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We consider the cosmological models for the higher dimensional space-time which includes the
curvatures of our space as well as the curvatures of the internal space. We find that the condition for
the integrability of the cosmological equations is that the total space-time dimensions are D � 10 or
D � 11 which is exactly the conditions for superstrings or M theory. We obtain analytic solutions with
generic initial conditions in the four-dimensional Einstein frame and study the accelerating universe when
both our space and the internal space have negative curvatures.
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I. INTRODUCTION

There has been much attention on understanding the
cosmology from the superstring or M theory. The recent
observation of type Ia supernovae and the cosmic micro-
wave background (CMB) measurement by WMAP indi-
cates our universe is an accelerating universe. In string/M
theory, there is the no-go theorem [1] which is an obstacle
to realize the accelerating universe. The no-go theorem
indicates that the warped compactification with the static
internal space does not give rise to the four-dimensional de
Sitter space-time under some assumptions. This implies
that the warped compactification cannot lead the acceler-
ating universe with the static internal space.

One way to avoid the no-go theorem is to employ the
time-dependent internal space [2]. If the curvature of the
internal space is negative in the four-dimensional Einstein
frame, it has been shown that the effective Lagrangian has
positive potential [3–7]. This positive potential gives rise
to the acceleration of the four-dimensional space-time in
the four-dimensional Einstein frame. In the four-
dimensional Einstein frame, the scale factor of the internal
space appears as a scalar field with potentials which come
from the curvature of the internal S-brane solutions and
lead to accelerating solutions [8–15]. The flux field has a
role of a positive potential and contributes to the accelera-
tion of the four-dimensional space-time. Scalar perturba-
tions of scale factors have shown in [4] that the eternally
accelerating universe is realized in the 11-dimensional
space-time by the external and internal spaces which pos-
sess a negative curvature. Recently, it has been also shown
by scalar perturbations of scale factors that the eternally
accelerating universe occurs in the ten-dimensional space-
time [5]. The fixed point analysis [16] also showed that the
eternal acceleration is realized if two spaces possess a
negative curvature.

In general, it is difficult to solve the Einstein equations
exactly because of the nonlinearity of the Einstein equa-
tions. Therefore, most of the analytic solutions are special
solutions with particular initial conditions. However, it is
desirable to find integrable models for the analysis of the
initial conditions for our universe. Up to now, few inte-
grable models have been found. In p-brane and cosmo-

logical solutions which were inspired by string/M theory, it
is known that there exist a few classes of models whose
solutions can be reduced to the Liouville or Toda type [17–
23]. The Toda equation is integrable and provides exact
solutions for us. In [17–23], the metric has two spatial
parts whose curvature is flat for all spaces or for one of two
spaces. However, if both spaces have curvatures, it is very
difficult to solve even vacuum Einstein equations exactly.
When our universe starts from the quantum era, it is natural
to expect that we have spatial curvatures whose values are
comparable with the curvature to the direction of time. The
curvatures with respect to the spatial directions can be
regarded as potential energies whereas the time depen-
dence can be regarded as the kinetic energy of the effective
actions. If the universe started from quantum fluctuations,
it is natural to expect that the order of the potential energies
are the same as the order of the kinetic energy. Therefore, it
is highly desirable to find integrable models with spatial
curvatures both for our space and the internal space.

The accelerating universe occurs when two spatial parts
have the negative curvature as shown in [4,5]. This analysis
was performed by the perturbation of scale factors. In [16]
the fixed point analysis was performed and also showed
that the eternally accelerating universe occurs with two
spatial parts whose curvature is negative. In this paper, we
will try to solveD-dimensional vacuum Einstein equations
with two homogeneous spaces exactly.

In order to find integrable cosmological models, we will
adopt a method for solving Einstein equations analyzed in
[24]. In the method used in [24], the Einstein equations can
be reduced to an analytically mechanical problem with one
gauge degree of freedom. The gauge degree of freedom
originates from the choice of the time variable. By using
time variables which include scalar fields, the condition of
the integrability has been classified. We will review this
method in the next section and find that we are able to
obtain general solutions for those vacuum Einstein equa-
tions. Actually, it will turn out that the classification of [24]
was not complete and we will show that a new type of
integrable models is useful for our analysis.

We will start with the generic space ansatz with total
dimensions D and our spatial dimensions d. Strangely
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enough, we will find that the condition for the integrability
is that the total dimension is 10 or 11, which exactly
corresponds to the consistency conditions of superstrings
or M theory. If the integrable condition is satisfied there is
an additional conserved quantity aside from the
Hamiltonian constraint. Therefore the system has two con-
served quantities for two dynamical variables and then the
system reduces to the integrable case.

