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We derive the rate for transitions between de Sitter vacua by treating the field theory on the static patch
as a thermal system. This reproduces the Coleman-De Luccia formalism for calculating the rate, but leads
to a modified interpretation of the bounce solution and a different prediction for the evolution of the
system after tunneling. The bounce is seen to correspond to a sequence of configurations interpolating
between initial and final configurations on either side of the tunneling barrier, all of which are restricted to
the static patch. The final configuration, which gives the initial data on the static patch for evolution after
tunneling, is obtained from one-half of a slice through the center of the bounce, while the other half gives
the configuration before tunneling. The formalism makes no statement about the fields beyond the
horizon. This approach resolves several puzzling aspects and interpretational issues concerning the
Coleman-De Luccia and Hawking-Moss bounces. We work in the limit where the backreaction of matter
on metric can be ignored, but argue that the qualitative aspects remain in the more general case. The
extension to tunneling between anti-de Sitter vacua is discussed.
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I. INTRODUCTION

Although it has long been a subject of considerable
interest, the problem of transitions between field theory
vacua in curved spacetime has received renewed attention
in recent years, inspired in part by the possibility of a string
landscape containing a vast number of metastable vacua.

The problem was first addressed by Coleman and De
Luccia (CDL) [1], who generalized the flat space
Euclidean bounce formalism [2,3] for calculating the rate
at which true vacuum bubbles nucleate within a false
vacuum. When the relevant mass scales are much smaller
than the Planck mass and the flat spacetime bubble size is
small compared to the spacetime curvature, the CDL for-
malism gives a small gravitational correction to the bubble
nucleation rate, as might be expected. However, as gravi-
tational effects become larger, some unexpected features
appear that give one pause. If the initial false vacuum has
positive vacuum energy, then the matter field within the
bounce is nowhere equal to its false vacuum value, and the
bounce itself is completely insensitive to the shape of the
scalar field potential near the false vacuum. Further, the
formalism appears to involve the fields in regions beyond
the de Sitter horizon and to describe nucleation processes
that take place on a complete spacelike slice of de Sitter
spacetime, even though it is generally understood that this
‘‘somehow’’ cannot quite be so. In addition, one finds a
greater variety of bounce solutions than in the flat space-
time case, including both the homogeneous Hawking-
Moss (HM) solution [4] and families of ‘‘oscillating boun-
ces’’ [5,6]; yet, there are also examples of theories with no
CDL bounce at all.

One can view the puzzles associated with the CDL
formalism as being due to the fact that this formalism
was originally proposed by arguing from analogy with
the flat spacetime case, rather than by being explicitly
derived. As a result, even though the formalism may yield
a correct answer, it is not quite clear what question it is
answering. It is our goal in this paper to rectify this
situation. We will do this by formulating a well-defined
question, and then showing that its solution is given by the
CDL formalism. In the course of doing so, we will be led to
explanations of some of the unusual features of the formal-
ism, while other troubling aspects will be seen to disappear
when the solutions are properly interpreted.

It should be stressed that this is not simply a matter of
putting the formalism on a firmer footing. We will find that
the generally accepted scheme for obtaining from the
bounce the initial conditions for the Lorentzian evolution
after vacuum decay [1,7] is based on an incorrect under-
standing of the relation between the Euclidean and
Lorentzian spacetimes and must be modified. The correct
procedure gives these initial conditions only within the
horizon and leads, in some cases, to rather different results.

Gravity affects vacuum decay in two distinct ways. First,
it requires that the dynamics of the matter field be worked
out in a spacetime that is curved and that, if the original
state is a de Sitter vacuum, possesses horizons. Second, the
dynamics of the gravitational field itself must be consid-
ered. In this paper we will, as an initial step, consider only
the former aspect. To be able to do this in a self-consistent
manner, we consider the theory of a single scalar field
governed by a potential, such as that shown in Fig. 1,
with two unequal minima—a metastable ‘‘false vacuum’’
and a stable ‘‘true vacuum’’—but under the assumption
that the variation of the potential in the region between the
minima is small compared to its absolute value; i.e., that
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 V��top� � V��tv� � V��tv�: (1.1)

With this assumption, we can, to a first approximation,
freeze the metric degrees of freedom and treat the geome-
try as being a fixed de Sitter spacetime with a horizon
distance

 H�1 � � �

���������������������
3M2

Pl

8�V��fv�

s
: (1.2)

We will see that many of the troubling aspects of the
CDL prescription are already present in this fixed-
background limit, and can be understood without consid-
ering dynamical gravity. The extension of our methods to
the more general case will be discussed in Sec. VI.
Although we have not yet been able to extend the technical
details of our derivation, we will see that some of the
qualitative features, including the resolution of some inter-
pretational issues, are readily generalized.

It is possible to describe a portion of de Sitter spacetime,
the causal diamond or static patch, by the time-
independent metric1

 

ds2 � �

�
1�

r2

�2

�
dt2 �

�
1�

r2

�2

�
�1
dr2

� r2�d�2 � sin2�d�2�: (1.3)

Here � and � are the usual angular variables on the two-
sphere and t ranges over all real values, but r is restricted to
the range 0 � r <�, with the hypersurface r � � being
the horizon. With this fixed static background geometry,
the field theory on the static patch is a finite volume system
with a well-defined time-independent Hamiltonian.
However, because the space is curved, the Hamiltonian

density contains position-dependent factors that would be
absent in flat spacetime.

In addition, the existence of a horizon leads to a char-
acteristic temperature [8]

 TdS �
1

2��
: (1.4)

To be a bit more precise, if the field on de Sitter space is in
the Bunch-Davies state [9] corresponding to the false
vacuum, then within the static patch one will appear to
have a thermal mixed state with T � TdS. However, the
converse need not be true—the existence of such a thermal
state on the static patch does not necessarily imply any-
thing about the system beyond the horizon.

In this paper we will consider vacuum decay within the
framework of this system. In other words, we will treat the
scalar field on the static patch as a thermal system with
T � TdS. The flat spacetime, finite temperature WKB for-
malism is then readily adapted to the problem. This leads
to an algorithm for calculating the rate of vacuum transi-
tions that reproduces the CDL result, but with some critical
changes in interpretation and a new prediction for the
evolution after tunneling.

