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We analyze the effect of variation of fundamental couplings and mass scales on primordial nucleo-
synthesis in a systematic way. The first step establishes the response of primordial element abundances to
the variation of a large number of nuclear physics parameters, including nuclear binding energies. We find
a strong influence of the n� p mass difference (for the 4He abundance), of the nucleon mass (for
deuterium), and of A � 3, 4, 7 binding energies (for 3He, 6Li, and 7Li). A second step relates the nuclear
parameters to the parameters of the standard model of particle physics. The deuterium, and, above all, 7Li
abundances depend strongly on the average light quark mass m̂ � �mu �md�=2. We calculate the
behavior of abundances when variations of fundamental parameters obey relations arising from grand
unification. We also discuss the possibility of a substantial shift in the lithium abundance while the
deuterium and 4He abundances are only weakly affected.
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I. INTRODUCTION

The constancy over space and time of the coupling
strengths and particle masses in the standard model of
particle physics is an assumption that should be tested.1

If a variation existed, it would violate the condition of local
position invariance contained in the Einstein equivalence
principle of general relativity: nongravitational experi-
ments measuring the same quantities at different times
would give different results. Within a relativistically co-
variant setting, a variation arises due to the coupling of
standard model particles to a scalar field whose cosmo-
logical value depends on time [2,3].

Dynamical dark energy or quintessence [4,5] is precisely
due to a scalar field whose value continues to vary in recent
cosmological epochs. Thus the possibility of time-varying
couplings has been discussed [6] since the first suggestions
of dynamical dark energy. Related ideas concern the dila-
ton or time-varying moduli fields in string theory [7]. Many
dark energy candidates in higher-dimensional or string
theories can be excluded because the time variation of
couplings is too strong. On the other hand, a detection of
time-varying couplings would be a strong hint in favor of a
dynamical dark energy, explaining the renewed interest in
this subject [8–13].

Such investigations have recently been further motivated
by possible signals of a nonzero variation at redshifts about
0.5–4, due to astrophysical absorption spectra which de-
viate from those found in the laboratory. By choosing the
transitions to be measured, one can achieve sensitivity at
the 10�5 level to the fine structure constant �, the proton-
electron mass ratio � � mp=me [14], the proton gyromag-
netic ratio gp, and various combinations of these [15]. The
current observational situation is contradictory, with both
positive [16] and null [17,18] results, and continuing dis-

cussions of methods and of statistical and systematic errors
[19].

Other limits on the values of particle couplings and
masses at (relatively) recent epochs arise from nuclear
physics effects in the Oklo natural reactor at z ’ 0:2
[20,21] and from long-lived � decay isotopes in meteorites
[22]. Direct comparisons of atomic clocks at periods of a
few years in the laboratory have also led to strong bounds
at the level of 10�15 per year fractional variation [23].
Since these are Earth- or Solar System-based probes their
results may not be directly comparable with those from
cosmologically distant absorption systems, without further
theoretical assumptions. Clearly it is desirable to have as
many bounds as possible at different redshifts and in differ-
ent environments to probe possible variations in a model-
independent way.

In this paper we consider possible variations at a much
higher redshift, that of big bang nucleosynthesis (BBN) at
z ’ 1010, which is currently the earliest time at which
theories of nuclear and particle physics can be compared
to cosmological observation in a controllable way [24–26].
It is remarkable that primordial abundances are influenced
by every known force of interaction: gravity, through the
expansion rate of the Universe; weak interactions, through
neutron decay; electromagnetism, through the n� p mass
difference, nuclear binding energies, and Coulomb-
suppressed and radiative nuclear reactions; and the strong
interaction, throughout nuclear physics.

Many studies of the effects on BBN of varying one or
more parameters in particle physics have been performed
in recent years [27–41]; see also [1] and references therein.
However, the use of BBN faces two major theoretical
challenges. First, the degeneracy between many different
variable parameters, to be compared with the small number
of observable abundances. Only 4He, 3He, deuterium, and
7Li have currently been measured to a level of accuracy
which gives some prospect of comparison with theory, and1For a general review of ‘‘varying constants’’ see [1].

PHYSICAL REVIEW D 76, 063513 (2007)

1550-7998=2007=76(6)=063513(17) 063513-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.063513


of these 3He is subject to very large uncertainties in ex-
trapolating back to the primordial abundance. We also
consider 6Li, since it has been suggested that the stellar
isotope has been measured [42] and its primordial abun-
dance can be predicted, although at such a low level that
the primordial value may very easily be swamped by 6Li
generation through astrophysical events or energetic late
particle decay.

Second, theoretical uncertainty concerning the way in
which the QCD parameters, in particular, quark masses,
affect nuclear forces, and thus nuclear binding energies and
cross sections. A derivation of nuclear forces from first
principles, apart from the long-range attraction attributable
to pion exchange, is lacking.2 Instead, various types of
effective theories have been used in order to fit measured
nuclear properties. These can yield a correct dependence
on QCD parameters only to the extent that they reflect the
underlying physics. There are also milder uncertainties in
the dependence of certain nuclear reactions on �, but in
general the role of electromagnetism is well understood.

In this work we present a unified and systematic ap-
proach to these challenges, in two respects. First, we con-
sider each variation in particle physics or ‘‘fundamental’’
parameters independently. Thus at linear order we can
allow for any theoretical scenario in which the variations
of these parameters are subject to some kind of unified
relation. Second, we identify which nuclear properties and
reactions have significant influence on the variation of the
primordial abundances. This is done by varying every
relevant nuclear binding energy and cross section in a
reaction integration code, based on the Wagoner/Kawano
code [44–47] with updated numerical techniques, and
noting the deviation of output abundances away from the
unperturbed values. (Changes to the code are discussed in
more detail in Appendix A.) This response to the nuclear
parameters has then to be related to the variation of fun-
damental parameters via nuclear theory.

The results indicate where the sources of most theoreti-
cal uncertainty currently are, and suggest where improve-
ments in nuclear theory are most needed. Our approach
allows us to disentangle these problems. Our study of the
dependence on nuclear parameters can be used as a basis,
even if new theoretical insights modify the relations be-
tween nuclear physics and particle physics parameters used
in this paper. The connection between the different levels
of physical understanding arises by simple matrix multi-
plication of ‘‘response matrices’’ in a linear theory.

II. METHOD

We consider the set of primordial abundances Ya with
a � �D; 3He; 4He; 6Li; 7Li� and study its dependence on the
variation of a set of nuclear physics parameters Xi. Here
the index i denotes different particle masses such as mp or

me and nuclear binding energies, as well as the neutron
lifetime �n and couplings and mass scales such as the fine
structure constant and Newton constant GN that enter the
calculation of nuclear abundances. Our central quantity is
the response matrix C with matrix elements [31]

 cai �
@ lnYa
@ lnXi

: (1)

It indicates the leading linear dependence for small devia-
tions of the abundances about the values obtained given the
nuclear parameters inferred from present laboratory ex-
periments. The matrix C is extracted by varying the quan-
tities Xi independently in the BBN code, a procedure which
includes variation of the reaction cross sections and rates
that have a physical dependence on Xi. All variations in
parameters are taken to be small, such that all necessary
information can indeed be extracted from the response
matrix.

The second step involves the relation between a set of
standard model parameters Gk and the nuclear physics
parameters Xi encoded in a second response matrix F
with entries

 fik �
@ lnXi
@ lnGk

: (2)

This second step requires theoretical assumptions and
contains, at present, substantial uncertainties, which we
discuss in Sec. IV.

The variation of abundances with respect to the funda-
mental parameters Gk is expressed by the ‘‘fundamental
response matrix’’ R with elements rak:

 

�Ya
Ya
� rak

�Gk

Gk
: (3)

The matrix R is obtained from C and F by simple matrix
multiplication:

 R � CF: (4)

Variation of dimensionless and dimensionful
parameters

It is sometimes overlooked that the variation of a dimen-
sionful quantity is not physically well-defined: actually,
one dimensionful quantity can only be measured by com-
parison with another. The fractional variations of dimen-
sionful quantities are thus completely dependent on the
choice of units; only dimensionless ratios are measurable.

