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The averaged null energy condition (ANEC) requires that the integral over a complete null geodesic of
the stress-energy tensor projected onto the geodesic tangent vector is never negative. This condition is
sufficient to prove many important theorems in general relativity, but it is violated by quantum fields in
curved spacetime. However there is a weaker condition, which is free of known violations, requiring only
that there is no self-consistent spacetime in semiclassical gravity in which ANEC is violated on a
complete, achronal null geodesic. We indicate why such a condition might be expected to hold and show
that it is sufficient to rule out closed timelike curves and wormholes connecting different asymptotically
flat regions.
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I. INTRODUCTION

General relativity alone allows any smooth Lorentzian
manifold to be a spacetime. Given a desired spacetime
geometry, one simply solves Einstein’s equations in re-
verse to determine the stress-energy tensor Tab needed to
produce it. Thus any restrictions on exotic phenomena,
such as wormholes or time machines, must be given in
terms of energy conditions that restrict the set of possible
stress-energy tensors.

One would hope that such conditions are satisfied in
semiclassical gravity, i.e., that every quantum state would
satisfy a condition on hTabi, where the angle brackets
denote the quantum mechanical average. Unfortunately,
all the conditions usually considered are known to be
violated by quantum fields in curved spacetime. The weak-
est such condition is the averaged null energy condition
(ANEC), which requires that

 

Z
�
Tabk

akb > 0; (1)

where the integral is taken over a complete null geodesic �
with tangent vector ka. In flat space, this condition has been
found to be obeyed by quantum fields in many back-
grounds where one might expect it to be violated, such as
a domain wall [1] or a Casimir plate with a hole [2]. The
latter result has been generalized to arbitrary Casimir
systems, as long as the geodesic does not intersect or
asymptotically approach the plates [3]. However, a quan-
tum scalar field in a spacetime compactified in one spatial
dimension or in a Schwarzschild spacetime around a black
hole violates ANEC [4].

We will therefore consider a weaker condition, which for
clarity we will call the self-consistent achronal averaged
null energy condition:

Condition 1 (self-consistent achronal ANEC)—There is
no self-consistent solution in semiclassical gravity in
which ANEC is violated on a complete, achronal null
geodesic.

We conjecture that all semiclassical systems obey self-
consistent achronal ANEC.

There are two changes here from the usual ANEC. The
first is that we require it to hold only on achronal geodesics
(those that do not contain any points connected by a time-
like path). This requirement avoids violation by compacti-
fied spacetimes and Schwarzschild spacetimes, as
discussed in Sec. II. But for proving theorems, this restric-
tion is generally unimportant, as discussed in Sec. IV. The
null geodesics used in the proofs are generally those which
represent the ‘‘fastest’’ paths from one place to another or
those which are part of a horizon separating two parts of
spacetime that have different causal relationships to some
certain region. To play either of these roles, geodesics must
be achronal.

The second change is that we are no longer discussing
the stress-energy tensor of the fluctuating quantum field
separately from the stress-energy tensor of the background.
Instead, we consider a situation in which Einstein’s equa-
tion relates the spacetime curvature to the full stress-energy
tensor, comprising both the classical contribution from
ordinary matter and the induced quantum contribution
one obtains in the background of this curvature. This
approach avoids a potential violation due to the scale
anomaly, as discussed in Sec. III.

The idea of requiring ANEC to hold only on achronal
geodesics appears to have been introduced by Wald and
Yurtsever [5], who proved Condition 1 for a massless scalar
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field in 1� 1 dimensions. In that case, however, all geo-
desics are achronal unless the spacetime is periodic in
space, in which case no geodesics are achronal. The idea
of not requiring ANEC to hold on test fields but only in a
self-consistent system appears to have been introduced by
Penrose, Sorkin, and Woolgar [6]. Self-consistent systems
were studied extensively by Flanagan and Wald [7].

We restrict this analysis to semiclassical gravity, mean-
ing that Condition 1 should be expected to hold only in
cases where the curvature is well below the Planck scale,
where a semiclassical analysis of a quantum field on a
classical curved space background is applicable. This con-
dition eliminates classical violations of ANEC [8], because
they are obtained by increasing the fields to Planck scale
values. This process increases the effective gravitational
coupling G through a region where it diverges, and thus
clearly leaves the semiclassical regime.