A number of previous authors have studied this problem
by applying WKB methods to the calculation of the wave
functional of the false vacuum [10–13]. Our approach
differs from these in some important aspects. First, we
very explicitly restrict our consideration to the degrees of
freedom that lie within the horizon. The remarkable fact
that the CDL formalism can be recovered from such an
approach lends strong support for our modification of the
initial conditions for post-tunneling evolution. Second, our
approach is based on a thermal analysis of the curved
spacetime field theory. This leads to a clear physical inter-
pretation of both the CDL and HM bounces, and the
relation between the two, and also provides an explanation
for some of the most troubling features of the CDL method.

We begin, in Sec. II, by reviewing the treatment of
vacuum decay in the absence of gravity, at both zero and
nonzero temperature. Next, in Sec. III, we apply these
methods to the field theory on the static patch and show
how the CDL formalism emerges. In Sec. IV we examine a
variety of characteristic bounces in light of this approach.
Next, in Sec. V, we discuss the evolution of the system in
the classically allowed regime after the tunneling process
has taken place. Finally, in Sec. VI, we summarize our
results and make some final comments.

II. TUNNELING IN FLAT SPACETIME

The bounce formalism for treating tunneling in the con-
text of a flat spacetime field theory was developed by
Coleman [2] using an approach, based on a multidimen-
sional WKB approximation [14,15], that yields the expo-
nent in the tunneling rate. The leading subexponential
prefactor terms were obtained by Callan and Coleman

tv

V

φfv φ top
φ

φ

FIG. 1. A potential with two minima.

1Our conventions are such that ds2 < 0 for timelike intervals.
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[3], using a path integral approach to the calculation of the
imaginary part of the energy of the false vacuum. Because
finite temperature field theory can be formulated in terms
of a periodic path integral, the path integral formalism is a
natural route for the extension of the tunneling calculation
to finite temperature [16,17]. However, because we are
interested in extending these results to curved spacetime,
it will turn out to be more convenient to use a WKB
approach to finite temperature tunneling; we will see that
this leads to the same periodicity requirement on the
bounce as the path integral. The difficulty with proceeding
via the path integral is not so much the technical issues
involved in calculating the determinant factors (which are
ameliorated considerably when working in a fixed-
background metric) as the fact that the dilute gas approxi-
mation used by Callan and Coleman cannot be applied
when the size of the bounce becomes comparable to the
horizon size. In addition, the WKB approach has the added
bonus of giving a much clearer physical interpretation of
the bounce.

A. Zero temperature

Consider first a particle in one dimension with dynamics
defined by the Lagrangian

 L � 1
2M _q2 �U�q�; (2.1)

with U�q� having two unequal minima. An elementary
result in quantum mechanics is that if the particle has an
energy E that is less than the height of the potential energy
barrier separating the minima, the rate for it to tunnel
through that barrier is proportional to e�B�E�, where

 B�E� � 2
Z q�2�

q�1�
dq

�������������������������������
2M�U�q� � E	

q
(2.2)

and q�1� and q�2� are the turning points where U�q� � E.
This WKB approximation can be extended to a system

with N > 1 degrees of freedom and

 L �
1

2

X
ij

Mij _qi _qj �U�q�; (2.3)

where U�q� again has two minima. The potential energy
barrier separating the two minima now exists in an
N-dimensional configuration space, so we are faced with
a multidimensional tunneling problem. To find the WKB
approximation to the tunneling rate, one considers all
possible paths that start at a point q�1�j on one side of the

barrier and end at a point q�2�j on the other side, with the
requirement that U�q�1�� � U�q�2�� � E. For each such
path P, one can calculate a tunneling exponent

 B�E; q�1�; q�2�; P� � 2
Z s2

s1

ds
��������������������������������
2�U�q�s�	 � E�

q
; (2.4)

where the parameter s along the path is defined so that

ds2 �
P
ijMijdqidqj with q�s1� � q�1� and q�s2� � q�2�.

The leading approximation to the tunneling rate is obtained
from the path and endpoints that minimize B. Taking over a
standard result in classical mechanics and inserting a few
sign changes, one readily shows that this minimization
problem is equivalent to finding a solution of the Euler-
Lagrange equations that follow from the Euclidean
Lagrangian

 LE �
1

2

X
ij

Mij _qi _qj �U�q�: (2.5)

The Euclidean time � is simply a reparametrization of the
path, with qj��1� � q�1�j and qj��2� � q�2�j . Because
dqj=d� � 0 at the end points of the path, the continuation
of the solution beyond �2 gives a �-reversed version of the
original path. The solution obtained by continuing this
back to the starting point q�1�j at �01 is known as the
‘‘bounce.’’ In particular, if qj��1� is taken to be the false
vacuum minimum itself, one finds that �1 � �1, and
hence �01 � 1. Furthermore, the value of B for the optimal
path is related to the Euclidean action

 SE �
Z �01

�1

d�LE (2.6)

of the bounce by

 B�E� � SE�qbounce� � ��
0
1 � �1�U�q

�1��

� SE�qbounce� � SE�qinit�: (2.7)

Finally, we turn to the case of tunneling within the
context of a quantum field theory. We consider a theory
of a single scalar field, with Lagrangian density

 L � �1
2@��@

��� V��� (2.8)

and V��� of the form shown in Fig. 1. It is crucial to
remember that the potential energy is not V���, but rather
the functional

 U���x�	 �
Z
d3x

�
1

2
�r��2 � V���

�
: (2.9)

The decay of the homogeneous false vacuum proceeds by a
tunneling process in which true vacuum bubbles are
nucleated. However, it is not a tunneling through the
barrier in V��� (which would correspond to a transition
from a homogeneous false vacuum to a homogeneous field
configuration on the true vacuum side of the barrier), but
rather a tunneling through the barrier in the infinite-
dimensional configuration space defined by U���x�	,
with one end of the tunneling path being the homogeneous
false vacuum and the other end being a configuration with a
bubble of approximate true vacuum embedded in a false
vacuum background.