In [25–27], the relation between the integrable condi-
tion and the conserved quantity was investigated from the
Hamiltonian viewpoint. The same integrability condition
was obtained and it was shown that there exist the con-
served quantity under the integrability condition.

The integrable system does not necessarily have the
simple analytic solutions [25–27]. In this paper, it will
be shown that we are able to derive the analytic solutions
by the particular choices of the time variable in D � 10
and D � 11. It is very important to note that the time
variable used in this paper easily realizes the analytic
solutions. The other choices of the time variable make it
difficult to solve the equations of motion.

We investigated the cosmological behavior in D � 10
because this case includes the four-dimensional space-time
and the six-dimensional internal space. It was found that
the accelerating universe occurs if two spaces have a
negative curvature.

This paper is organized as follows. In the next section,
we will construct the effective action which has two po-
tential terms arising from curvatures of the two spaces. We
will also show that the system is integrable when the total
dimensions of the space-time is 10 or 11. In Sec. III, we
will solve Einstein equations completely and general solu-
tions will be given. In Sec. IV, we will consider the cos-
mological property of the case of (D � 10, d � 3) in detail
and the analytic solutions representing the accelerating
universe when two spatial parts have negative curvature.
The asymptotic behavior of the metric is also discussed.
Finally, we conclude with a discussion of our results and
some implications.

II. EFFECTIVE ACTION AND CONDITIONS FOR
INTEGRABILITY

Let us consider the D-dimensional space-time con-
structed with two spatial parts which have curvatures.
For simplicity, we will consider the vacuum Einstein equa-
tions. We consider that the D-dimensional space consists
of two homogeneous spaces whose sizes depend on time.
Namely, the metric ansatz for the D-dimensional space-
time is given by

 ds2
D � GMN�X�dX

MdXN

� �e2~n�t�dt2 � e2 ~A�t�gij�x�dxidxj

� e2��t�gAB�y�dyAdyB; (1)

where

 

8><>:
i; j � 1; 2; � � � ; d

A; B � d� 1; d� 2; � � � ; D� 1

M;N � 0; 1; � � � ; D� 1:

e2 ~A�t� and e2��t� are scale factors of the d- and �D� d�
1�-dimensional spaces whose metrics are gij�x�dxidxj and
gAB�y�dy

AdyB, respectively. These scale factors depend on
time variable t.

We assume that both of the two spatial manifolds are
homogeneous spaces (Einstein spaces);

 

�d� ~Rij�g�x�� � �d� 1�k�d�gij�x�; (2)

 

�D�d�1� ~RAB�g�y�� � �D� d� 2�k0�D�d�1�gAB�y�; (3)

where k�d� and k0�D�d�1� represent the curvature of Einstein
spaces. For our physical d-dimensional space, we assume
homogeneous and isotropic space. However we do not
need the explicit representation of gij�x� and gAB�y� to
derive the effective action.

The �d� 1�-dimensional Einstein frame is realized by
the following conformal transformations:

 

~A�t� ! A�t� �
1

d� 1
�D� d� 1���t�;

~n�t� ! n�t� �
1

d� 1
�D� d� 1���t�:

(4)

In fact, theD-dimensional Einstein-Hilbert Lagrangian can
be written as

 

��������
�G
p

R �
�����������������������������������������
�gd�1�x�gD�d�1�y�

q
ed ~A�~n��D�d�1��R

!
�����������������������������������������
�gd�1�x�gD�d�1�y�

q
edA�n��d�1�R� � � ��:

Under the conformal transformation (4), we obtain an
effective action in the �d� 1�-dimensional Einstein frame
[3]

 

1

d�d� 1�VD�1

Z
dDX

��������
�G
p

R

!
Z
dt�edA�nf� _A2 � X2 _�2g � edA�nf�k�d�e

�2A

� ~k�D�d�1�e��2�D�2�=�d�1���g�; (5)

where VD�1 	
R
dD�1X

�����������������������
� detgij�x�

q ��������������������
detgAB�y�

p
and

 X2 �
�D� d� 1��D� 2�

d�d� 1�2
;

~k�D�d�1� �
�D� d� 1��D� d� 2�

d�d� 1�
k0
�D�d�1�:

(6)

The effective action (5) shows that the scale factor of the
internal space appears as a scalar field with the potential
terms. The two effective potentials are generated by the
curvature of Einstein spaces which can be easily seen from
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the fact that the potential terms are directly proportional to
the curvatures.