In practice, one may choose a reference frame where
some given mass scale is kept fixed. Popular frames are the
Einstein frame where the Planck mass is kept fixed, or the
Jordan frame where some particular particle physics scale
is kept fixed. One may change from one frame to another
by a Weyl transformation of the metric—the time variation
of dimensionless couplings and mass ratios is independent2Recent efforts in lattice QCD [43] have been encouraging.

THOMAS DENT, STEFFEN STERN, AND CHRISTOF WETTERICH PHYSICAL REVIEW D 76, 063513 (2007)

063513-2



of the frame [4,6].3 In this paper we use a frame where the
QCD invariant scale �c (sometimes written as �QCD) is
kept constant. This is convenient for dealing with nuclear
reactions, where the masses and energy scales are mainly
determined by the strong interactions. Thus the variations
of dimensionful parameters include implicitly some power
of �c. For example, if we take the electron mass me as a
parameter we are implicitly considering a variation of
me=�c. The implications of varying dimensionful parame-
ters in QCD and nuclear physics are discussed further in
Appendix A 3.

III. NUCLEAR RESPONSE MATRIX

We first establish the matrix C by a systematic variation
of parameters in the BBN code. For this purpose we have
modified the code as described in Appendix A, which also
contains the details of our treatment of reaction rates.

A. Nuclear parameters and response matrix

We vary with respect to the following 13 ‘‘nuclear’’
parameters Xi in the BBN code:

(i) Gravitational constant GN

(ii) Neutron lifetime �n
(iii) Fine structure constant �
(iv) Electron mass me
(v) Average nucleon mass mN � �mn �mp�=2
(vi) Neutron-proton mass difference QN � mn �mp

(vii) Binding energies of D, T, 3He, 4He, 6Li, 7Li, 7Be
Clearly to vary each binding energy independently is un-
physical, however our purpose is to determine the leading
(linear) variation of all abundances, with respect to the
code’s input parameters, once and for all. Then given any
specific theoretical model, we can construct a linear com-
bination of variations of Xi to account for any variation of a
fundamental parameter.

We should also consider the possibility that some states
could change between bound to unbound, or stable and
unstable, under a variation of some fundamental parame-
ters. As discussed in Sec. III B, we do not consider varying
the binding energies Bi of A � 7 nuclei past the point
where the Q-value of any reaction relevant to standard
BBN changes sign. If some Q-values approach zero we
already find large variations in abundances. However, we
should also check whether some reactions that are unim-
portant in standard BBN become relevant under a small
change in parameters. If this were so then the linear ap-
proximation would quickly become inaccurate.

One could expect substantial changes in the final abun-
dances of BBN if either the dineutron were bound, or the
8Be nucleus were stable, at the time of nucleosynthesis.

Such effects would not be seen in a purely linear analysis
expanding about the present day values. We discuss the
dineutron and 8Be further in Sec. IV D. We find that the
dineutron binding cannot produce significant effects, given
the other observational bounds on the variation of cou-
plings. The requirement that 8Be should remain unstable
and short-lived during BBN gives a one-sided bound on the
variation of �, but only if light quark masses are held
constant relative to �c.

Our results for the nuclear response matrix are shown in
Table I. The first 13 rows constitute the transposed nuclear
response matrix CT . We also quote the dependence of the
abundances on� in the last row. Values are quoted to 2 d. p.
or to 2 sig. fig. when the magnitude exceeds 1. Below we
give a few comments concerning specific parameters Xi.

Gravitational constant: A variation in GN or equiva-
lently the Planck mass MP, relative to �c, affects the
Hubble expansion. It is thus equivalent to changing the
energy density of the Universe by a constant factor. During
BBN this is also equivalent to adding or subtracting a
number of relativistic species with radiationlike equation
of state, the so-called ‘‘effective number of neutrinos’’; and
also to the presence of a ‘‘tracker’’ form of early dark
energy [4].

Neutron lifetime/GF: The neutron lifetime appears in
normalizing the n$ p reaction rates and the free neutron
decay. This is essentially the only important weak interac-
tion, hence a variation in �n is equivalent to a variation of
GF.4 More precisely, for fixed mN , me, and QN and ga=gv
(the ratio of nucleon axial vector/vector couplings), there is
a one-to-one relation between �n and GF such that we can
choose to work with one or the other parameter equiva-
lently, using the mapping � ln�n � �2� lnGF. Our results
for variation of �n are then consistent with [27,31,33].

TABLE I. Response matrix C, dependence of abundances on
nuclear parameters.

@ lnYa=@ lnXi D 3He 4He 6Li 7Li

GN 0.94 0.33 0.36 1.4 �0:72
� 2.3 0.79 0.00 4.6 �8:1
�n 0.41 0.15 0.73 1.4 0.43
me �0:16 �0:02 �0:71 �1:1 �0:82
QN 0.83 0.31 1.55 2.9 1.00
mN 3.5 0.11 �0:07 2.0 �12
BD �2:8 �2:1 0.68 �6:8 8.8
BT �0:22 �1:4 0 �0:20 �2:5
B3He �2:1 3.0 0 �3:1 �9:5
B4He �0:01 �0:57 0 �59 �57
B6Li 0 0 0 69 0
B7Li 0 0 0 0 �6:9
B7Be 0 0 0 0 81
� �1:6 �0:57 0.04 �1:5 2.1

3This supposes that the time interval is appropriately rescaled.
However this is not an issue for BBN, since we do not consider
the time derivative but rather the absolute variation between
BBN and the present time.

4The variation of �n is also important in accounting for
uncertainties in the laboratory value.
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Fine structure constant: Charged particle reactions in-
corporate an explicit �-dependence in the Gamow factor,
reflecting the leading effects of tunneling through the
Coulomb barrier. Coulomb corrections also affect the n$
p weak reaction rates. As noted in [36], radiative reactions
including npd� clearly have an additional dependence on
�. Reactions with charged particles in the final state also
experience Coulomb suppression, though generally much
less significant since the outgoing momenta are larger. For
Q>E the final state Coulomb suppression is negligible;
the only cases where it may be worth considering are
3He�n; p�3H and 7Be�n; p�7Li, with Q-values of 0.76 MeV
and 1.64 MeV, respectively. Such effects were estimated by
Nollett and Lopez using the Coulomb wave functions for
orbital angular momenta l � 0, 1, 2 and appear to be small,
the strongest dependence being h�vi / ��0:3.

Our calculation of the �-dependence as a nuclear pa-
rameter does not include the effect of varying � on nucleon
masses and nuclear binding energies; these are varied
independently. The �-dependence of binding energies
will be incorporated at the second step through the re-
sponse matrix F. On this second level we treat � as a
fundamental coupling and incorporate the �-dependence
of the nuclear physics parameter Xi.

Neutron, proton, and electron masses: We explicitly
calculate the dependence of the n$ p weak reactions on
the electron mass me, and divide up the nucleon masses
into an isospin-invariant part mN � �mp �mn�=2 and an
isospin-violating part QN � mp �mn. The dependence of
final abundances on these nuclear parameters appears
somewhat counterintuitive, since at this level we vary
them with the condition that �n should remain constant.
Thus effectively the variations in me and QN are accom-
panied by compensating variations in the Fermi constant.
When this is taken into account, our results for variation of
QN are consistent with those of [27,31,34]. (However, our
treatment of me as a nuclear parameter differs from both
[27,31] hence the results are not directly comparable.)