It is a straightforward process to take over the previous
results, with the role of the discrete coordinates qj now

THERMAL DERIVATION OF THE COLEMAN-DE LUCCIA . . . PHYSICAL REVIEW D 76, 064003 (2007)

064003-3



played by the values of the field at each point in space. For
tunneling from an initial configuration �init�x�, with
U��init�x�	 � E, the tunneling exponent B�E� is obtained
by solving the Euclidean field equation

 0 �
�
@2

@�2 �r
2
�
��

dV
d�

(2.10)

subject to the conditions that

 ��x; �1� � ��x; �01� � �init�x�;

@��x; ��
@�

���������1

�
@��x; ��
@�

���������01

� 0
(2.11)

for some choice of �1 and �01. A slice through the middle of
the bounce, along the hypersurface �2 � ��01 � �1�=2,
gives the optimal point for emerging from the potential
energy barrier; i.e., the form of the optimal bubble. Thus,
��x; �2� gives the initial conditions for the classical evo-
lution of the bubble after nucleation.

If the initial configuration is the false vacuum itself, then
�1 and �01 are 
1, and ��x; � � 
1� � �fv. Because
the intermediate configurations must have the same po-
tential energy as the initial configuration, the field at
spatial infinity must also approach the false vacuum; i.e.,
��jxj�1;����fv. The tunneling exponent is then

 B � SE��bounce� � SE��fv�: (2.12)

B. Nonzero temperature

Let us now turn to the case of nonzero temperature,
beginning again with a particle with one degree of free-
dom. We will assume that the temperature T is much less
than the height of the potential energy barrier, so that a
metastable false vacuum state is possible. Since this is a
thermal system, the initial state is a mixed state.

In this thermal system, the particle need not tunnel from
the bottom of potential well, but can instead tunnel from
some thermally excited higher energy state, as illustrated in
Fig. 2. The rate for this thermally assisted tunneling is
obtained by taking a thermal average of the energy-
dependent tunneling rates [18]; i.e.,

 �tunn �
Z Etop

Efv

dEe���E�Efv�e�B�E� � e���E��Efv�e�B�E��;

(2.13)

where E� is the value of the energy that maximizes the
integrand; i.e., the value for which ��E� Efv� � B�E� is a
minimum.

More generally, with many degrees of freedom, we must
minimize

 ��E� Efv� � 2
Z s2

s1

ds
��������������������������������
2�U�q�s�	 � E�

q
(2.14)

with respect to path, endpoints, and energy. The variations

with respect to the endpoints vanish because the integrand
vanishes at both of these. From our previous discussion, we
know that minimization with respect to the path is achieved
by requiring that the path correspond to a solution of the
Euclidean Euler-Lagrange equations. Thus, it only remains
to determine the optimal energy by solving

 � � �2
d
dE

Z s2

s1

ds
��������������������������������
2�U�q�s�	 � E�

q
(2.15)

with qj�s� understood to be along a classical path. The
integral on the right-hand side depends on the energy
through the explicit appearance of E in the square root
and through the implicit energy dependences of the end
points and path. Neither of the implicit dependences con-
tribute here: as noted above, the variations with respect to
q�1�j and q�2�j vanish because the integrand is zero at the end
points; the variation with respect to the path vanishes once
the path is chosen to be a classical solution. We therefore
have
 

� � 2
Z s2

s1

ds
1��������������������������������

2�U�q�s�	 � E�
p � 2

Z s2

s1

ds
1���������������������

Mij
dqi
d�

dqj
d�

q
� 2

Z s2

s1

ds
d�
ds
� 2��1 � �2�; (2.16)

where the second equality uses the fact that we are working
with a solution of the Euclidean equations.

Equation (2.16) tells us that the passage through the
barrier must take a Euclidean ‘‘time’’ �� � �=2. We
also know that continuation of the solution past the end-
point gives a �-reversed solution back toward the starting
point. With this continuation, we have a solution that is
periodic in � with period �. Thus, the prescription for

tunnel B

U(q)

Etop

A

q

E

FIG. 2. A cross section through the potential energy barrier,
illustrating the two modes of escaping from the false vacuum:
thermal excitation to A, followed by tunneling to B; and thermal
excitation to the top of the barrier.
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calculating the rate of thermally assisted tunneling is based
on finding a solution of the Euclidean equations with
period � that has the additional property that on at least
two �-slices (which are conveniently taken to be � � 0 and
� � �=2) the dqj=d� all vanish. The tunneling exponent is
then obtained by integrating the Euclidean action for this
solution over one full period, so that

 �tunn � e��SE�bounce��SE�fv�	: (2.17)

However, there is a second possible mode for the tran-
sition. Instead of being thermally excited part of the way up
the barrier and then tunneling, the particle can be thermally
excited all the way to the top of the barrier. Up to pre-
exponential factors, the rate for this process is proportional
to the Boltzmann factor,

 �therm � e
���Etop�Efv�: (2.18)

When there is more than one degree of freedom, there
are many possible paths over the potential energy barrier.
The lowest of these dominates, with the rate governed by
the energy Esaddle of the saddle point on this path.2 This
saddle point is a stationary point of the potential energy
and is thus a time-independent solution of the ordinary
equations of motion or, equivalently, a �-independent so-
lution of the Euclidean equations of motion. Viewing it this
way, we can write

 ��Esaddle � Efv� � SE�saddle� � SE�fv�; (2.19)

where the actions are understood to be calculated over a �
interval equal to �.

Since a �-independent solution can be viewed as being
periodic with any period, the prescription to seek a
Euclidean solution with period � actually covers both
transition modes, with the dominant mode being deter-
mined by the value of the Euclidean action. Figure 3
illustrates the two types of solutions in the field theory
setting, for the case where � is somewhat larger than the
characteristic size of the zero-temperature bounce. The
bounce for thermally assisted tunneling, shown in
Fig. 3(a), is a somewhat deformed version of the zero-
temperature bounce. Note, in particular, that, in contrast
with the zero-temperature case, the initial configuration,
given by the � � 0 hypersurface, is not identically equal to
�fv. Figure 3(b) shows the saddle point solution; a slice
along any hypersurface of constant � gives the configura-
tion of a critical bubble.