We would like to solve equations of motion derived from
the �d� 1�-dimensional effective action (5). In general,
Einstein equations are highly nonlinear equations and dif-
ficult to be solved exactly. The effective action (5) indeed
results in nonlinear equations. A way to analyze the system
is to utilize a gauge degree of freedom [28]. Let us recall
that we can choose a time variable via the lapse function
en�t� which is a nondynamical quantity [28]. This gauge
degree of freedom represents the invariance under the
coordinate transformation of time. Because of this gauge
degree of freedom, we can freely choose the gauge to solve
the system. We will take the lapse function as

 en�t� � ep��t��qA�t�; (7)

where p and q are any real numbers. We would like to look
for the more convenient transformation of two dynamical
variables.

We use the following transformation between �A;�� and
�U�; U��,

 e2A � U��M1�1�=�d�1��
� U��M2�1�=�d�1��

� ;

e2� � U��M1�1�=�d�1�X�
� U���M2�1�=�d�1�X�

� ;

e2n � U�2��d�M1�1�=�d�1��
� U�2��d�M2�1�=�d�1��

� ;

(8)

where we have defined

 M1�
�d�2�q�X�p
�d�q�X�p

; M2�
�d�2�q�X�p
�d�q�X�p

: (9)

By using these variables, we can rewrite the effective
action (5) as [24]
 

Leff � �
�M1 � 1��M2 � 1�

�d� 1�2
_U� _U� � k�d�U

M1
� U

M2
�

� ~k�D�d�1�U
�1���M1�1�=�d�1���d��D�2�=�d�1�X�
�


U�1���M2�1�=�d�1���d��D�2�=�d�1�X�
� : (10)

The effective action
R
dtLeff�M1;M2� can be transformed

to the action of some other parameters N1, N2,R
d�Leff�N1; N2� by the change of time coordinates, dt �

N���d�. This is realized by the following transformations:

 U� � V�N1�1�=�M1�1�
� ; U� � V�N2�1�=�M2�1�

� ;

N � V�1���N1�1�=�M1�1��
� V�1���N2�1�=�M2�1��

� :
(11)

These transformations preserve the form of the effective
action (10). It is possible to connect a solution in some
parameters �M1;M2� to many other solutions by the above
transformations (11). Because of this gauge degree of free-
dom, we can solve the Einstein equations with a particular
choice of the parameters.

In [24],M1 � M2 � 0 was considered. In our cases, this
condition leads to the following potential:

 

W � �k�d� � ~k�D�d�1�U
�1��1=�d�1���d���D�2�=�d�1�X��
�


U�1��1=�d�1���d���D�2�=�d�1�X��
� :

If the form of the potential becomes W � �k�d� �
~k�D�d�1�U� or W � �k�d� � ~k�D�d�1�U�, Einstein equa-
tions are soluble as shown in [24]. A model with this type
of the potential also studied in [29]. But the above potential
cannot take such that potential because the total dimension
has to be D � 1 in order to satisfy �1� 1

d�1 


�d� D�2
�d�1�X� � 0. Therefore our model does not correspond

to the model considered in [24].
A convenient choice of the parameters is M1 � M2 � 1

which implies
 

Leff � �
4

�d� 1�2
_U� _U� � k�d�U�U�

� ~k�D�d�1�U
�1��2=�d�1���d���D�2�=�d�1�X��
�


U�1��2=�d�1���d���D�2�=�d�1�X��
� : (12)

The above effective Lagrangian shows the second term is
an interaction similar to a harmonic oscillator and the third
term represents a nonlinear interaction which is an obstacle
to solve equations of motion. If the power of U� or U� is
simplified, it is possible to solve the equations analytically.
To perform this procedure, we will impose a condition in
which the nonlinear term in the effective action does not
depend on U�;

 � 1�
2

d� 1

�
d�

D� 2

�d� 1�X

�
� 0; (13)

where X was defined in (6). We will see below that the
system is integrable if this condition is satisfied. Before
considering the integrability, let us solve the condition
(13). The condition (13) can be rewritten as

 �d� 1��D� d� 5� � 4: (14)

From this, we can immediately derive the condition of the
integrability D and d as follows

 

�D � 10; d � 3

D � 11; d � 2; 5;
(15)

where (6) was used. Note that D � 10 is the critical
dimension of the superstring theories and D � 11 is the
dimension of the M theory. Moreover, d � 3 means our
space-time is four dimensions. Therefore, we have inte-
grable cosmological models for a realistic setup.