The variation with respect to mN � �mn �mp�=2 is
mainly due to the calculation of thermal reaction rates
h�vi at given temperature, since the relation between
energy and velocity is affected; thus abundances which
depend strongly on reaction rates will feel this variation.
Again as with binding energies, we cannot at present tell to
what extent reaction matrix elements depend on mN (with
the exception of npd�). However, for any choice of var-
iations in fundamental parameters, we will see that the
variation of mN is very small compared to other nuclear
parameters, since we have fixed �c to be constant.

B. Variation of binding energies

Table I indicates that by far the largest sensitivity of
abundances to nuclear parameters involves the variation of
4He, 6Li and 7Be binding energies. This can easily be
understood since the reaction rate of 3He��;��7Be with

Q-value 1.59 MeV is very sensitive to changes in these
(numerically large) binding energies. In order to have a
possibly more intuitive idea of the sensitivity of Ya to
binding energies we display in Table II the dependence
of abundances on the binding energy per nucleon bi �
Bi=Ai, that is, @ lnY=@bi, since it is more meaningful to
compare values of bi between nuclei of different A. We see
that the dependence of the lithium abundances on the 4He,
6Li and 7Be binding energies is still dominant.

Each reaction Q-value is determined by the masses of
reactants and products: the relevant parameters are the
binding energies of nuclei up to A � 7. The Q-value of
each reaction affects the abundances via the reverse ther-
mal reaction rate relative to the forward rate, and via phase
space and radiative emission factors in the reaction cross
sections.

The reverse reaction rate is simply related to the forward
rate via statistical factors, due to time reversal invariance
(see for example [48]): the relevant dependence is

 

h�vi34!12

h�vi12!34

/ e�Q=T: (5)

The Q-dependence of radiative capture reactions (assum-
ing a dominant electric dipole) is

 ��E� / E3
� � �Q� E�3; (6)

whereas for 2! 2 inelastic scattering or transfer reactions
the dependence is

 ��E� / �� �Q� E�1=2; (7)

where � is the outgoing channel velocity. In the current
treatment we assume E	 Q at relevant temperatures, and
simply scale rates by the appropriate power of Q. Clearly
this breaks down whenQ approaches zero, and we have not
considered varying any binding energy to the point where
this happens. A more accurate treatment would involve
applying the phase space dependences directly to the cross
sections, for example, in the S-factor description of
charged particle reactions, which involves an expansion
in E; the dependence on (Q� E) can then be applied order
by order.

TABLE II. Dependence of abundances on binding energy per
nucleon, in units of MeV�1.

@ lnYa=@Xi D 3He 4He 6Li 7Li

bD �2:5 �1:9 0.61 �6:1 7.9
bT �0:08 �0:50 0 �0:07 �0:88
b3He �0:83 1.2 0 �1:2 �3:7
b4He 0 �0:08 0 �8:3 �8:0
b6Li 0 0 0 13 0
b7Li 0 0 0 0 �1:2
b7Be 0 0 0 0 15
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For resonances, which appear in reaction rates as terms
varying with e�Er=T , we scale their contributions by the
appropriate power of �Q� Er�.

5 The question of whether
Er should be varied is still open. The minimal assumption
is that the mass-energy of the resonance varies with the
mass-energy in the incoming channel, thus Er would be
constant to first approximation.

A variation in binding energies can have two kinds of
effect. The Q value can change the time when a reaction
drops out of equilibrium, for instance the n� p! d� �
reaction. Or it can change the absolute rate of a reaction,
and thus the production rate of a given species, for ex-
ample, the 7Be-producing reaction whose cross section
varies with Q3.

Whether the reaction matrix elements have a depen-
dence on the binding energies and on Q is in general not
clear because there is no systematic effective theory for
multinucleon reactions. The exception is the npd� reac-
tion, for which we have implemented a nuclear effective
theory result [49] where dependence on BD is explicit.
Other parameters of this effective theory may also have
some quark mass dependence, and there are ongoing ef-
forts to connect it to chiral perturbation theory and thus to
QCD parameters, specifically mq=�c [50].

It has been suggested (see [34]) that the cross sections of
other reactions involving deuterium, specifically when D
appears in the ingoing channel, will have a significant
additional dependence on BD. To first order, the scattering
length varies as B�1=2

D , and cross sections in the low-energy
limit may be expected to vary with B�1

D , in addition to
previously discussed effects. In Table I we present values
for the dependence on BD, assuming this additional depen-
dence not to be present. When, however, a � / 1=BD

dependence is implemented for the d�p; ��3He,
d�d; n�3He, and d�d; p�t reactions, we obtain

 

@ lnYa
@ lnBD

�D; 3He; 4He; 6Li; 7Li�

� ��1:5;�2:4; 0:66;�5:6; 7:5�: (8)

The resulting uncertainties in reaction rates have a sub-
leading effect on abundances, compared to other effects of
varying BD. To be consistent we should similarly consider
the effects of all other binding energies on reaction cross
sections beyond the kinematic factor of Eqs. (6) and (7);
however in any case it is not clear whether the scattering
length is the correct parameter to consider. Therefore we
will take the case without this � / 1=BD dependence as
our final result; the other case serves as an illustration of
possible further effects of binding energies on reaction
rates.

Our results for the dependence on BD are consistent with
those of [29,31,34] (allowing for the different treatments of
D-destroying reactions) but differ from [27,32] for the
dependence of the D and 7Li abundances. The discrepancy
with respect to those works arises from a different treat-
ment of the npd� reaction. It is also not clear to us if the
effect of changing BD on other reaction Q-values and rates
was included.

C. Nuclear rates

In order to estimate which reactions are more or less
important in the variation of the final abundances, we
varied each thermal averaged cross section h�vi by a
temperature-independent factor, preserving the relation
between forward and reverse rates. The aim is to diagnose
which reactions one should focus on in discussing the
sensitivity of observed abundances to variations of cou-
plings. The n$ pweak interactions influence every abun-
dance nontrivially (we will treat them analytically); in
addition, based on our results, we designated certain other
reactions as important. These are given in Table III.6 We
judge a reaction cross section to be important if the depen-
dence of any abundance on any given reaction cross section
@ lnYa=@ lnh�vii is more than 0.1. In every case the de-
pendences are order unity or smaller, and for many ‘‘im-
portant’’ reactions only a few abundances are significantly
affected. A reaction cross section can be unimportant (for
our purposes) for one of two reasons: either it is so small
that the reaction is irrelevant, or the reaction is so rapid,
compared to the Hubble rate and to other slower reactions,
that the rates of change of abundances are almost indepen-
dent of the cross section. Hence our list of important
reactions differs from [51].

Note also that the 4He abundance does not depend on
any nuclear reaction cross section (apart from n$ p).

TABLE III. Leading dependence of abundances on thermal
averaged cross sections @ lnYa=@ lnh�vii for important reactions
(1 d. p.).

Reaction Q value [MeV] D 3He 4He 6Li 7Li

p�n; ��d 2.22 �0:2 0.1 0 �0:2 1.3
d�p; ��3He 5.49 �0:3 0.4 0 �0:3 0.6
d�d; n�3He 3.27 �0:5 0.2 0 �0:5 0.7
d�d; p�t 4.03 �0:5 �0:3 0 �0:5 0.1
d��; ��6Li 1.47 0 0 0 1.0 0
3He�n; p�t 0.76 0 �0:2 0 0 �0:3
3He�d; p�4He 18.35 0 �0:8 0 0 �0:7
3He��; ��7Be 1.59 0 0 0 0 1.0
6Li�p;��3He 4.02 0 0 0 �1:0 0
7Be�n; p�7Li 1.64 0 0 0 0 �0:7

5The resulting variations of abundances are indistinguishable
from the result of scaling by a power of Q, within our
uncertainties.

6As usual in BBN simulations, the slow �-decays of tritium
and 7Be are accounted for by adding on the T and 7Be abun-
dances to 3He and 7Li respectively at the end of the run, when
other nuclear reactions have frozen out.
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Furthermore, the reactions involving 6Li are not important
for any other measurable primordial abundance.