It can be shown [2] that a bounce solution always exists
for the zero-temperature case; the same arguments can be
easily modified to show that a critical bubble solution of
the sort shown in Fig. 3(b) always exists. However, there is

no guarantee that the �-dependent bounce of Fig. 3(a) will
persist for all values of �. The absence of such a bounce
would correspond to a situation in which the expression in
Eq. (2.14) had no minimum, but instead was monotonically
decreasing as E varied from Efv to Esaddle.

III. THERMAL TUNNELING ON THE STATIC
PATCH

We now turn to the field theory on the static patch of de
Sitter spacetime. In terms of the coordinates and metric of
Eq. (1.3), the action for our scalar field theory takes the
form

 S �
Z
d4x

���������������
� det g

p �
�

1

2
g��@��@��� V���

�
; (3.1)

where the spatial integral is restricted to the region r <�.
If we write the three-dimensional spatial metric as hij �
gij, and define

 �gtt � 1�
r2

�2 � A�r�; (3.2)

we can rewrite this action as
 

S �
Z
dt
Z
d3x

����������
det h
p �

1

2
���������
A�r�

p �
d�
dt

�
2

�
1

2

���������
A�r�

p
hij@i�@j��

���������
A�r�

p
V���

�
�
Z
dtL: (3.3)

Putting aside for the moment the origins of this expres-
sion in a curved spacetime, we can choose to view the

(a) (b)

τ

FIG. 3. The two types of bounces at finite temperature for flat
spacetime. The shaded areas denote regions where the field is on
the true vacuum side of the barrier. In both cases the imaginary
time � runs vertically, while the horizontal direction represents
the three spatial directions. In each diagram the top and bottom
solid lines are identified, making � compact. The bounce in (a)
corresponds to thermally assisted tunneling from the approxi-
mately false vacuum configuration on the � slice represented by
the solid lines to the configuration on the � slice indicated by the
dashed line. These two configurations are connected by a series
of intermediate configurations, corresponding to the dotted lines.
The �-independent bounce in (b) corresponds to thermal excita-
tion over the barrier. A constant-� slice through this bounce gives
a critical bubble configuration, which is a saddle point on the
potential energy barrier.

2Note that all that is required here is that the path be a local
minimum among paths across the barrier. There may be higher
saddle points that are also relevant because they lead to different
final states.
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Lagrangian L as describing a field theory, on a curved
three-dimensional space, whose interactions happen to
have an extra position dependence arising from the various
factors of

����
A
p

. The energy functional for this theory is
 

E �
Z
d3x

����������
det h
p �

1

2
���������
A�r�

p �
d�
dt

�
2
�

1

2

���������
A�r�

p
hij@i�@j�

�
���������
A�r�

p
V���

�
: (3.4)

We can now immediately carry over the results of the
previous section. In particular, to study vacuum transitions
at T � TdS � 1=�2���, we look for periodic solutions to
the Euler-Lagrange equations of the Euclidean action
 

SE �
Z ��

���
d�

Z
d3x

����������
det h
p �

1

2
���������
A�r�

p �
d�
d�

�
2

�
1

2

���������
A�r�

p
hij@i�@j��

���������
A�r�

p
V���

�
: (3.5)

Note that, for later convenience, we have chosen the in-
tegral over the periodic variable � to run from ��=2 �
��� to �=2 � �� rather than from 0 to �. We will use
the convention that the hypersurface � � ���� � � ��
is taken to give the (approximately false vacuum) configu-
ration before tunneling, with the hypersurface half a period
away, at � � 0, giving the configuration after tunneling,
and thus the initial condition for the subsequent classical
evolution.

We now restore A to its role as a metric factor, but now as
part of a Euclidean metric. Thus, we define
 

~gabdxadxb � Ad�2 � hijdxidxj

�

�
1�

r2

�2

�
d�2 �

�
1�

r2

�2

�
�1
dr2

� r2�d�2 � sin2�d�2�: (3.6)

With � � ��� and � � �� identified and r ranging
between 0 and �, this is the round metric for a four-
sphere.3 More explicitly, with the identifications
 

y1 � r sin� cos�;

y2 � r sin� sin�;

y3 � r cos�;

y4 �
�����������������
�2 � r2

p
cos��=��;

y5 �
�����������������
�2 � r2

p
sin��=��

(3.7)

this is the metric on a four-sphere of radius � embedded in

five-dimensional Euclidean space. Our Euclidean action
can now be written as

 SE �
Z
d4x

����������
det ~g

p �
1

2
~gab@a�@b�� V���

�
(3.8)

and the rate for vacuum decay is

 �� e��SE�bounce��SE�fv�	: (3.9)

Let us compare this with the CDL prescription. CDL
instruct us to solve the Euclidean equations for coupled
matter and gravity. If V��� satisfies Eq. (1.1), then to
leading order one can ignore the effects of the variation
of � on the metric, which becomes that of a four-sphere of
radius �. With the background gravity thus fixed, the
equations for � are precisely those following from the
action of Eq. (3.8).

In our thermal tunneling picture we have the additional
requirement, as noted above Eq. (2.17), that d�=d� vanish
identically on the hypersurfaces � � 0 and � � ��. In
terms of the ya defined above, the union of these two
hypersurfaces is the three-sphere formed by the intersec-
tion of the y4 � 0 hyperplane with the four-sphere of
radius �. Although the existence of such a three-sphere
with vanishing � derivatives is not explicitly stated in the
CDL prescription, it follows from their assumption that the
bounce has O(4) symmetry.

Once the bounce has been found, CDL determine the
tunneling rate from the combined gravity plus matter
Euclidean action. In the fixed-background approximation
the contributions of the Einstein-Hilbert term cancel be-
tween the bounce and the homogeneous false vacuum,
leaving precisely the result in Eq. (3.9).

Thus, by treating the field on the static patch as a thermal
system, we have arrived at precisely the CDL prescription
for the vacuum decay rate. However, our approach leads to
a radically different interpretation of the bounce solution
itself. In our approach, as illustrated in Fig. 4, the hyper-
surfaces of constant � provide a foliation of the four-sphere

4

y

y

5

FIG. 4. Slices of constant � projected onto the y4-y5 plane. The
correspondence with those in the flat spacetime bounce of
Fig. 3(a) is indicated by the form of the lines. The initial and
final configurations of the tunneling path correspond to the solid
and dashed lines, respectively, while intermediate configurations
are obtained from slices along the dotted lines.