We are going to show that the system is integrable if the
condition (13) is satisfied. By using the condition, we can
rewrite the effective Lagrangian and the Hamiltonian con-
straint as

 L eff � �
4

�d� 1�2
_U� _U� � k�d�U�U�

� ~k�D�d�1�U
2�d�1�=�d�1�
� ; (16)
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 H � 0

� �
4

�d� 1�2
_U� _U� � k�d�U�U�

� ~k�D�d�1�U2�d�1�=�d�1�
� ; (17)

where the second equation represents the total energy
conservation which can be derived by the variation of
n�t� in the action (5).

We get equations of motion by the variation with respect
to U� and U� as follows:
 

�
4

�d� 1�2
�U� � k�d�U� � ~k�D�d�1�

2�d� 1�

d� 1


U�d�3=d�1�
� � 0; (18)

 �
4

�d� 1�2
�U� � k�d�U� � 0: (19)

Because of the Eq. (19), we can easily find the following
conserved quantities;

 � �
2

�d� 1�2
_U2
� �

k�d�
2
U2
�: (20)

Since the system has two conserved constants (17) and (20)
for two dynamical variables, the total system is classically
integrable.

In [25–27], the integrability was discussed from the
Hamiltonian viewpoint. It is an essential idea that they
looked not only for functions Poisson-commuting with
the Hamiltonian H, but also for a function F satisfying
an equation of the form

 fF;HgP:B: � �H

for some unknown function �. The Hamiltonian constraint
H � 0 indicates fF;HgP:B: � �H � 0, therefore the func-
tion F becomes a conserved quantity on this Hamiltonian
constraint. Using this method, the same consequence (15)
was obtained in [25–27]. In our model, � satisfies
f�;HgP:B: � 0 where we used canonical momenta P� �
��4=�d� 1�2� _U�, P� � ��4=�d� 1�2� _U�, the
Hamiltonian (17), and the Poisson bracket

 fq1; q2gP:B: 	
X

i��;�

�
@q1

@Ui

@q2

@Pi
�
@q1

@Pi

@q2

@Ui

�
:

� commutes with the Hamiltonian and then is a conserved
quantity. This means that the system becomes integrable,
because the system has two conserved quantities for two
dynamical variables. If the condition (13) is not satisfied, �
does not commute with the Hamiltonian derived from (12)
and f�;HgP:B: � �H. In the next section, we are going to
show that it is quite easy to derive the analytic solutions by
the choice of the time variable (M1 � M2 � 1).

We can impose the other type of requirement that the
nonlinear term in the effective action (12) does not depend

on U�. It turns out that interchanging U� and U� can be
achieved by the replacement d! D� d� 1 which means
the interchanging of the internal and the external space.
This symmetry should be present because we are just
considering the evolution of two homogeneous spaces.
At the level of the effective action this equivalence results
from the reparametrization of the time coordinate. For
instance, we will take �1� M1�1

d�1 �d�
D�2
�d�1�X� �

�1� M2�1
d�1 �d�

D�2
�d�1�X� � 1 in (10) and impose �1�

2�d�1�
d��D�2�=�d�1�X � 0 which gives

 

�D � 10; d � 6

D � 11; d � 5; 8;
(21)

where we have used (6). The effective Lagrangian is iden-
tical to (16) just by interchanging the two spaces.

III. GENERAL SOLUTIONS

In the previous section, we have seen that the Einstein
equations for two homogeneous spaces are integrable if the
total dimensions are 10 or 11. In this section, we will
discuss the case D � 10, d � 3 which is most relevant
for four-dimensional physics. General solutions of (D �
11, d � 2) and (D � 11, d � 5) are shown in the
appendix.

In this case, the equations of motion (18) and (19) and
the Hamiltonian constraint (17) are written by

 

�U � � k�3�U� � 4~k�6�U3
� � 0; (22)

 

�U � � k�3�U� � 0; (23)

 

_U � _U� � k�3�U�U� � ~k�6�U4
� � 0; (24)

where ~k�6� � 5k0�6�. Let us first consider the equation of
motion (23). The solution of (23) can be easily obtained as

 U� �

8><>:
A1 cos�

�������
k�3�

p
t� A2� �k�3� > 0�;

A1t� A2 �k�3� � 0�;
A1 cosh�

������������
�k�3�

p
t� A2� �k�3� < 0�;