An immediate consequence of Condition 1 is the
following:

Lemma 1—In a generic spacetime obeying Condition 1,
there are no complete, achronal null geodesics.

By a generic spacetime we mean one that obeys the null
generic condition, which states that every complete null
geodesic contains a point where kakbk�cRd�ab�ekf� � 0,
where ka is the tangent vector. This condition says that
every null geodesic is affected by some matter or tidal
force. In such a spacetime, every complete null geodesic
that obeys ANEC has a pair of conjugate points [9] and
thus is chronal [10].

Why should one believe that self-consistent achronal
ANEC holds, when other conditions have failed? First of
all, no violations are known, as we discuss below. But we
also suggest that self-consistent achronal ANEC can be
proved along the lines of Ref. [3]. That paper showed that
ANEC holds for a minimally coupled scalar field on a
geodesic that travels in a tube of flat space embedded in
an arbitrary curved spacetime, assuming that the causal
structure of the tube is unaffected by the exterior space-
time. This last condition guarantees that the geodesic is
achronal. We expect that any spacetime could be slightly
deformed in the vicinity of a given geodesic to produce the
necessary tube, so that self-consistent achronal ANEC
could be proved along similar lines, but such a proof will
have to await future work.

II. EXPLICIT COUNTEREXAMPLES TO ANEC

To our knowledge, there are two specific spacetimes in
which ANEC has been explicitly calculated and found to
be violated. The first is Minkowski space compactified in
one spatial dimension. For example, one could identify the
surfaces z � 0 and z � L. The resulting situation is very
much analogous to the Casimir effect. ANEC is violated on
any geodesic that does not remain at constant z. However,
no such geodesic is achronal. Since the system is invariant
under all translations and under boosts in the x and y

directions, it suffices to consider the geodesic through the
origin in the z direction. This returns infinitely often to x �
y � z � 0, and thus is chronal.

The second known violation is in Schwarzschild space-
time, in particular, in the Boulware vacuum state [4]. But
every complete geodesic in the Schwarzschild spacetime is
chronal,1 so self-consistent achronal ANEC is (trivially)
satisfied.

In addition, Flanagan and Wald [7] found violations of
ANEC in self-consistent perturbation theory about
Minkowski space. Although they stated ANEC in the
achronal form, they did not discuss the question of whether
the ANEC violations that they found were on chronal or
achronal geodesics.

With pure incoming states, they found that the ANEC
integral vanished, but at second order ANEC could be
violated. In this case, the geodesics in question are chronal.
Almost all first-order perturbations obey the generic con-
dition, and a complete null geodesic satisfying the generic
condition with ANEC integral zero will have conjugate
points. Thus at first order, almost all geodesics are chronal,
and is not necessary to go to second order. However, in the
case of mixed incoming states they found ANEC violations
at first order, and in this case we cannot be sure whether the
geodesics are chronal or not.

III. ANOMALOUS VIOLATION OF ANEC

Visser [11], expanding upon the added note in Ref. [5],
points out that the stress-energy tensor has anomalous
scaling. If we make a scale transformation,

 g! �g � �2g (2)

then

 Tab � �g� � ��4�Tab�g� � 8aZab ln��; (3)

where a is a constant depending on the type of field under
consideration, and

 Zab � �rcr
d � 1

2R
d
c�C

ca
db: (4)

Thus if � is some geodesic with tangent ka,

 

Z
�
Tab� �g�k

akb � ��4�T� � 8a ln�J��; (5)

where

 T� �
Z
�
Tab�g�k

akb (6)

is the original ANEC integral, and

1The radial geodesic is achronal but not complete. In the
Schwarzschild metric, kakbk�tRr�ab�tkr� � ��3M=r

3� sin�,
where � is the angle between the direction of k and the radial
direction. Thus the null generic condition holds for any nonradial
motion, so any complete geodesic contains conjugate points and
thus is chronal.
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 J� �
Z
�
Zabk

akb: (7)