3Any other choice of the temperature would have led to a
Euclidean manifold with a conical singularity at r � �. At least
within the framework of our fixed-background approximation,
we see no inconsistency in such a situation; it just happens not to
be the one that is relevant for the thermal state encountered in
vacuum tunneling.

ADAM R. BROWN AND ERICK J. WEINBERG PHYSICAL REVIEW D 76, 064003 (2007)

064003-6



corresponding to a tunneling path (traversed in both direc-
tions) through configuration space, with the endpoints of
the path given by the hypersurfaces � � 0 and � � ��.
For each value of �, the configuration is specified only on
the region within the horizon; no reference is ever made to
quantities beyond the horizon. In the CDL description,
there is no hypersurface corresponding to the initial con-
figuration, and the entire hypersurface bisecting the
bounce—the union of our � � 0 and � � �� hypersurfa-
ces—is taken to define the final configuration after emer-
gence from the barrier, and thus the initial data for the
subsequent classical evolution. This hypersurface is inter-
preted as giving initial data on an entire spatial slice of de
Sitter spacetime, including the region outside the horizon.

We can now also understand what is perhaps the most
puzzling aspect of the CDL formalism, the fact that �
never achieves its false vacuum value on the bounce,
with the result that the bounce solution is independent of
the shape of the potential in a region near �fv. This is
because tunneling from a thermally excited state is always
preferable to tunneling from the false vacuum. As illus-
trated in Fig. 2, we can think of this thermally assisted
tunneling as a two-step process in which the field is first
thermally excited to a preferred starting configuration
�A�x�, indicated by A in the figure, and then tunnels
quantum mechanically through the barrier to a configura-
tion �B�x�. The first step depends (up to pre-exponential
factors) only on the energy difference between the false
vacuum and A, but not on any other details of the potential
energy, including the shape of V���. The second step
depends on the configurations that interpolate between
�A�x� and �B�x�; because � is nowhere equal to �fv on
any of these configurations, the details of the potential near
there never enter.4

IV. A MISCELLANY OF BOUNCES

It may be helpful to examine a variety of characteristic
bounces in the light of our approach. In all cases we will
assume that the bounce has O(4) symmetry, and in all but
the last will take the solution to be oriented so that this
symmetry corresponds to invariance under all rotations that
leave the y4-axis invariant; the solutions will then only
depend on y4. There are then two distinguished poles, at
y4 � � (r � � � 0) and at y4 � �� (r � 0, � � ��).

(1) Small CDL bounces: When the mass scales in V���
are much less than the Planck mass and the radius of
the flat space bounce is much less than �, the CDL
bounce has a region of approximate true vacuum,
centered about the pole at y4 � �, that is very
similar to the corresponding flat space bounce [see

Fig. 5(a)]. Outside this region � rapidly tends to-
ward—but never quite reaches—its false vacuum
value, with j���fvj being smallest at the antipo-
dal point, y4 � ��. The initial and final configura-
tions of the tunneling path, �A�x� and �B�x�, are
given by the three-dimensional slices � � �� (i.e.,
y4 � 0 and y5 � 0) and � � 0 (y4 
 0 and y5 � 0),
respectively. Note that these configurations, as well
as all of the interpolating configurations, overlap at
the two-sphere x4 � x5 � 0, which is just the hori-
zon, r � �. The initial configuration differs only
very slightly from the homogeneous false vacuum
(with, curiously, the deviation being greatest at the
horizon), while the final configuration has a true
vacuum bubble embedded in a background of ap-
proximate false vacuum. Apart from the fact that the
bounce corresponds to only a finite region of space,
the situation is similar to that in flat spacetime
tunneling.

(2) Large thin-wall bounces: As the mass scales in-
crease, one possibility is that the true vacuum region
of the bounce occupies a larger fraction (although
always less than half) of the four-sphere, while the
wall separating the true vacuum and false vacuum
regions remains thin. It was noted some time ago
that this bounce can be interpreted either as medi-
ating decay of the false vacuum via the nucleation of
true vacuum bubbles, or as mediating the creation of
a false vacuum region inside a true vacuum back-
ground [20]. We can now sharpen this interpretation.
In the thin-wall limit, we can assume that away from
the wall the field is exponentially close to one
vacuum or the other. The � � �� slice is then a
horizon volume within which � � �fv everywhere,
while the � � 0 slice is a horizon volume in which
there is a true vacuum bubble surrounded by a false

(b)
(a)

y

y 5

4 y

y

4

5

FIG. 5. Two possible orientations of a CDL bounce. In (a), the
bounce is centered about the pole at y4 � �, and corresponds to
nucleation via tunneling of a bubble in the center of the static
patch. In (b), the location of the bounce has been rotated by
90 degrees. The bounce now corresponds to the purely thermal
creation of a true vacuum region that intersects the horizon.

4For an illuminating related discussion in the context of a toy
model, see [19].
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vacuum background. Taking the former to be the
initial configuration and the latter to be the final one
corresponds to the standard nucleation of a true
vacuum bubble. Reversing the roles of the two slices
gives a process in which a horizon volume of true
vacuum is first thermally excited to a configuration
where the region near the horizon is in the false
vacuum and that in the center in the true vacuum,
and then tunnels through the potential barrier to a
configuration of homogeneous false vacuum. Note
that the final configuration does not contain a bubble
wall. This does not signify that the false vacuum
region covers all of space, but merely that it fills the
horizon volume and that no statement can be made
concerning the interface (beyond the horizon) be-
tween it and other regions.

(3) Thick-wall bounces: An alternative possibility as the
mass scales increases, one which is typically asso-
ciated with the case where V��� is relatively flat
near its maximum, is that the wall separating the two
phases becomes wide enough to occupy a significant
fraction of the four-sphere. This eventually leads to
a situation in which at neither of the poles is the field
near a vacuum value. Let the values of the field at the
poles be �a and �b and its value at the horizon (and
indeed everywhere on the � � ��=2 slice) be �H,
with �fv <�a < �H <�b <�tv. Starting from a
false vacuum state, say, the field thermally fluctuates
to a configuration with the field equal �H at the
horizon and �a at the center of the horizon volume,
and then tunnels through the potential energy barrier
to a configuration where the field is still �H at the
horizon, but now equal to �b at the center. As �a
and �b approach the local maximum of V at �top,
the transition increasingly becomes predominantly a
thermal excitation process rather than one of quan-
tum tunneling.