(25)

where A1 and A2 are constants of integrations. These
equations show that the behavior of U� is controlled by
the curvature of the three-dimensional Einstein space.
Substituting this U� into the equation of motion (22), we
obtain the following equations of motion:
 

k�3� > 0; �U� � k�3�U� � 4~k�6�


 �A1 cos�
�������
k�3�

q
t� A2��

3 � 0;

k�3� � 0; �U� � 4~k�6��A1t� A2�
3 � 0;

k�3� < 0; �U� � k�3�U� � 4~k�6�


 �A1 cosh�
������������
�k�3�

q
t� A2��

3 � 0:

(26)

MASAKAZU SANO AND HISAO SUZUKI PHYSICAL REVIEW D 76, 064006 (2007)

064006-4



These equations of motion concretely show that the U�
have received the forced power from the U�. The internal
space gives the effect of the forced oscillation to the motion
of U�.

In the cases of k�3� < 0 or k�3� > 0, it is useful to adopt
the following transformations:

 

k�3�> 0; U� � f�t� �
3~k�6�A

3
1

2
�������
k�3�

p t sin�
�������
k�3�

q
t� A2�

�
~k�6�A

3
1

8k�3�
cos�3�

�������
k�3�

q
t� A2��;

k�3�< 0; U� � f�t� �
3~k�6�A

3
1

2
������������
�k�3�

p t sinh�
������������
�k�3�

q
t� A2�

�
~k�6�A

3
1

8k�3�
cosh�3�

������������
�k�3�

q
t� A2��: (27)

Using these relations, we can simplify the equation of
motion (26) as

 

�f�t� � k�3�f�t� � 0 �k�3� > 0�;

�f�t� � ��k�3��f�t� � 0 �k�3� < 0�:

Then, answers for this equation are simply

 f�t� � B1 cos�
�������
k�3�

q
t� B2� �k�3� > 0�;

f�t� � B1 sinh�
������������
�k�3�

q
t� B2� �k�3� < 0�;

where B1 and B2 are the constants of integrations.
Combining all these things, we finally obtain the solutions
given by

 

k�3� > 0; U� � B1 cos�
�������
k�3�

q
t� B2� �

3~k�6�A
3
1

2
�������
k�3�

p t sin�
�������
k�3�

q
t� A2� �

~k�6�A
3
1

8k�3�
cos�3�

�������
k�3�

q
t� A2��;

k�3� � 0; U� � B1t� B2 �
~k�6�
5A2

1

�A1t� A2�
5;

k�3� < 0; U� � B1 sinh�
������������
�k�3�

q
t� B2� �

3~k�6�A3
1

2
������������
�k�3�

p t sinh�
������������
�k�3�

q
t� A2� �

~k�6�A3
1

8k�3�
cosh�3�

������������
�k�3�

q
t� A2��:

(28)

The term proportional to ~k�6� indicates the resonance, as the
frequency of the harmonic and forced oscillation are
identical.

The Hamiltonian constraint (24) gives a constraint on
four constants of integrations,

 k�3� > 0;
9~k�6�A3

1

8
� k�3�B1 cos�A2 � B2� � 0;

k�3� � 0; B1 � 0; k�3� < 0;

9~k�6�A
3
1

8
� ��k�3��B1 sinh�A2 � B2� � 0:

(29)

We shall consider the metric which is given by

 e2n � e2A � U�U�; e2� �

�������
U�
U�

s
; (30)

where we have used (6) and (8) and M1 � M2 � 1. These
equations show that the four-dimensional part is the
conformal metric, e2n � e2A. Therefore, in the four-
dimensional Einstein frame, the ten-dimensional metric
is

 ds2
10 � e�6��e2A��dt2 � gij�x�dx

idxj��

� e2�gAB�y�dy
AdyB

�

�
U�
U�

�
�3=2
�U�U���dt

2 � gij�x�dx
idxj��

�

�
U�
U�

�
1=2
gAB�y�dy

AdyB: (31)

For ~k�6� � 0, metric components are
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�k�3�>0� e2A�
9~k�6�A

4
1

8k�3�

�
�

cos�
�������
k�3�

p
t�B2�

cos�A2�B2�
�

4
�������
k�3�

p
3

tsin�
��������
Y�3�

q
t�A2��

1

9
cos�3�

�������
k�3�

q
t�A2��

�
cos�

�������
k�3�

q
t�A2�;

e2��

���������������
9~k�6�A2

1

8k�3�

vuut ��
�

cos�
�������
k�3�

p
t�B2�

cos�A2�B2�
�

4
�������
k�3�

p
3

tsin�
�������
k�3�

q
t�A2��

1

9
cos�3�

�������
k�3�

q
t�A2��

�
1

cos�
�������
k�3�

p
t�A2�

�
1=2
;