In implementing the variations of nuclear parameters as
displayed in Table I, we do not directly use the effects of a
temperature-independent variation of integrated cross sec-
tion h�vi given in Table III. Since variations of Xi in
general result in temperature-dependent variations of reac-
tion rates, we implement them directly within the integra-
tion code.

IV. RELATIONS TO FUNDAMENTAL
PARAMETERS

The next task is to connect these nuclear parameters to
fundamental parameters Gk at a higher energy scale. We
consider the following six fundamental parameters Gk:

(i) Gravitational constant GN

(ii) Fine structure constant �
(iii) Electron mass me
(iv) Light quark mass difference �q � md �mu

(v) Averaged light quark mass m̂ � �md �mu�=2 / m2
	

(vi) Higgs vacuum expectation value (VEV) h
i.
An additional parameter is the strange quark mass ms. We
have omitted it from our list because the present theoretical
uncertainties of how it influences the nuclear parameters
are too high.

The dependence of the fundamental parameters Gk on
the nuclear parameters Xi is encoded in the matrix F
defined in Eq. (2): our estimates of F are shown in
Table IV. We now discuss how to derive the entries of
this matrix.

The gravitational constant enters as before, correspond-
ing to the (1, 1) entry of unity in Table IV. The fine
structure constant influences the abundances in two ways.
First we have the direct influence of its variation while
keeping other nuclear parameters fixed. This is accounted
for by the value 1 in the (2, 2) element. Secondly, it
influences the nucleon masses and nuclear binding ener-

gies. This yields the other elements in the second column
of Table IV. As a nuclear parameter � does not depend on
h
i, me, etc., as reflected in the second row of Table IV.

The �-dependence of the neutron lifetime @ ln�n �
3:86@ ln� enters via the n� p mass difference. The full
dependence of �n on fundamental parameters can be found
in [31]. Similarly as for �, the electron mass as a funda-
mental parameter has an effect on the neutron lifetime,
@ ln�n � 1:52@ lnme, and thus also on n$ p reaction
rates.

Elementary u and d quark masses appear as fundamental
parameters. They may be divided up as �mu �md�=2,
which influences the pion mass, which in turn determines
the behavior of nuclear forces; and md �mu, which influ-
ences the neutron-proton mass difference. The average
light quark mass also affects the nucleon mass mN via
the so-called sigma term; this holds also for the strange
quark mass through the ‘‘strangeness content’’ of the nu-
cleon. The effect of varying pion (i.e. quark) mass on
nuclear binding energies and reaction cross sections is in
general not known. However, for the binding energy of
deuterium and the npd� reaction the dependence has been
found to some approximation using effective theories.

At this stage we vary the Higgs VEV independently of
the elementary fermion masses, thus it only influences
weak reactions via GF: the relevant reactions are neutron
decay and n$ p.

A. Fine structure constant

The dependence on � of the masses of (composite)
particles and nuclear binding energies is found by esti-
mates of electromagnetic self-energy or binding energy, for
example [52] for the proton-neutron mass difference, and
the semiempirical mass formula for nuclei. Note that the
fractional variation of mN with � is negligibly small. More
precise estimates for nuclear binding energies have been
made using realistic models of nuclear forces (see [53,54])
and similar values appear in [36]. Variation in � as a
fundamental parameter leads to variations of nuclear pa-
rameters:
 

� ln��n;QN; BD; BT; B3He; B4He; B6Li; B7Li; B7Be�

� �3:86;�0:59;�0:0081;�0:0047;�0:093;�0:030;

� 0:054;�0:046;�0:088�� ln�: (9)

Then the resulting variations of abundances are

 � ln�YD; Y3He; Y4He; Y6Li; Y7Li�

� �3:6; 0:95; 1:9; 6:6;�11�� ln�: (10)

These results are similar to those of [36,40]. The 7Li
abundance here is more sensitive to � than the Nollett
and Lopez estimate [36]. This appears due to their use of
a cluster model for the 3He��; ��7Be reaction, whereas our
treatment of this reaction simply uses the Gamow factor.

TABLE IV. Response matrix F, dependence of nuclear pa-
rameters Xi on fundamental parameters Gk.

@ lnXi=@ lnGk GN � h
i me �q m̂

GN 1 0 0 0 0 0
� 0 1 0 0 0 0
�n 0 3.86 4 1.52 �10:4 0
me 0 0 0 1 0 0
QN 0 �0:59 0 0 1.59 0
mN 0 0 0 0 0 0.048
BD 0 �0:0081 0 0 0 �4
BT 0 �0:0047 0 0 0 �2:1fT

B3He 0 �0:093 0 0 0 �2:3f3He

B4He 0 �0:030 0 0 0 �0:94f4He

B6Li 0 �0:054 0 0 0 �1:4f6Li

B7Li 0 �0:046 0 0 0 �1:4f7Li

B7Be 0 �0:088 0 0 0 �1:4f7Be
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B. Electron mass

The electron mass affects the neutron lifetime via

 

@ ln�n
@ lnme

’ 1:52:

Adding this variation to the effects already calculated
gives, for the variation of me as fundamental parameter,

 � ln�YD; Y3He; Y4He; Y6Li; Y7Li�

� �0:46; 0:21; 0:40; 0:97;�0:17�� lnme: (11)

Our result for the variation ofme as fundamental parameter
is very similar to the semianalytic result of [31].

C. Pion and light quark masses

The effect of light quark masses on the nucleon masses
can be found by considering low-energy hadron physics
(see for example [52,55]). We consider an average light
quark mass m̂ � �mu �md�=2, the mass difference �q �
md �mu, and the strange mass ms. Note that the ms
dependence of hadronic physics is still quite unclear; for
example, the strangeness content of the nucleon is subject
to at least 50% uncertainty. The nucleon mass gets a
contribution from nonzero quark masses

 mN � m�0�N ��c� � �	N�m̂�; (12)

where m�0�N is the mass in the chiral limit and

 �	N �
m̂

2mN
hpj �uu� �ddjpi: (13)

For hpj �uu� �ddjpi depending only on �c, one has
@ ln�	N=@ lnm̂ � 1 and therefore

 

@ lnmN

@ lnm̂
�
�	N
mN
’ 0:048; (14)

and for the strange quark

 y �
2hpj �ssjpi

hpj �uu� �ddjpi
)
@ lnmN

@ lnms
�
ms

m̂
y�	N
2mn

’ 0:12
 0:12

(15)

given ms=m̂ ’ 25 and y � 0:2
 0:2 [56].
The strange quark mass is close to the nonperturbative

scale �c. For this reason a systematic or physically mean-
ingful treatment of the dependence of nuclear quantities on
ms has not been possible so far. Thus our results have the
caveat that variation in ms=�c is not yet accounted for.

The dependence of the nucleon mass difference Q on
quark masses was estimated in [52]: in units where �c is
constant, we have
 

�QN ’ ��0:76� ln�� 2:05� ln�q� MeV)
� lnQ
� ln�q

’ 1:59: (16)

Recent lattice QCD studies with dynamical quarks [57]
have calculated the dependence of the nucleon mass split-
ting on �q: the result is consistent with the estimate we
adopt.

The pion mass is crucial for nuclear forces and its
leading dependence on m̂ follows from chiral perturbation
theory as

 m2
	 � m̂h �uu� �ddif�2

	 : (17)

Here we assume the leading order where f	 and h �uu� �ddi
depend only on �c, therefore � lnm	 ’

1
2 � lnm̂.

Static properties of nuclei, and importantly for BBN,
nuclear binding energies, depend strongly on the pion
mass, which determines the range of attractive nuclear
forces. Quantum Monte Carlo calculations have been per-
formed with realistic nuclear potentials and accurately
reproduce many experimental properties [53,54]. One-
pion exchange and two-pion exchange are dominant con-
tributions within the expectation values of the two- and
three-nucleon potentials, respectively. Currently such stud-
ies have not been extended to determine the functional
dependence of binding energies on the pion mass in gen-
eral. This dependence would in any case have uncertainties
due to subleading effects of pion mass (or equivalently
light quark masses) on other terms in the nucleon-nucleon
potential [58].