Thus if J� does not vanish, there will be a rescaled version
of this spacetime in which J� dominates T�, so that ANEC
is violated. However, the necessary rescaling is enormous.
For example, for a scalar field, a � 1=�2880�2�. Thus if
the initial J� and T� are of comparable magnitude, we will
need � of order exp�2880�2�. If J� < 0, then the rescaling
is contraction, and the curvature radius will become far less
than the Planck length, so semiclassical analysis (including
that used to derive the expression for the anomaly in the
first place) will not be applicable. If J� > 0, then the
rescaling is dilation. In that case, the curvature radius of
the spacetime is increased by �, so the Einstein tensor Ga

b
is multiplied by ��2, while the stress-energy tensor Tab is
multiplied by ��4. Thus Tab is infinitesimal compared to
Ga
b and so cannot contribute to a self-consistent spacetime

with achronal geodesics. In either case, then, this phe-
nomenon does not violate self-consistent achronal ANEC
as formulated above.

Alternatively, as pointed out in [11], one can implement
the anomalous scaling by changing the renormalization
scale �. However, the result of such a drastic change in
scale is a theory vastly different from general relativity,
since higher-order terms in the renormalized Lagrangian
now enter with large coefficients. Such a situation is also
far from the domain of validity of the semiclassical
approximation.

IV. PROOFS USING SELF-CONSISTENT
ACHRONAL ANEC

Several theorems in general relativity have been proved
using ANEC (or some variation thereof) as a premise. The
proofs of these theorems only require that ANEC hold on
achronal geodesics, so they apply equally when the prem-
ise is replaced by Condition 1. In fact we can rule out
wormholes connecting different regions and time machine
construction using only Lemma 1.

A. Topological censorship

Topological censorship theorems state that no causal
path can go through any nontrivial topology. They rule
out such things as traversable wormholes. We use the
formulation of Friedman, Schleich and Witt [12] with
Condition 1 instead of regular ANEC. We must also restrict
ourselves to simply connected spacetimes, which means
that the wormholes we rule out are only those which
connect one asymptotically flat region to another, not those
which connect a region to itself.

Theorem 1 (Topological censorship)—Let M, g be a
simply connected, asymptotically flat, globally hyperbolic
spacetime satisfying Condition 1 and the generic condi-
tion. Then every causal curve from past null infinity (I�)

to future null infinity (I�) can be deformed to a curve near
infinity.

Friedman and Higuchi [13] (see also [6]) outline a
simple proof of this theorem which applies equally well
in our context. Suppose there is a causal curve � from I�

to I� that cannot be deformed to a curve near infinity
(because it goes through a wormhole, for example). It is
then possible to construct a fastest causal curve �0 homo-
topic to �, where one curve is (weakly) ‘‘faster’’ than
another if it arrives at I� in the causal past and departs
from I� in the causal future of the other. Such a fastest
causal curve must be a complete null geodesic. Since M is
simply connected, if �0 were chronal we could deform it to
a timelike curve, and then to a faster curve. Thus �0 is an
achronal, complete null geodesic, but such a geodesic is
ruled out by Lemma 1.

One can see the necessity of simple connectedness (or
some other additional assumption) by considering the fol-
lowing example.2 Let M be a static spacetime with a single
asymptotically flat region and a wormhole connecting the
region to itself, and suppose the throat of the wormhole is
longer than the distance between the mouths on the out-
side. Any causal path through the wormhole emerges in the
future of the place where it entered, and thus is not achro-
nal. We can still find the fastest paths through the worm-
hole, but they are chronal. This can happen because the
timelike connections between points on such a path are not
in the same homotopy class as the path itself.

B. Closed timelike curves

The first use of global techniques to rule out causality
violation was by Tipler [14]. His theorem and proof trans-
fer straightforwardly to self-consistent achronal ANEC.

Theorem 2 (No construction of time machines—Tipler
version)—An asymptotically flat spacetime M, g cannot
be null geodesically complete if (a) Condition 1 holds on
M, g, (b) the generic condition holds on M, g, (c) M, g is
partially asymptotically predictable from a partial Cauchy
surface S, and (d) the chronology condition is violated in
J��S� \ J��I��.

In order for the chronology condition to be violated (i.e.,
in order for there to be closed timelike curves), there must
be a Cauchy horizon H��S�, which is the boundary of the
region D��S� that is predictable from conditions on S. The
Cauchy horizon is composed of a set of null geodesic
‘‘generators.’’ Tipler [14] shows that conditions (c) and
(d) imply that there is at least one such generator � which
never leaves H��S�. If the spacetime were null geodesi-
cally complete, then � would be a complete null geodesic
lying in H��S�. No point of H��S� could be in the chro-
nological future of any other such point, so � would be a
complete, achronal null geodesic. But Lemma 1 shows that

2We thank Larry Ford for pointing out this counterexample.
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no such geodesic can exist if conditions (a) and (b) are
satisfied.