�k�3� � 0� e2A�

�
�

~k�6�
5A2

1

�A1t�A2�
5�B2

�
�A1t�A2�; e2��

��
�

~k�6�
5A2

1

�A1t�A2�
5�B2

�
1

A1t�A2

�
1=2
;

�k�3�<0� e2A�
�9~k�6�A4

1

8��k�3��

�
sinh�

������������
�k�3�

p
t�B2�

sinh�A2�B2�
�

4
������������
�k�3�

p
3

tsinh�
������������
�k�3�

q
t�A2��

1

9
cosh�3�

������������
�k�3�

q
t�A2��

�


 cosh�
������������
�k�3�

q
t�A2�;

e2��

�������������������
�9~k�6�A

2
1

8��k�3��

vuut ��
sinh�

������������
�k�3�

p
t�B2�

sinh�A2�B2�
�

4
������������
�k�3�

p
3

tsinh�
������������
�k�3�

q
t�A2��

1

9
cosh�3�

������������
�k�3�

q
t�A2��

�



1

cosh�
������������
�k�3�

p
t�A2�

�
1=2
: (32)

IV. COSMOLOGICAL CHARACTERISTIC FOR
(D � 10, D � 3)

The solutions that we have obtained in the previous
section include a metric which has realistic dimensions
D � 10, d � 3. The total dimension of this space-time is
ten dimensions equal to the critical dimension of super-
strings and the physical space-time has four dimensions.
Therefore, it is very interesting how the universe evolves
with time. In this section, we shall consider the behavior of
the ten-dimensional space-time. We will analytically show
that the four-dimensional part of the ten-dimensional
space-time accelerates eternally, which has been analyzed
in [5] by the qualitative method and in [16] by the fixed
point analysis on the phase space.

We shall consider the metric (32). In k�3� > 0, e2A and
e2� take oscillatory behavior. e2A starts from zero and ends
up with zero because U� � A1 cos�

�������
k�3�

p
t� A1� oscillates

between two zeros. On the other hand, e2� diverges when
U� and e2A become zero, and then, the case of k�3� > 0
may not have a stable internal space.

Similarly, in k�3� � 0, the scale factor of the internal
space diverges at U� � A1t� A2 � 0 and e2A takes zero
when U� � 0. For k�3� � 0 and ~k6 < 0, the asymptotic
behavior becomes e2A ! t6 and e2� ! t2 at t! 1 and
the ten-dimensional metric (31) has the behavior as fol-
lows:

 ds2
10 ! ��dt

2 � ds2
3� � t

2ds2
6: (33)

This means that the four-dimensional part of the metric
does not depend on t in the ten-dimensional frame. If we
take ds2

3 to the three-dimensional Euclid space, the four-
dimensional part becomes the Minkowski space-time at
t! 1. The internal space becomes large in this region.

If k�3� < 0, an interesting phenomenon occurs. The
three-dimensional space expands with acceleration eter-
nally. This acceleration is extracted from the negative
curvature of the internal space, ~k�6� < 0. The curvature of
the internal space acts like a positive cosmological con-
stant in four dimensions. We assume the internal space is
the Einstein space with the negative curvature. This case,
k�3� < 0 and ~k�6� < 0, is equivalent to the situation sug-
gested in [5] in which it was shown by scalar perturbations
of scale factors that the acceleration of the three-
dimensional space occurs in the four-dimensional
Einstein frame. In [16] the fixed point analysis also indi-
cated that the eternal acceleration occurs for k�3� < 0 and
~k�6� < 0. We can confirm these facts by using the analytic
solutions.

Defining a proper time d� 	
��������������
U�U�
p

dt, the velocity
and acceleration of eA are given by deA=d� and d2eA=d�2.
The velocity and acceleration are shown in Figs. 1 and 2
where we neglect the overall factor in (32).

From these figures, we can extract the following facts.
The three-dimensional space evolves with the very large
positive velocity and negative acceleration, then the three-

FIG. 1. The velocity of eA. k�3� � �1, A2 � 0:5, B2 � 0.
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dimensional space decelerates quickly at a first stage. The
acceleration of the three-dimensional space turns to posi-
tive at some time, and then the acceleration decreases
gradually. The three-dimensional space finally expands
with a positive velocity and the zero acceleration at the
infinite future. In particular, the three-dimensional space
accelerates forever. This fact coincides with [5,16].

