

As it should be for the first order system, the Hamiltonian
equations of motion that follow from (16) and (17) are the
Eqs. (8). Note also that the variables cin with n fixed are
canonically conjugated to each other. The Eqs. (8) for the
physical variables can be solved now in terms of oscillators
 

cin��� � �ine
in� � �i�ne

�in�;

ci�n��� � �2i��0�inBe
in� � 2i��0�i�nBe

�in�;

�i�n � �i�n: (18)

From Eq. (16) one finds their brackets
 

fci0; c
j
0gD � ��B

�1�ij;

f�in; �
j
mgD � �

1

4��0fjnj
�B�1�ij�n�m;0; n; m � 0;

(19)

while the Hamiltonian (17) acquires the form

 Hf � 4i��0
X1
n�1

fnn�inBij�
j
�n: (20)

It is worth noting that this procedure, being applied to the
open string with the Neumann boundary conditions, leads
to the standard results [21,22].

IV. HAMILTONIAN FORMULATION FOR THE
OPEN STRING WITH A B FIELD

Using Eqs. (4) and (18), we restore the string coordinate
xi��; �� in terms of oscillators

 xi��; �� � ci0 �
X
n�0

ein�

j n j
��in cosn�

� 2i��0�jnBj
i sinn��: (21)

Thus, with the system (1)–(3), one associates the
Hamiltonian formulation including the variables ci0, �in,
n � 0 with the brackets (19) and the Hamiltonian (20). As
a consequence of Eqs. (19) and (21) the induced bracket of
the string coordinates turns out to be noncommutative in
the bulk and on the boundary
 

fxi��; ��; xj��; �0gD � ��B
�1�ij �

X1
n�1

1

n2fn




�
1

2��0
�B1�ij 
 cosn� cosn�0

� 2��0Bij 
 sinn� sinn�0
�
: (22)

In particular, the coordinates on D brane obey

 fxi��; 0�; xj��; 0gD � fxi��; ��; xj��;�gD

� �

�
1�

1

2��0
X1
n�1

1

n2fn

�
�B�1�ij:

(23)

It is interesting to note that the standard normalization
fn �

1
n of the oscillator brackets (19) implies that one needs

to use some regularization for Eq. (23). For the choice
fn � �

�
12�0 , the D-brane plane becomes commutative,

and the Hamiltonian in this case is

 H � �
i�2

3

X1
n�1

�inBij�
j
�n: (24)

V. D BRANE

Finally, let us discuss freedom in definition of the phase
space bracket in the Hamiltonian formalism. Transition
from configuration to phase space description is not a
unique procedure, since one needs to define simultaneously
the bracket and the Hamiltonian. One possibility is to start
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from the Poisson bracket. Then the exact expression for the
Hamiltonian is known for a general case [16,19,20,23].
According to the Darboux theorem, one can equally take as
the starting point any nondegenerate closed two-form and
then try to define a Hamiltonian from the condition that
corresponding equations of motion are equivalent to the
initial ones. Turning to our case (16) and (17), it will be
sufficient to consider the brackets

 fci0; c
j
0gD � �E

ij;

fcin; c
j
mgD � �

1

2��0fn
Aij�n�m;0; n; m > 0;

(25)

with some antisymmetric nondegenerate constant matrices
E and A. From the condition that the dynamics (8) is
reproduced in this formulation, one finds
 

fci�n; c
j
�mgD �

2��0

fn
�AB2�ij�n�m;0;

H � �
X1
n�1

fnnc�n�AB��1cn:

(26)

One can take Eqs. (25) and (26) instead of Eqs. (16) and
(17) as the Hamiltonian formulation corresponding to the
system (9). Repeating the previous analysis, one finds the
same expression (19) for the string coordinate in terms of
oscillators that obey
 

fci0; c
j
0gD � �E

ij;

f�in; �
j
mgD � �

1

8��0fjnj
�A� sgn�nm�B�1AB�ij�jnj�jmj;0;

n; m � 0: (27)

The quantities fn, E, A can be chosen in such a way that the
noncommutativity parameter on the D brane acquires ex-
actly the same form as was obtained from the disk propa-
gator [2]. Namely, for the choice

 fn �
�2

3�2��0�3
; E �

�2��0�2

2
A;

A � �1� �2��0�2B2��1B;

(28)

one obtains the following Hamiltonian formulation for the
system (1)–(3):
 