However, the dependence of the deuteron binding en-
ergy on the pion mass has been extensively studied within
low-energy effective theory [58,59]: the result may be
expressed as

 � lnBD � r� lnm	 �
r
2

� lnm̂ (18)

for small variations about the current value [35], with
�10 � r � �6.7 We will also take this dependence as a
guide for the likely pion mass dependence of other binding
energies. Although the size of the deuteron binding appears
due to an accidental cancellation between attractive and
repulsive forces, its derivative with respect to m	 (which is
just BD=m	 times r) is not expected to be subject to any
cancellation. We also expect that the pion contribution to
the total binding energy should increase with the number of
nucleons; a proportionality to (A� 1) seems reasonable to
obtain correct scaling at both small and large A. Hence to
estimate the effect of pion mass on the binding energy of a
nucleus Bi we set

 

@Bi
@m	

� fi�Ai � 1�
BD

m	
r ’ �0:13fi�Ai � 1� (19)

taking r ’ �8. The numerical constants fi are expected to
be of order unity, but will differ between light nuclei due to
peculiarities of the shell structure, etc. Our normalization
corresponds to fD � 1. Then the nontrivial dependences of

7Our definition of r differs by a sign from [35].
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nuclear parameters on m̂ are
 

� ln�BD; BT; B3He; B4He; B6Li; B7Li; B7Be; mN�

’ �0:5r; 0:26fTr; 0:29f3Her; 0:12f4Her; 0:17f6Lir;

0:17f7Lir; 0:18f7Ber; 0:048�� lnm̂: (20)

For the m̂ dependence of abundances due to the variation of
binding energies we then have

 

@ lnYa
@ lnm̂

��������B
�
r
2

X
i

fi
�Ai � 1�BD

Bi

@ lnYa
@ lnBi

: (21)

Taking account also of the small effect of m̂ on the nucleon
mass mN , the resulting dependence of abundances on m̂ is
 

@ lnYD

@ lnm̂
’ 11� 0:5fT � 5f3He;

@ lnY3He

@ lnm̂
’ 8� 3fT � 7f3He;

@ lnY4He

@ lnm̂
’ �2:7;

@ lnY6Li

@ lnm̂
’ 27� 0:4fT � 7f3He � 55f4He � 96f6Li;

@ lnY7Li

@ lnm̂
’ �36� 5fT � 22f3He � 54f4He � 9f7Li

� 115f7Be:

(22)

Even if we consider that some contributions could cancel
against one another due to the values of the fi, the magni-
tude of these variations is striking, particularly concerning
the lithium abundances. To get an idea of the possible
effect of cancellations, we may set all fi to unity and
find the dependences

 � ln�YD; Y3He; Y4He; Y6Li; Y7Li�

’ �17; 5;�2:7;�6;�61�� lnm̂: (23)

One may also consider to what extent varying m̂ or the pion
mass may affect reaction cross sections beyond the npd�
reaction. It seems very likely that matrix elements would
acquire nontrivial dependence on m	; however, since the
dependence of abundances on reaction cross sections is
relatively mild (see Table III), the dependence via reaction
matrix elements is unlikely to compete with the very large
effects arising through the variation of binding energies.

D. Stability of dineutron and 8Be

The effects of a bound dineutron on BBN were studied
in [60], where it was found that the final abundances were
essentially unaffected as long as the dineutron binding
energy remained smaller than BD. An effective field theory
analysis may also be applied to the binding of the dineu-
tron, which lies in a different channel from the deuteron
[58]. The sensitivity of the dineutron system to the pion
mass, or equivalently to m̂, is found to be comparable to

that of the deuteron. It is very unlikely that the binding of
the dineutron could become significant, since the fractional
variations of BD for the range of variations of couplings
considered in this paper are at most of order 5%, which
amounts to �BD ’ 0:1 MeV (see Sec. V B). In earlier work
a simple potential model was used [39] to investigate the
deuteron and dineutron binding, with a similar result: the
variation in the quark mass parameter m̂=�c required to
bind the dineutron is much larger than that required to
cause even a 100% variation in BD.

The decay of 8Be to two 4He nuclei has a Q-value of
only 0.092 MeV, thus it is conceivable that even a very
small variation of parameters could result in a stable (or
long-lived) 8Be at the time of BBN. This would have
dramatic consequences for the abundances of heavier nu-
clei since it would then be possible to synthesize carbon
directly by two-body reactions. Hence we can immediately
rule out any variation that causes this Q-value to change
sign.

Electromagnetic contributions to the 8Be binding are
estimated from the results of quantum Monte Carlo calcu-
lations [54] as before. We find � lnB8Be ’ �0:0588� ln�,
thus the Q-value varies as

 �Q8!2� ’ �1:60 MeV�� ln�: (24)

Large negative values of �� are excluded: we find a firm
limit � ln� � �5:7%, under the condition that other fun-
damental parameters that may affect the sign of Q, i.e.
quark masses, do not vary with respect to �c. However, we
will obtain stronger limits on the variation of � by consid-
ering the response of the observed BBN abundances: see
Sec. V B.

The Q-value for 8Be decay results from a nearly exact
cancellation between 8Be and 4He binding energies, thus
its dependence on light quark masses is subject to very
large theoretical uncertainty. We again estimate the
m̂-dependence in terms of the deuteron binding and find
� lnB8Be � �1:1f8Be� lnm̂. Thus for the Q-value,

 �Q ’ ��9� 62�f8Be � 1� � 53�f4He � 1� MeV�� lnm̂:

(25)

The expression inside brackets depends very strongly on
the unknown fi factors: its likely magnitude is 10–50 MeV
barring cancellations. We would then have a one-sided
bound on variation of m̂ at the 1% level or better from
stability of 8Be. At present we do not know the sign of the
prefactor and the use of 8Be to place useful bounds on the
variation of QCD parameters must be left to future work.

V. DEPENDENCE OF ABUNDANCES ON
FUNDAMENTAL PARAMETERS

A. Fundamental response matrix

We next combine the nuclear response matrix, Table I,
with the relations between nuclear and fundamental pa-
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rameters (Table IV), according to Eq. (4). Table V shows
the resulting dependences of abundances on fundamental
parameters, as encoded in the matrix R. This table is our
central result.

In treating the m̂-dependences, which arise from the
nuclear binding energies with their uncertain values of fi,
we have given the values which arise when setting all fi to
unity. Alternatively, if all the fi are of order unity but the
term with the largest prefactor dominates, we would ob-
tain8

 

@ lnY
@ lnm̂

�D; 3He; 4He; 6Li; 7Li�

� �11; 8:4;�2:7;�96f6Li;�115f7Be�: (26)

The dependence on GN is consistent with the results of
[29–31,33], once one translates from units where GN is
constant to ours where �c is constant.

The 4He dependence was previously calculated in [31]
by semianalytic methods: our results for the dependence on
fundamental parameters are similar.

The h
i dependence may be compared to the result of
[30] for the variation of GF / h
i�2 (using a semianalytic
method): the results for 4He, 6Li, and 7Li are similar, but
much smaller variations of D and 3He are obtained in [30].

B. Bounds on separate variations of fundamental
couplings

The first application of the result is in setting bounds on
the variation of each fundamental parameter considered
separately, under the assumption that only one parameter
varies at once. We may consider three observational deter-
minations of primordial abundances (see Appendix B):
deuterium, 4He, and 7Li. However, the observed 7Li abun-
dance deviates by a factor two to three from the value
predicted by standard BBN theory (SBBN), and systematic
uncertainties related to stellar evolution exist [61]. Thus,
we use the former two, D and 4He, to constrain the allowed
variations of the fundamental constants individually. For
deuterium we take 2� limits; for 4He we consider instead
the ‘‘conservative allowable range’’ of [62]. The resulting
constraints are given in Table VI.