We shall consider the asymptotic behavior of e2A and
e2� in (32). U� � A1 cosh�

������������
�k�3�

p
t� A2� is not singular

for appropriate constants of integrations. A1 and A2, which
imply e2�, may not diverge when e2A ! 0. For t! 1,

e2A ! e4
��������
�k�3�
p

t, e2� ! e
��������
�k�3�
p

t, and

 ds2
10 ! e

��������
�k�3�
p

t��dt2 � ds2
3 � ds

2
6�: (34)

It is found that this ten-dimensional metric is conformally
equivalent to �dt2 � ds2

3 � ds
2
6 at large t. In the four-

dimensional Einstein frame, this metric (34) behaves as

 ds2
10 ! e�3

��������
�k�3�
p

t�e4
��������
�k�3�
p

t��dt2 � ds2
3�� � e

��������
�k�3�
p

tds2
6:

(35)

The above metric (35) shows that the internal space also
expands. The proper time, for the four-dimensional frame,

is given by �� e2
��������
�k�3�
p

t and then, the three-dimensional
space expands with e2A � �2 which shows that the expan-
sion has the uniform velocity at large �. The three-
dimensional space has a negative curvature k�3� < 0 in
this case. Therefore the four-dimensional part can be the
Milne universe for the four-dimensional frame. The metric
(35) also indicates that the internal space becomes large

with e2� � e
��������
�k�3�
p

t, and then it is intuitively expected that
the curvature of the internal space decreases. In fact, it is
found in (5) that the potential term �~k�6�e

�8� vanishes at
t! 1.

If t! 0, ds2
10 ! t�1=2��dt2 � ds2

3� � t
1=2ds2

6 and in the
four-dimensional frame,

 ds2
10 ! t�3=2�t��dt2 � ds2

3�� � t
1=2ds2

6: (36)

The proper time for the four-dimensional frame is given by
�� t3=2 and the three-dimensional space expands with
e2A � �2=3. The acceleration of this scale factor is

d2eA=d�2 ���2=9���5=3 and then the acceleration di-
verges at �! 0.

As a final example, we shall consider ~k�6� � 0 and k�3� <
0. In this case, we can find that the constants of integrations
satisfy A2 � B2 in (29). Using (25), (28), and (30), the
asymptotic behavior of e2A and e2� are e2� ! const and

e2A ! e2
��������
�k�3�
p

t at t! 1. The ten-dimensional metric
leads to

 ds2
10 ! e2

��������
�k�3�
p

t��dt2 � ds2
3� � ds

2
6: (37)

This metric shows that the internal space does not depend

on t. The proper time is defined as �� e
��������
�k�3�
p

t in ten
dimensions. Therefore, the ten-dimensional metric is rep-
resented as

 ds2
10 ! ��d�

2 � �2ds2
3� � ds

2
6 (38)

whose structure is the product space of the Milne universe
and a flat six-dimensional space. It is possible to transform
the Milne universe into the Minkowski space-time by
coordinate transformations. In this case, the above metric
(38) becomes the product space-time with the four-
dimensional Minkowski space-time and the flat six-
dimensional internal space at t! 1.

V. CONCLUSIONS

We have considered the vacuum Einstein equations in
the D-dimensional space-time and obtained integrable
cosmological models. Those Einstein equations have two
potential terms arising from the curvature of the d- and
�D� d� 1�-dimensional Einstein spaces. It was thought
that solving Einstein equations with two curved spaces is
very difficult. However we have pointed out that the total
dimension should be D � 10 or D � 11 to make those
Einstein equations integrable as cosmological models. The
integrability is guaranteed by the conserved quantity which
commutes with the Hamiltonian. The integrable system
does not necessarily have the analytic solutions. It is very
important to note that the time variable used in this paper
easily realizes the analytic solutions. It is interesting that
models with superstrings or M theory are more tractable as
cosmological models than other dimensional models.

For (D � 10, d � 3), we have obtained the accelerating
universe with two spatial parts whose curvature is negative.
The three-dimensional space expands with the accelera-
tion, but the six-dimensional internal space also expands.
The external space finally approaches the expansion whose
acceleration tends to zero. It may be difficult for this case
to give an account of the realistic acceleration at late time.
To obtain more realistic models, we need to construct a
model whose internal space is fixed dynamically whereas
our space is going to expand more drastically. In the
context of pure gravity solutions we have treated in this
paper, we cannot get such solutions. The flux field, dilaton,

FIG. 2. The acceleration of eA. k�3� � �1, A2 � 0:5, B2 � 0.
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and the world volume actions may have a role for the
interesting behavior such as fixing the internal spaces [30].

It would be more interesting to find solutions for a more
general setup.