H �
i�2

3�2��0�2
X1
n�1

n�nB�1�1� �2��0�2B2���n;

fci0; c
j
0gD � �

�2��0�2

2
��1� �2��0�2B2��1B�ij;

f�in; �
j
mgD � �

3�2��0�2

2�2 ��1� �2��0�2B2��1B�ij�n�m;0;

n; m � 0; (29)

which gives for the coordinates on the D brane the desired
expression

 fxi; xjgD � ��2��0�2�1� 2i��0B��1B�1� 2i��0B��1:

(30)

VI. SOLDERING OF OPEN STRINGS WITH THE
PRESENCE OF A B FIELD

The soldering formalism [24,25] is an iterative method
that permits us to construct an effective action invariant
under a specific gauge symmetry disclosing interesting
physical features analogous to the interference phenomena.
The method uses primarily the Noether gauging procedure,
which helps us to fuse together the variables representing
the different aspects of a theory. It works by elevating a
global symmetry to a local form thanks to a mutual can-
celation of the obstruction to gauge symmetry of the
individual components. The gauge field introduced in the
process is the agent responsible for this new symmetry and
may be eliminated after the gauging is complete. In this
paper we will explore just the main steps of the method.
For a detailed reading, see [26].

The soldering formalism is the well suited algorithm for
fusing together opposite aspects of a global symmetry,
such as the right and left propagating modes of chiral
bosons, to name just one application. However, the non-
linear feature of the action (1) can create new difficulties.
The idea is to combine two different models in order to
obtain a single composite model. The final result reflects a
direct connection between the old and the new theories.
The soldering formalism accomplishes this mission for
theories that manifest dual aspects of some symmetry,
such as chirality, self-duality [27], noncommutativity
[28,29], etc. The final result, i.e., the soldered action, hides
the mentioned symmetry in an interesting way such that it
brings new information about both theories, the old and the
new ones. It can be demonstrated that the soldering and the
canonical transformation procedures have a strict relation
of complementarity [30].

In order to establish these interesting connections be-
tween the so-called parent and daughter actions [28] in an
open string theory, let us write two different aspects of the
action (1), i.e.,

 L x
k1
� @axi@axi � 2�k1�0�ab@axi@bxjBij; (31)

 L y
k2
� @ayi@ayi � 2�k2�0�ab@ayi@byjBij; (32)

where k1 and k2 are connected by the relations k1 � k2 �
1 and k1 � �k2 � 1. For simplicity we will work at this
stage with the Lagrangian densities.

The relations show two open strings with equal and
opposed characteristics, respectively. It is clear that the
first relation is the trivial one and must show nothing
new. The relevant one must be the second relation.
However, we will carry out both computations to prove
the above observations.
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So, let us gauge the following global symmetry:

 �xi � �yi � �i; (33)

where �i is the gauge parameter. The gauging of the global
parameter �i will be done in the soldering process. With
this symmetry, a simple calculation shows that

 �Lk1
0 � Jbxj@b�

j; (34)

where Jbjx is the Noether chiral current given by

 Jbxj � 2�@bxj � 2��0k1Bij�ab@axi�; (35)

which parametrizes the lack of gauge symmetry of the
original action Lx

0.
The next step is to introduce an auxiliary field that helps

in the gauging procedure. Let us call this field by Dbi,
known as the soldering field. We can now construct the
first-iterated correction of the open string action (1) as

 L k1
0 ! Lk1

1 � Lk1
0 �D

i
bJ

b
xi: (36)

Notice that we are looking for an action that is gauge-
invariant under (33).

The gauge variation of Lx
1 is

 �Lk1
1 � �D

i
b�J

b
xi � ���D

j
b�

2 � 4��0k1Bij�
ab��Di

a�D
j
b;

(37)

where we have chosen �Di
b � @b�

i to cancel (34) and
used (33) once again.