C. Sensitivity matrix

The relative precision of the observational determination
of primordial abundances is best for 4He and somewhat
poorer for D and 7Li. This can be taken into account by
defining a ‘‘sensitivity matrix’’ S with elements sak:

 sak � ��1
a

@Ya
@ lnGk

’
Ya;th
�a

rak;th (27)

where the subscript ‘‘th’’ denotes a quantity evaluated
about the values obtained in SBBN, and the approximation
follows from taking a linear dependence. Here�a is the 1�
error of the observational determination of the primordial
abundance Ya: thus Ya=�a is a measure of the precision
with which a given abundance is known. The current
situation of theory and observation is summarized in
Appendix B. We adopt SBBN theoretical values

 YD;th � 2:61� 10�5; Y4He;th � 0:2478;

Y7Li;th � 4:5� 10�10;
(28)

and 1� observational errors

 �D � 0:4� 10�5; �4He � 0:009;

�7Li � 0:5� 10�10:
(29)

We then obtain the sensitivity matrix S given in Table VII.
The matrix elements sak have a simple interpretation. If

we perform a variation of a given fundamental couplingGk
by 1% while keeping all other fundamental couplings
fixed, the variation of Ya=�a is given by sak=100. The
range of variation of each Gk corresponding to the 1�

TABLE V. Response matrix R, dependence of abundances Yi
on fundamental parameters Gk.

@ lnYa=@ lnGk D 3He 4He 6Li 7Li

GN 0.94 0.33 0.36 1.4 �0:72
� 3.6 0.95 1.9 6.6 �11
h
i 1.6 0.60 2.9 5.5 1.7
me 0.46 0.21 0.40 0.97 �0:17
�q �2:9 �1:1 �5:1 �9:7 �2:9
m̂ 17 5.0 �2:7 �6 �61
� �1:6 �0:57 0.04 �1:5 2.1

TABLE VI. Allowed individual variations (2� or ‘‘conserva-
tive allowable range’’) of fundamental couplings.

�19% � � lnGN � �10%
�3:6% � � ln� � �1:9%
�2:3% � � lnh
i � �1:2%
�17% � � lnme � �9:0%
�0:7% � � ln�q � �1:3%
�1:3% � � lnm̂ � �1:7%

TABLE VII. Sensitivity matrix S.

��1
a @Ya=@ lnGk D 4He 7Li

GN 6.1 9.9 �6:5
� 24 52 �100
h
i 10 79 15
me 3.0 11 �1:5
�q �19 �140 �26
m̂ 110 �74 �550

8If, on the contrary, there is substantial cancellation then the
dependences of the deuterium, 3He, and lithium abundances on
m̂ may be smaller.
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(etc.) range of any observed abundance can easily be read
off. Thus, for example, the currently allowed 1� range of
Y4He [62] corresponds to a variation in � of 1=52 ’ 1:9%
each side of a central value, or 3.8% in total. Considering
individual variation of couplings we find that at present the
4He abundance is the most sensitive measurement of the
couplings GN, 
, me, and �q; on the other hand � and the
average light quark mass m̂ are most limited by 7Li.

D. Inverse sensitivity matrix

A quantity like the inverse of the sensitivity matrix
would also be useful. With

 � lnGk � tka��1
a �Ya; (30)

we could immediately infer the fractional change in fun-
damental couplings corresponding to a deviation of one
abundance Ya away from the standard predicted value,
while keeping the other abundances fixed. For example, a
3� change in 7Li, i.e. �Y7Li=�7Li � 3, would be correlated
with a simultaneous fractional change 3tka in the couplings
Gk. Of course, if we have more couplings than observed
abundances, the matrix T with elements tka is not uniquely
defined. We may, however, restrict the number of indepen-
dently varying fundamental couplings, either by keeping
some couplings fixed or by assuming relations between the
Gk, for example, motivated by grand unification. If S is
reduced in this way to a n� n matrix one simply has

 T � S�1: (31)

As a simple example, we may discard the variation of the
Yukawa couplings such that

 � lnm̂ � � ln�q � � lnme � � lnh
i:

For this case we show the matrices S (transposed) and T in
Table VIII. A decrease of 6� for 7Li brings its predicted
abundance from 4:5� 10�10 to 1:5� 10�10. With other
abundances fixed, this could (in linear approximation) be
realized by the variations

 � ln�GN; �; h
i� � ��29%;�6:1%;�0:29%�: (32)

The required changes in GN and � are relatively large: our
linear treatment may still be valid here, but in general this
should be checked, which we do explicitly for specific
unified models in Section VI E. Alternatively, for a 5�
decrease in 7Li from the standard predicted value and a
1� increase in deuterium, bringing the predicted YD to
3:0� 10�5, we would require variations of fundamental

parameters

 � ln�GN; �; h
i� � �0;�1:4%;�0:62%�; (33)

clearly well within the linear regime with respect to varia-
tion of fundamental parameters.

VI. UNIFIED MODELS

It is of interest to consider unified scenarios where the
variations of fundamental couplings satisfy relations that
reduce the number of free parameters. In the simplest case
every variation of a parameter Gk is determined by a single
underlying degree of freedom. The variations can then be
written as a vector:

 � lnGk � dk�’; (34)

where ’ is a (dimensionless) field which gives rise to the
variation and dk are a set of numbers characterizing a
particular unified model. We then obtain

 � lnYa � �CF�akdk�’; (35)

where we may also eliminate �’ in favor of the variation
of some observable parameter.

We will consider four simple possibilities. First, that the
strength of gravitation varies, but all other scales and
couplings of particle physics are unchanged. This corre-
sponds to a violation of the strong equivalence principle,
while the weak equivalence principle is preserved. Thus dk
has a single nonzero entry corresponding to GN, and we
find

 � ln�YD; Y3He; Y4He; Y6Li; Y7Li�

’ �0:94; 0:33; 0:36; 1:4;�0:72�� ln�GN�2
c�; (36)

restoring the implicit dependence on the QCD scale.
In the remaining examples, we consider a grand unified

theory with unified coupling �X, broken at the scale MX to
the standard model symmetry. The observable couplings of
QCD and electromagnetism are then related to �X via
renormalization group flow and electroweak symmetry
breaking. Thus one can find a relation between the varia-
tion of � and that of �c=MX, depending on the gauge
group and matter content of the theory [10,39,63].

We also need to specify the behavior of the ratios of
energy scales MX=MP, h
i=MP, me;q=MP, where MP is the

Planck mass proportional to G�1=2
N . In all unified scenarios

we will take the Planck mass fixed relative to the unifica-
tion scale, thus ��MP=MX� � 0. For simplicity we take the

TABLE VIII. Sensitivity matrix S and its inverse T, given constant Yukawa couplings.