(4) Hawking-Moss bounce: The limiting case of the
thick-wall bounce is the homogeneous HM solution.
Although the original paper [4] refers to a transition
of the field over the whole universe, it has long been
understood that this cannot be the case, and that the
HM solution must really correspond to a transition
over a region of roughly horizon size. Our formal-
ism makes this precise, in that it is explicitly re-
stricted to precisely a horizon volume. The HM
solution is a �-independent solution that happens
also to be spatially constant over the horizon volume
(we will shortly encounter �-independent solutions
that are not spatially homogeneous), and so corre-
sponds to a thermal fluctuation5 to the top of the

barrier in V��� (or, more properly, to a saddle point
of the barrier in the potential energyU���x�	). It is a
curved-space analogue of the bounce illustrated in
Fig. 3(b).

(5) Remote Hawking-Moss bounces: If the potential has
more than one local maximum, then there will be
HM bounce solutions corresponding to each. The
standard expression for the transition rate, which is
unchanged in our approach, depends only on the
values of V��� at the false vacuum and at the local
maximum, and not on the separation in field space
between the two. If this were correct, then in a
system with many such local maxima (e.g., a string
landscape with an exponentially large number of
vacua) the lifetime of any de Sitter vacuum could
be quite short. In Ref. [24] it was argued, from a path
integral point of view, that these bounces do not
contribute. The same conclusion can be reached
from the WKB approach we are using here, since
it is clear that the only �-independent bounces that
are relevant are those corresponding to saddle points
in the barrier that immediately surrounds the initial
metastable state.

(6) Oscillating bounces: For some choices of potential
the CDL bounce equations admit solutions in which
the field oscillates back and forth across the top of
the barrier in V��� as one moves from one pole of
the four-sphere to the other. Examined more closely,
these are typically found to have two regions of
approximate vacuum (either true or false), one about
each of the poles, separated by a region in which the
field oscillates with a relatively small amplitude
about the top of the barrier [5,6]. If the initial data
after tunneling were obtained from a complete slice
through the bounce, these would correspond to tran-
sitions that created not one but two vacuum bubbles,
centered on antipodal poles of the de Sitter space
and separated by a region of spatially oscillating
field. Once it is recognized that this slice must be
divided into two parts, one for the configuration
before tunneling and one for the configuration after,
a much more natural picture emerges. The oscillat-
ing bounce corresponds to a tunneling process from
an excited horizon volume configuration containing
a vacuum region surrounded by a region with the
field near the top of the barrier, through a series of
intermediate configurations with the field every-
where near the top of the barrier, and finally to a
configuration that is qualitatively like the original
one except that the final vacuum region might (or
might not) be the opposite one from the original. We
will have a bit more to say about the contribution of
these bounces in Sec. VI.

(7) No CDL bounce: If V��� is sufficiently flat near its
maximum, it can happen [4,25] that there is no CDL

5In the thermal approach to the problem that we are taking, the
stochastic interpretation of the HM bounce [21–23] may be
viewed as one mechanism by which a thermal distribution of
configurations is established.
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bounce at all, but only a HM solution.6 This simply
corresponds to a situation, like that discussed at the
end of Sec. II, in which the rate for thermally
assisted tunneling is a monotonically increasing
function of E.

(8) Rotated bounces: In all of the previous cases we
oriented the bounce so that it was symmetric about
the y4-axis. This implied that the configurations
before and after tunneling were symmetric about
the center of the horizon volume. However, this
need not be the case. The only condition on the
symmetry axis is that it be such that the
�-derivatives of the field vanish on the � � 0 and
� � �� hypersurfaces. This only requires that this
axis be perpendicular to the y5-axis. Rotating the
symmetry axis away from the y4-axis gives a bounce
that is not centered within the horizon volume of
interest, a possibility that one should expect. The
surprise comes when the symmetry axis is taken to
be perpendicular to the y4-axis (e.g., along the
y3-axis), as shown in Fig. 5(b). In this case, the
bounce has no �-dependence at all. It is then analo-
gous to the critical bubble solution of Fig. 3(b), and
corresponds to a saddle point of the static patch
potential energy. Thus, by simply rotating the
bounce we have gone from a tunneling transition
to a purely thermal one. In contrast with the flat
spacetime case, there is no sharp distinction be-
tween the two.

V. CLASSICAL EVOLUTION AFTER TRANSITION

An important feature of the bounce formalism is that it
not only yields a tunneling rate, but also gives initial
conditions for the classical evolution after tunneling. In
addition, via a rotation from Euclidean to Lorentzian
spacetime (supplemented in some regions by analytic con-
tinuation), it yields an actual solution of the Lorentzian
field equations.

In flat spacetime the relation between the Euclidean and
Lorentzian solutions is relatively simple. Let us describe
these by Cartesian coordinates �x; y; z; �� and �x; y; z; t�,
respectively. Now suppose that one is given a solution
�E�x; �� of the Euclidean field equation with the property
that @�E=@� � 0 everywhere on the hypersurface � � 0.
One can then define initial data for the Lorentzian equation
by taking �L�x; 0� � �E�x; 0� and @�L=@t � 0 every-
where on the hypersurface t � 0.

Comparing the Euclidean and Lorentzian field equa-
tions, one immediately sees that �L�x; t� is the analytic
continuation of �E�x; ��, with t � i�. Since one does not
usually have a closed-form expression for the Euclidean

solution, the actual implementation of this continuation
over all of the Lorentzian spacetime will, in general, re-
quire an explicit solution of the field equations. However,
there may be regions of spacetime where the analytic
continuation implies equalities between the Euclidean
and Lorentzian solutions. For example, if the Euclidean
solution is a function only of sE �

�����������������
x2 � �2
p

, then the
Lorentzian solution is a function only of sL �

����������������
x2 � t2
p

,
and its values in the part of spacetime lying outside the
light cone of the origin can be read off directly from the
Euclidean solution.