Again we can construct the second-iterated correction of
the open string action (1) as

 L k1
1 ! Lk1

2 � Lk1
0 � �D

j
b�

2; (38)

and therefore,

 �Lk1
2 � �4��0k1Bij�ab��Di

a�D
j
b: (39)

Accomplishing the same procedure for Lk2
y , we have

that

 �Lk2
2 � �4��0k2Bij�

abDi
a��D

j
b�: (40)

Because of the antisymmetric characteristic of both
tensors Bij and �ij, it can be easily demonstrated that, for
k1 � k2 � 1 and k1 � �k2 � 1 we have that

 L k1�k2�1
final � Lk1

2 �Lk2
2 � 4��0Bij�

abDi
aD

j
b

Lk1��k2�1
final � Lk1

2 �Lk2
2 :

(41)

In both cases we have

 �L2 � 0; (42)

to finally obtain the desired gauge-invariant action.
In order to be brief, the next step is to eliminate the

auxiliary field Di
a through its equations of motion in each

final action above separately, which demands a certain
algebra. After that we have to substitute it back in both

actions (41) and finally obtain two effective actions, re-
spectively,

 S k1�k2�1
eff � �

1

4��0
Z
d2�

�
1

2
@azi@azi

� ��0Bij�ab@azi@bzj
�
; (43)

and

 S k1��k2�1
eff � �

1

4��0
Z
d2�

�
1

2
@azi@azi

�
; (44)

where in both cases we have a composed string coordinate
given by zi � xi � yi.

In the first case, the soldered action (43) shows us that
the fusion (soldering) of two open strings with the aspects
results in another open string. However, we have a different
behavior when both strings have opposite aspects. The
result (44) shows a Polyakov action that is well known to
be equivalent at the classical level to the Nambu-Goto
action. This last result establishes a direct connection
between the parent and the daughter action, i.e., between
the open string action and the Polyakov action. Moreover,
we can see clearly that in the first case, the soldering
coupling keeps the magnetic field Bij. However, in the
second case the magnetic field disappears from the effec-
tive action.

The dual projection analysis.— Let us analyze the
Polyakov action given by

 S � �
1

4��0
Z
d2�

���
g
p
gab@ax�@bx

�; (45)

which is invariant under the manifest reparametrization
invariance

 �x� � �a@ax
�

�gab � �c@cgab � bac@c�b � gbc@c�a

�
���
g
p
� @a��a

���
g
p
�:

(46)

We can easily notice that the Polyakov action above re-
sembles an action with scalar fields interacting with an
external two-dimensional gravitational field.

Recently, some of us showed that the dual projection
mechanism [25,31] disclosed from the scalar model em-
bedded in a gravitational background two particles with no
dynamics, well known as notons. The noton field was
introduced by Hull in order to cancel off the Siegel anom-
aly [32].

Having in mind this idea, we can assume that the
Polyakov action has a relation with the noton as
 

S � �
1

4��0
Z
d2�� _x��x

0�
� � 
��x

0�
� �

2 � _x��x0��

� 
��x0�� �2�; (47)
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where 
� is a function of the metric elements and x�� are
the notons (for more details see [25,31]). So, we can see in
(47) that the Polyakov action can be perceived as a combi-
nation of two notons. As the soldering formalism estab-
lishes a relation between the parent and the daughter
actions, we can say from (43) that there is a relation
between the noton field and the open string action.

VII. CONCLUSIONS

In this work we quantized the open string action used by
Seiberg and Witten following precisely the standard meth-
ods. We obtained the equations of motion for the mechani-
cal variables and wrote the respective action. The
mechanical variables are the ones that can be taken in
order to generate the string coordinate. The equations of
motion permit us to introduce the Lagrangian multipliers.

The direct application of the Dirac formalism gives us
the primary second-class constraints and consequently the
Poison brackets and the corresponding Hamiltonian. Since
there are no secondary constraints in the problem we can
construct the Dirac brackets for the theory and the resulting
Hamiltonian with the physical variables. We also con-
structed a Hamiltonian for the physical variables written
in terms of oscillators. With this relation in terms of

oscillators, we restored the string coordinate and computed
the Dirac brackets for these coordinates.

Writing the Dirac brackets in terms of antisymmetric
nondegenerate constant matrices, we obtained the
Hamiltonian formulation for the original system (1)–(3).
These matrices can be chosen in such a way that the non-
commutativity parameter on theD brane acquires precisely
the same form as was obtained in [2].

Finally, the soldering formalism permits us to establish a
clear relation between the original system and the
Polyakov action, which is equivalent to the Nambu-Goto
theory. The Polyakov action clearly resembles an action
with scalar fields interacting with an external two-
dimensional gravitational field. This relation brings us
the idea that there must be a kind of noton particle in the
Polyakov formulation, since it was demonstrated by two of
us that the noton comprises the spectrum of scalar fields
with gravitational background.
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