��1
a @Ya=@ lnGk D 4He 7Li tka D 4He 7Li

GN 6.1 9.9 �6:5 GN 0.24 �0:015 0.048
� 24 52 �100 � �0:036 0.016 �0:010
h
i 100 �125 �560 h
i 0.0038 �0:0027 �0:00048
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Yukawa couplings to be constant, thus the electron and
quark masses are proportional to h
i. We also define an
exponent � which relates the variation of h
i with respect
to MX to the variation of �c=MX as

 

h
i
MX
� const

�
�c

MX

�
�
: (37)

A. Fixed ratio of weak and strong scales

In the first unified scenario ‘‘GUT1’’ we take all low-
energy mass scales of particle physics to be proportional to
�c, thus � � 1. Then using the nonsupersymmetric grand
unified theory (GUT) relations discussed in [10,11,31] we
have

 � ln� �
22�
7�X

� ln�X ’ 0:92� ln�X; (38)

 � ln
�c

MX
�

	
11�

� ln� ’ 39� ln�; (39)

taking �X ’ 1=40. These relations include the effects of
varying (relative to MX) charged particle masses, or
‘‘thresholds,’’ on the variation of gauge couplings.9 Then
we have

 � ln�GN; �; h
i; me; �q; m̂� ’ �78; 1; 0; 0; 0; 0�� ln�:

(40)

In this case the variations of abundances are not subject to
the theoretical uncertainty of varying ms=�c. We obtain

 � ln�YD; Y3He; Y4He; Y6Li; Y7Li�

’ �77; 27; 30; 120;�68�� ln�; (41)

where for definiteness we have taken all fi to unity in
Eq. (19). Note that when the variations are reexpressed in
terms of � lnGN as

 � ln�YD; Y3He; Y4He; Y6Li; Y7Li�

’ �0:99; 0:34; 0:38; 1:5;�0:87�� lnGN; (42)

the result is very similar to the first scenario where onlyGN

is varying. The scenarios only differ by a variation
��=� � �1=78��GN=GN, hence we do not plot separately
the first scenario of varying only GN.

B. Fixed weak scale and varying strong scale

In the second unified scenario ‘‘GUT2’’ we consider that
the Higgs VEV and elementary fermion masses are all
proportional to the unification scale, thus
��MX=MP; h
i=MP; me;q=MP� � 0, or equivalently � �
0. Then, after converting to QCD units, the mass scales

MP, h
i, and me;q will vary inversely to �c=MX. We find
[31]

 � ln��MW� �
8�

3�X
� ln�X; (43)

 � ln
�c

MX
� � ln

�c

h
i
�

	
12�

� ln��MW�: (44)

Because of the effect of the three light quarks whose effect
on the running of ���� is cut off at ���c, the variation
of the fine structure constant is as follows:

 

1

�
� ln� �

1

��MW�
� ln��MW�

�
1�

1

18

X
i

~Q2
i

�
; (45)

where i runs over three colors of u, d, and s quark, thusP
i

~Q2
i � 2. Then the variations of fundamental couplings

are related as

 � ln
�c

MX
� � ln

�c

h
i
�

3	
40�

� ln� ’ 32:3� ln� (46)

and we have
 

� ln�GN; �; h
i; me; �q; m̂�

’ �64:5; 1;�32:3;�32:3;�32:3;�32:3�� ln�: (47)

We then obtain variations of abundances

 � ln�YD; Y3He; Y4He; Y6Li; Y7Li�

’ ��450;�130; 170; 380; 1960�� ln�: (48)

Note that this model is subject to additional uncertainty
due to the variation in the strange quark mass relative to
�c; however it seems unlikely that this variation would
produce significant cancellations.

C. Varying the weak scale faster than the strong scale

In the third unified scenario ‘‘GUT3’’ we consider the
case when the Higgs VEV and fermion masses vary more
rapidly (with respect to the unification scale) than the QCD
scale �c does: thus � > 1. We take � � 1:5 and find that
the variations of fundamental couplings are related as
 

� ln�GN; �; h
i; me; �q; m̂�

’ �87; 1; 21:5; 21:5; 21:5; 21:5�� ln�: (49)

The variations of abundances are then

 � ln�YD; Y3He; Y4He; Y6Li; Y7Li�

’ �430; 130;�65;�60;�1420�� ln�: (50)

D. Results

In Fig. 1 we show the abundance variations given by the
three GUT models, as a function of the variation of �. Note
that we plot only the linear dependence of abundances on
�, therefore if � lnYa becomes larger than 1 (as in the case

9In supersymmetric unified theories the effect of varying
thresholds (charged particle masses) on the gauge couplings
may be much larger [64].
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of 7Li) the results may be affected by higher order terms.
We also show the 1� observational bounds as highlighted
regions. Also included in the plot is the effect on the
standard BBN predictions of varying the baryon-to-photon
ratio � over the 2� range allowed by WMAP 3 yr data,
5:7 � 1010� � 6:5.

It can be seen that in the GUT2 scenario a reduction of �
by about 0.025% (i.e. a fractional variation of �2:5�
10�4) would bring theory and observation into agreement
within 2� bounds, while remaining in the linear regime.
Conversely, in the GUT3 model an increase of � by about
0.04%, i.e. � ln� � 4� 10�4, brings theory and observa-
tion into agreement within 1� bounds. Considering the
variations of fundamental parameters in the three scenarios
Eqs. (40), (47), and (49), the behavior of the weak scale h
i
and fermion masses is decisive for the variation of
abundances.

E. Nonlinear variation of abundances in GUT scenarios

The unified models discussed in the previous section
suggest that it is possible, and may even be natural, to
obtain a large negative variation in the 7Li abundance, and
considerably smaller variations in other measurable abun-
dances: positive in the case of deuterium and negative for
4He. Agreement between theory and data in all three
abundances could then be possible for a narrow range of
values in the variation of fundamental parameters, and such
scenarios could be tested by more accurate abundance
measurements. However, the required fractional variation
in 7Li is so large (a factor two or more in Y7Li) that a linear
analysis using matrix multiplication may be inaccurate.

We may improve the analysis in specific cases by in-
cluding the nonlinear relations between nuclear parameters
and abundances. This is implemented simply by running
the numerical integration code with the appropriate values
of nuclear parameters, where the dependence on nuclear
parameters was detailed in Sec. III A. This method would
be impractical to investigating the full parameter space:
nuclear parameters span a 13-dimensional space (or 12-
dimensional if 6Li is neglected). It is only practicable if the
dimensionality of the parameter space is reduced by apply-
ing unification relations. In principle we could also attempt
to estimate the nonlinear dependence of nuclear parame-
ters Xi on fundamental parameters Gk, but this involves
additional theoretical uncertainty. For the unified models
considered here, the fractional variations in Xi remain
small, well below 0.1. A linear approximation for the
relation between nuclear and fundamental parameters is
therefore appropriate. The main nonlinear effects enter at
the level of nuclear reactions.

The nuclear parameters affecting most the large varia-
tion in 7Li abundance are mainly the deuterium and 7Be
binding energies, with the 3He and 4He binding energies
playing a smaller role. A decrease of BD causes BBN to
happen later, which means that the nucleon density is lower
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FIG. 1 (color online). Variation of primordial abundances with
� in three GUT scenarios. The curves with the smallest varia-
tions of abundances show the first scenario, GUT1. Curves with
larger, positive slope of Y7Li) and YH4e and negative slope of YH3e

and YD show the second, GUT2. Curves with larger, negative
slope of Y7Li) and YH4e and positive slope of YH3e and YD show
the third, GUT3. Highlighted regions give the observational 1�
limits. Error bars indicate the standard BBN abundances with
theoretical 1� error [80], for three different values of � about the
WMAP central value, as indicated on the upper horizontal axis.
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and reaction rates smaller. The abundances of A> 4 ele-
ments are rate-limited and thus decrease with decreasing

BD. This accounts for about two-thirds of the change in
Y7Li. In addition, the cross section of the 3He��;��7Be
reaction depends strongly on the Q-value, hence on the
7Be binding energy. Both these effects are computationally
under control, therefore we believe that the specific non-
linear dependence in the scenarios we consider is well
estimated within our code.

We show in Fig. 2 the primordial abundances including
nonlinear effects, i.e. without using a linear approximation
for the relation between Ya and Xi. For our three GUT
models we find a slightly different behavior of the 7Li
abundance, which now has an approximately power-law
dependence on variation of �. It is only slightly more
difficult to bring the present observational abundances
into agreement with standard BBN and the WMAP deter-
mination of �; still, if we allow a variation of 0:000 45 &

� ln� & 0:0005 in the GUT3 model, the predicted abun-
dances are all very close to the 1� allowed regions.