It should be stressed that the above are merely mathe-
matical statements about solutions of differential equa-
tions. Their physical relevance depends on an additional
fact, namely, that �L�x; 0� � �E�x; 0� actually is the con-
figuration from which the classical post-tunneling system
evolves.

There are some complicating factors when we general-
ize this procedure to de Sitter spacetime. First, in contrast
with the flat Minkowski case, where the Euclidean space
and Lorentzian spacetime are both topologically R4, the
Euclidean space and Lorentzian spacetime now have dif-
ferent topologies. Second, and more importantly, there are
a number of ‘‘natural’’ ways of putting coordinates on the
Euclidean space and then continuing them to the
Lorentzian spacetime.

To see the first, recall that de Sitter spacetime may be
defined as the hyperboloid

 �2 � �y1�2 � �y2�2 � �y3�2 � �y4�2 � �y5�2 (5.1)

in a five-dimensional spacetime with Minkowskian metric

 ds2 � �dy1�2 � �dy2�2 � �dy3�2 � �dy4�2 � �dy5�2:

(5.2)

Its natural Euclidean counterpart is the four-sphere of
radius � in five-dimensional Euclidean space.

Of the various coordinate systems that can be put on the
four-sphere, two are of particular relevance to us. The first
is the generalized Hopf coordinates, defined by Eq. (3.7), in
terms of which the metric on the four-sphere is given by the
expression in Eq. (3.6) or, if we define� � sin�1�r=��, by

 ds2 � cos2�d�2 ��2�d�2 � sin2��d�2 � sin2�d�2�	:

(5.3)

These coordinates give an S2 � S1 foliation of the four-
sphere. Making the replacement �! it gives

 ds2 � �cos2�dt2 ��2�d�2 � sin2��d�2 � sin2�d�2�	;

(5.4)

which is equivalent to the metric of Eq. (1.3). With coor-

6Note that flatness at the maximum is a necessary, but not a
sufficient condition for the nonexistence of a CDL bounce. For
examples of flat potentials with CDL bounces, see Refs. [6,26].
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dinates restricted to real values, this covers only a portion
of de Sitter spacetime, the causal diamond of the point
y1 � y2 � y3 � y5 � 0, y4 � �.

The second is the hyperspherical coordinates defined by

 

y1 � � sin	 cos�0 sin� cos�;

y2 � � sin	 cos�0 sin� sin�;

y3 � � sin	 cos�0 cos�;

y4 � � cos	;

y5 � � sin	 sin�0:

(5.5)

The corresponding metric is

 ds2��2d	2��2sin2	�d�02�cos2�0�d�2�sin2�d�2�	:

(5.6)

These coordinates foliate the four-sphere with three-
spheres. The replacement �0 ! it0 takes this to the
Lorentzian metric

 

ds2��2d	2��2sin2	��dt02�cosh2t0�d�2�sin2�d�2�	:

(5.7)

Again, real values of the coordinates cover only a portion
of the de Sitter spacetime,7 in this case the region where
jy4j � �. These are the coordinates used by CDL. They
are particularly convenient for studying O(4)-symmetric
bounces, because (with appropriate orientation of axes)
this symmetry is equivalent to the statement that the fields
depend only on 	.

These two sets of coordinates define different hyper-
surfaces of constant Euclidean time. For the former, these
are half three-spheres (or, equivalently, three-dimensional
balls bounded by two-spheres). For the latter, these hyper-
surfaces are full three-spheres. Visualized in two fewer
dimensions, the former are semicircles of fixed longitude,
while the latter are circles of fixed latitude, with the defin-
ing poles rotated 90� in going from one case to the other.
The constant � and constant �0 hypersurfaces do not gen-
erally coincide. The one exception is the hypersurface �0 �
0 which, as was noted previously, is the union of the
hypersurfaces � � 0 and � � ��.

In the CDL bounce, @�=@�0 vanishes everywhere on the
�0 � 0 hypersurface. Mapping this hypersurface onto the

three-sphere t0 � 0 in de Sitter spacetime and continuing
this solution via �0 ! it0 certainly gives a solution of the
Lorentzian field equations. However, this solution is not
the physically relevant one, because the configuration on
emerging from tunneling is specified by the � � 0 slice of
the bounce. This maps onto the de Sitter t � 0 hypersur-
face, which is only half of the t0 � 0 hypersurface, namely,
the portion lying within a horizon radius of the point Pwith
coordinates y1 � y2 � y3 � y5 � 0, y4 � �. The data
outside the horizon, on the remainder of the hypersurface,
is not specified. Hence, the future evolution of � cannot be
determined everywhere, but only in the causal diamond of
P, which happens to be precisely the region covered by the
continuation of the Hopf coordinates. It is only this re-
striction of the continued CDL solution that is physically
meaningful.

Because the field on the � � �� slice is just the con-
tinuation of the bounce solution from the � � 0 slice, it
might seem that by keeping only the latter we are need-
lessly discarding initial data on half of the de Sitter space.
This is not so. Considered in isolation, the data on any
spacelike hypersurface are completely unconstrained. The
fact that the data on one part of the hypersurface are related
to an interesting Euclidean solution implies nothing at all
about the data on the remainder of the hypersurface. As our
derivation of the CDL decay rate makes clear, the bounce
solution only gives information about the fields within the
static patch. Outside this patch, any data are possible.

When written in terms of the hyperspherical coordinates
of Eq. (5.5), O(4)-symmetric bounces that lie at the center
of the causal patch (i.e., that are centered about the point P)
are functions solely of 	, and thus are determined (in any
coordinate system) solely by the value of y4. For treating
bounces that are not centered about the point P, it is more
convenient to use a rotated set of hyperspherical coordi-
nates, such as those defined by

 y1 � � sin ~	 cos~�0 sin~� cos ~�;

y2 � � sin ~	 cos~�0 sin~� sin ~�;

y3 � ��cos
 sin ~	 cos~�0 cos~�� sin
 cos ~	�;

y4 � ��sin
 sin ~	 cos~�0 cos~�� cos
 cos ~	�;

y5 � � sin ~	 sin~�0

(5.8)

(with 
 some fixed angle), so that the field still depends
only on the value of a single variable, in this case ~	. In
particular, the choice 
��=2 corresponds to the
�-independent bounces discussed at the end of Sec. IV, as
can be confirmed by comparison with Eq. (3.7). These de-
pend only on y3, and so after rotation to Lorentzian space
are independent of t. In other words, they are static (but
unstable) solutions when viewed in static de Sitter coor-
dinates, in agreement with their interpretation as saddle

7Although not especially relevant for our purposes, there are
coordinate systems on the four-sphere that cover the full de Sitter
spacetime after the rotation to Lorentzian time. One such is
obtained from the hyperspherical coordinates above by inter-
changing y4 and y5, shifting 	 to 	� �=2, and then interpreting
	, and not �0, as the Euclidean time.
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points of the potential energy. In other coordinate systems,
on the other hand, these solutions are time dependent.