A similar theorem was proved by Hawking [15], which
we can similarly extend.

Theorem 3 (No construction of time machines—
Hawking version)—Let M, g be an asymptotically flat,
globally hyperbolic spacetime satisfying self-consistent
achronal ANEC and the generic condition, with a partial
Cauchy surface S. Then M, g cannot have a compactly
generated Cauchy horizon H��S�.

The Cauchy horizon is compactly generated if the gen-
erators, followed into the past, enter and remain within a
compact set. Hawking [15] shows that in such a case, there
will be generators which have no past or future end points.
As above, such generators would be complete, achronal
null geodesics, which cannot exist under the given
conditions.

C. Positive mass theorems

Penrose, Sorkin, and Woolgar [6] proved a positive mass
theorem based on ANEC. Their proof depends only on the
condition that every complete null geodesic has conjugate
points. As they point out, it is sufficient to require that
every achronal, complete null geodesic has conjugate
points, and thus that there are no such geodesics.

D. Singularity theorems and superluminal
communication

Galloway [16] and Roman [17,18] showed that a space-
time with a closed trapped surface must contain a singu-
larity if ANEC holds, but the ANEC integral is taken not on
a complete geodesic, but rather on a ‘‘half geodesic’’
originating on the surface and going into the future. The
argument depends only on the fact that any such half
geodesic must have a point conjugate to the surface within
finite affine length. But if the half geodesic were chronal,
then it would have such a conjugate point. Thus a sufficient
premise would be that every achronal half geodesic must
satisfy ANEC.

The problem with this ‘‘half achronal ANEC’’ condition
is that it does not hold for quantum fields, even in flat
space. A simple example is a minimally coupled scalar
field in flat space with Dirichlet boundary conditions in the
x-y plane. Consider a null geodesic in the positive z direc-
tion starting at some z � z0 > 0. On this geodesic,
Tabkakb � �1=�16�2z4�, so the half ANEC integral can
be made arbitrarily negative by making z0 small. While this
system is not self-consistent (nor does it obey the generic
condition), it is hard to imagine that a self-consistent
version could not be created, for example, using a domain

wall [1]. Thus our weakened version of ANEC is just as
effective as the standard one, but in either case it is neces-
sary to add additional qualifications to the singularity
theorems in order for them to be obeyed by quantum fields.

No-superluminal-communication theorems are similar
to singularity theorems. Reference [19] defined a super-
luminal travel arrangement as a situation in which a central
null geodesic leaving a flat surface arrives at a destination
flat surface earlier than any other null geodesic, and proved
that such a situation requires weak energy condition vio-
lation. The argument is that the null geodesics orthogonal
to the surface are parallel when emitted, but diverge at the
destination surface, and thus must be defocused. Such
defocussing means that ANEC must be violated, with the
integral along the path from the source to the destination.

Since a chronal geodesic could not be the fastest causal
path from one point to another, it is sufficient to require that
ANEC holds on achronal partial geodesics. But once again,
this principle is easily violated. An example using the
Casimir effect is discussed in Ref. [19]. So, as with singu-
larity theorems, self-consistent achronal ANEC is an ade-
quate substitute for ordinary ANEC, but additional
constraints are necessary to rule out superluminal
communication.

V. DISCUSSION

A long-standing open question in general relativity is
what principle—if any—prevents exotic phenomena such
as time travel. Standard energy conditions on the stress-
energy tensor, such as ordinary ANEC, provide well-
motivated means for restricting exotic phenomena, but
suffer from known violations by simple quantum systems.
We have discussed here an improved energy condition,
self-consistent achronal ANEC. It is strong enough to
rule out exotic phenomena as effectively as ordinary
ANEC, but weak enough to avoid known violations. The
key qualification is the restriction to achronal geodesics,
which both disallows several known violations of ordinary
ANEC and is a necessary condition to apply techniques
that have been used to prove ANEC for models in flat
space.
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