APPENDIX: GENERAL SOLUTIONS IN D � 11

We can obtain other solutions corresponding to (D �
11, d � 2) and (D � 11, d � 5) from the Eqs. (16) and
(17).

In (D � 11, d � 2), the equations of motion and the
Hamiltonian constraint are

 4 �U� � k�2�U� � 6~k�8�U5
� � 0; (A1)

 4 �U� � k�2�U� � 0; (A2)

 4 _U� _U� � k�2�U�U� � ~k�8�U
6
� � 0; (A3)

and for (D � 11, d � 5),

 

1
4

�U� � k�5�U� � 3~k�5�U2
� � 0; (A4)

 

1
4

�U� � k�5�U� � 0; (A5)

 

1
4

_U� _U� � k�5�U�U� � ~k�5�U3
� � 0: (A6)

For (D � 11, d � 2), solutions are given by

 U� �

8>>>><>>>>:
A1 cos

� �����
k�2�
p

2 t� A2

�
�k�2� > 0�;

A1t� A2 �k�2� � 0�;

A1 cosh
� ��������
�k�2�
p

2 t� A2

�
�k�2� < 0�;

(A7)

 

k�2� > 0; U� � B1 cos
� �������
k�2�

p
2

t� B2

�
�

15~k�8�A
5
1

16
�������
k�2�

p t sin
� �������
k�2�

p
2

t� A2

�
�

15~k�8�A
5
1

64k�2�
cos

�
3
� �������
k�2�

p
2

t� A2

��

�
~k�8�A

5
1

64k�2�
cos

�
5
� �������
k�2�

p
2

t� A2

��
;

k�2� � 0; U� � B1t� B2 �
~k�8�

28A2
1

�A1t� A2�
7;

k�2� < 0; U� � B1 sinh
� ������������
�k�2�

p
2

t� B2

�
�

15~k�8�A
5
1

16
������������
�k�2�

p t sinh
� ������������
�k�2�

p
2

t� A1

�

�
15~k�8�A

5
1

64k�2�
cosh

�
3
� ������������
�k�2�

p
2

t� A2

��
�

~k�8�A
5
1

64k�2�
cosh

�
5
� ������������
�k�2�

p
2

t� A2

��
;

(A8)

and constraints are given by

 k�2� > 0;
5~k�8�A

5
1

4
� k�2�B1 cos�A2 � B2� � 0;

k�2� � 0; B1 � 0;

k�2� < 0;
5~k�8�A

5
1

4
� ��k�2��B1 sinh�A2 � B2� � 0:

(A9)

For (D � 11, d � 5), solutions are

 U� �

8><>:
A1 cos�2

�������
k�5�

p
t� A2� �k�5� > 0�;

A1t� A2 �k�5� � 0�;
A1 cosh�2

������������
�k�5�

p
t� A2� �k�5 < 0�;

(A10)

 

k�5� > 0; U� � B1 cos�2
�������
k�5�

q
t� B2� �

3~k�5�A2
1

2k�5�

�
~k�5�A2

1

2k�5�
cos�2�2

�������
k�5�

q
t� A2��;

k�5� � 0; U� � B1t� B2 �
~k�5�
A2

1

�A1t� A2�
4;

k�5� < 0; U� � B1 sinh�2
������������
�k�5�

q
t� B2� �

3~k�5�A2
1

2k�5�

�
~k�5�A

2
1

2k�5�
cosh�2�2

������������
�k�5�

q
t� A2��:

(A11)

The constraints are
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 k�5� > 0; k�5�A1B1 cos�A2 � B2� � 0;

k�5� � 0; B1 � 0;

k�5� < 0; ��k�5��A1B1 sinh�A2 � B2� � 0:

(A12)

For (D � 11, d � 2) and three-dimensional Einstein
frame, the metric is
 

ds2
11 �

�
U�
U�

�
�8=3
��U�U��2��dt2 � gij�x�dxidxj��

�

�
U�
U�

�
1=3
gAB�y�dy

AdyB; (A13)

 e2A � e2n � �U�U��
2; e2� �

�
U�
U�

�
1=3
: (A14)

For (D � 11, d � 5) and six-dimensional Einstein frame,

the metric is given by
 

ds2
11 �

�
U�
U�

�
�5=6
��U�U��

1=2��dt2 � gij�x�dx
idxj��

�

�
U�
U�

�
2=3
gAB�y�dy

AdyB; (A15)

 e2A � e2n � �U�U��1=2; e2� �

�
U�
U�

�
2=3
: (A16)
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