VI. CONCLUDING REMARKS

In this paper we have provided the question for CDL’s
answer. We have shown that their prescription for calculat-
ing transition rates between de Sitter vacua can be obtained
by considering only the field degrees of freedom lying
within the horizon-sized static patch. Indeed, because no
reference is made to data outside the causal diamond, it is
not necessary to assume that spacetime is globally de Sitter
(which it certainly is not) or, in fact, to make any assump-
tion about conditions beyond the horizon.

Our approach clarifies the meaning of the bounce solu-
tion itself. We see that, completely in parallel with the flat
spacetime case, the bounce gives a sequence of spatial
slices interpolating between two configurations that are
turning points on opposite sides of the potential energy
barrier. As a result, although we recover precisely the CDL
result for the transition rate, we differ from them, and from
other previous treatments (including Ref. [7]), concerning
the extraction of the post-tunneling initial conditions from
the bounce. As we have seen, these are specified only
within the static patch, and not over an entire spacelike
hypersurface of de Sitter space. In particular, our approach
gives a crisp and unambiguous explanation of why the HM
solution only refers to a horizon volume.

The thermal context of our derivation shows that the
CDL bounce should be understood as a process of ther-
mally assisted tunneling in which the tunneling takes place,
not from the ground state itself, but from a thermally
excited state. This explains both why � never achieves
its false vacuum value on the bounce, and why the bounce
solution and its action are independent of the details of the
V��� near �fv. It also leads to a natural understanding of
why some potentials admit no CDL bounces at all.

Our results also clarify the meaning of the oscillating
bounce solutions which, under the previous interpretation,
would seem to correspond to the emergence of a configu-
ration with two vacuum bubbles. We now see that these
bounces actually specify a path though configuration space
that connects two thermally excited horizon volume con-
figurations, each of which contains a single vacuum bub-
ble. But, at the same time, we now have a clear argument,
based on the counting of negative eigenvalues, for dis-
counting these. For the flat spacetime problem, the path
integral approach depends on the fact that the fluctuations
about the bounce include one mode with a negative eigen-
value, to provide the factor of i needed to give the energy of
the false vacuum an imaginary part. Although the factors of
i would also come out correctly if there were 4n� 1
negative eigenvalues, the WKB approach shows that boun-
ces with more than one negative mode must be discarded
because they correspond to tunneling paths that are only
saddle points for the tunneling exponent B; i.e., there is a

linear combination of these modes that gives a continuous
variation of the tunneling path that lowers8 B. Now that we
have an extension of the tunneling path approach to the
curved spacetime problem, we see unambiguously that
bounces with multiple negative eigenvalues should not be
included. Since oscillating bounces always have multiple
negative eigenvalues [32,33], they must be excluded.

We can also see that similar remarks apply to the HM
solution when it has more than one negative eigenvalue
[i.e., when V00���>4��2 at the top of the barrier]. When it
has only one negative eigenvalue, the HM solution corre-
sponds to a local minimum in the barrier surrounding the
false vacuum. Any additional negative eigenvalues denote
the existence of directions in which the barrier decreases,
thus indicating that there must be some lower saddle point
along the top of the barrier. This saddle point is a spatially
inhomogeneous static solution corresponding to a rotated
bounce of the sort described in Sec. IV. This explains why
the appearance of multiple negative modes about the HM
bounce is always accompanied by the appearance of a new
CDL solution [6]. (Note, however, that the existence of a
CDL solution does not necessarily imply that the HM
solution has multiple negative eigenvalues. There are po-
tentials for which a HM solution with just one negative
eigenvalue coexists with a CDL bounce, so that there are
two competing modes for completing the transition.)

Our approach can be applied to transitions in anti-de
Sitter spacetime, again under the assumption that the
variation in the potential between the two vacua is small
compared to its absolute value. Because there is no hori-
zon, the tunneling problem in the fixed-background limit is
analogous to that in flat spacetime, with the Euclidean time
taking on all real values and no periodicity condition. As is
well known, for certain choices of potentials there is no
bounce solution connecting the true and false vacua [1,34].
This can be understood by recalling that at zero tempera-
ture the tunneling path must connect the initial vacuum
with a configuration of equal energy. In flat spacetime this
is always possible, because a bubble of true vacuum can
always be made large enough that the energy gain from
converting false vacuum to true compensates for the energy
in the bubble wall. This is not always so in anti-de Sitter
space, because for a radius much greater than the curvature
length the volume and area grow at the same rate. Although
there is a spatially homogeneous configuration on the true
vacuum side of the barrier that has the same energy as the
homogeneous false vacuum, it is inaccessible because the
two are separated by an infinite potential energy barrier,
just as are degenerate field theory vacua in flat spacetime.

Clearly the primary issue to be addressed is the exten-
sion of the method to the more general case, where the

8This is the essence of the argument demonstrating [27] that in
flat spacetime the bounce of lowest action has precisely one
negative eigenvalue, a result that has been extended to the case
with gravity [28–31].
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approximation of a fixed background geometry is not
applicable. Doing this will require the resolution of some
significant technical issues. However, we have seen that the
problematic aspects of the CDL formalism that were de-
scribed in the introduction can be understood even when
the gravitational background is taken to be fixed, and we
expect these qualitative features to persist when the gravi-
tational degrees of freedom are included. In particular, the
configuration after tunneling should still be determined
only on a causal region, and should still be obtained from
a partial, not a full, slice through the CDL bounce. We hope
to return to this in a future publication.
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