VII. CONCLUSIONS

We have developed a systematic method to relate cos-
mological variations in the underlying parameters of par-
ticle physics to the primordial isotope abundances
produced by BBN. The main advantage of the method is
that we are able to vary every parameter independently,
both at the level of fundamental standard model parameters
and of nuclear physics parameters, thus we are not depen-
dent on any particular theoretical model which enforces
particular relations between the variations.

The method proceeds by defining two linear response
matrices. The first, C, encodes the change in predicted
abundances produced by small variations away from the
current values of nuclear physics parameters which enter
the BBN integration code. These parameters (in units
where the nonperturbative QCD scale is constant) com-
prise the gravitational constant, fine structure constant,
neutron lifetime, electron, proton, and neutron masses,
and binding energies of A � 7 nuclei. The dependences
of nuclear reaction rates on these parameters are also
implemented insofar as they are calculated within some
effective theory. One notable result is that the 7Li abun-
dance depends heavily on the binding energies of 3He, 4He,
and 7Be.

We also investigated possible further effects of varia-
tions in nuclear reaction rates on predicted abundances by
varying each rate (i.e. thermal integrated cross section
h�vi) separately by a temperature-independent factor.
We find that the 4He abundance is insensitive to nuclear
rates, and only eight reactions could lead to significant
variation of the D, 3He, or 7Li abundances. Also in many
cases the dependences on h�vi are small and probably
subleading compared to other known effects of varying
nuclear parameters.

The second matrix F relates variations in nuclear pa-
rameters to the fundamental parameters of particle physics,
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FIG. 2 (color online). Variation of primordial abundances with
� in three GUT scenarios including nonlinear effects. Labels as
in Fig. 1.
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comprising the gravitational constant, fine structure con-
stant, Higgs vacuum expectation value, electron mass, and
the light (up and down) quark masses. At this point theo-
retical uncertainty enters into the relation between quark
masses and nuclear binding energies. We parametrize the
dependence of binding energies on the pion mass (and
hence on light quark masses) by the deuteron binding,
which has been treated by a systematic expansion in effec-
tive field theory.

The resulting fundamental response matrix R � CF
allows us, first, to bound the variations of the six funda-
mental couplings individually, some bounds being at the
percent level. We then define a ‘‘sensitivity matrix’’ that
shows which observational data give the best determina-
tion of each fundamental parameter, and demonstrate the
use of the inverse sensitivity matrix to find the variations in
fundamental couplings required by any given change in
primordial abundances.

We can also bound correlated variations affecting many
couplings at once: we consider three simple scenarios
motivated by grand unification of gauge couplings. Of
these, one allows us to fit observed D, 4He, and 7Li
abundances within 2� bounds, given a variation ��=� �
�2� 10�4 away from the present value; another fits these
observational abundances within 1� bounds, given a varia-
tion ��=� � 4� 10�4.

Progress in the field requires both observational and
theoretical improvements. Both statistical and systematic
errors in abundance measurements could be improved, for
example, by observations to better determine the nature of
systems where 4He is measured [25], or stellar modelling
to test possible solutions of the 7Li problem. On the theo-
retical side the relation between quark masses and nuclear
physics remains unclear beyond the level of the two-
nucleon system: the largest uncertainty in our BBN bounds
arises from the poorly known dependence of the binding
energies on the fundamental couplings.

BBN is already the most powerful probe of fundamental
‘‘constants’’ in the early Universe, and precision bounds
may well be obtained, given continued efforts in observa-
tion and theory, to rule out or confirm the presence of a
cosmological variation.
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APPENDIX A: IMPLEMENTATION OF THE BBN
CODE AND REACTION RATES

1. Units, changes to the code, and general remarks

The code is written in terms of units MeVand 109 K. We
have to make a choice of how to define these units, in a

context where ratios of dimensionful quantities may be
varying. We choose to define units such that the QCD scale
�c is constant: thus �c is always the same number of MeV,
and this energy scale always corresponds to the same
temperature in Kelvin. This simplifies the treatment of
nuclear physics and QCD; we discuss below in Sec. A 3
what must be done to translate to other units, or to a unit-
free formulation. All numerical constants and conversion
factors in the code have been replaced with variables which
are given their values globally, allowing a consistent varia-
tion to be implemented.

For the n$ p reaction rates, instead of analytic approx-
imations [47] we implement exact formulas [65] incorpo-
rating also zero-temperature and thermal Coulomb
corrections [66]. The default baryon density is taken
from the WMAP3 determination � � 6:1� 10�10 [67].
Note that this determination of � assumes that the values
of couplings and mass scales are the same as today. Since
we keep � as a parameter, the possible effect of varying
couplings at the time of cosmic microwave background
decoupling could be incorporated into our analysis.

Current measurements of the neutron lifetime are
strongly inconsistent, the most recent being 878:5
 0:7 s
[68] compared to the 2006 PDG world average 885:7

0:8 s [69]. Since this discrepancy is less than 1% and no
abundance depends very strongly on �n, we take the life-
time to be the PDG value for the purpose of calculating the
leading dependence of abundances.

Starting with the Kawano 1992 code [47], we replaced
all (rounded) numerical constants in the code by functions
of natural constants, which are globally defined as varia-
bles. Thus, variations of constants are treated consistently
within the code. Thanks to increased computational power
we can remove all significant sources of numerical inac-
curacy: these were, for example, 32 bit internal precision of
floating point numbers, simplified integration routines, and
large time steps to name just a few. Better numerical
accuracy allows us to study the behavior of the abundances
under very small changes of constants, which is essential to
derive the linear variation about the standard prediction,
and thus the derivatives of abundances, without numerical
ambiguity.

2. Fits for charged particle reactions

Reaction rates for charged particles (with atomic num-
bers Z1;2 in the initial state) arise from a thermal average of
a cross section which in the absence of resonances is the
product of the Gamow factor and an ‘‘S-factor’’:

 ��E� � S�E�
e�2	~�

E
; (A1)

where ~� � �Z1Z2

�������������
�=2E

p
and � is the reduced mass. The

S-factor may be expanded in a Maclaurin series to qua-
dratic order in energy, which is usually sufficient to ac-
count for any smoothly-varying dependence. However
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some cross sections are fit with an additional exponential
term ~S�0�e��E [70]. In addition, nonresonant terms may be
multiplied by a cutoff factor fcut � e��T=Tcut�

2
, where Tcut

has been argued to be proportional to ��1 [40,70].
Where the cross section as a function of energy shows

one or more resonances, they contribute to the thermal
averaged rate as

 h�vires � g�T�e� �E=T; (A2)

where g�T� and �E are fitting parameters corresponding to
the shape and position of the resonance. Usually a power-
law is taken for g�T�, thus g�T� � cTp. In principle one
should consider the variation of the resonance parameters
if this term is significant. But since the major contribution
to the resonance energy �E probably arises from �c, the
invariant scale of strong interactions, which we take as our
(nonvarying) unit, it seems a reasonable first guess to keep
the resonance parameters fixed.

In order to treat the �-dependence of reaction rates
consistently, so far as it can be calculated, we must imple-
ment it at the level of the cross section �. Hence the
NACRE formulas [48] fitted at the level of the thermal
averaged cross sections h�vi are not suitable. Instead we
used the functional forms of rates from [40,51], which
correspond to a definite S-factor expansion for �, in addi-
tion to resonant terms. The free parameters, primarily the
expansion coefficients of S�E� and resonance parameters,
were then fit, in most cases to reproduce the NETGEN
rates [71] as closely as possible. We also checked that the
resulting cross sections are consistent with experimental
data. In the case of d��; ��6Li we found a set of parameters
which seems to fit the experimental cross section at low
energies [72] better than the NACRE fit. But note that this
cross section is not measured directly, rather it is derived
from experimental data under various assumptions, which
should be more carefully investigated [73].

Replacing the NETGEN rates in the code with our fitted
rates, we obtain abundances which are changed as follows:
YD differs by �0:3%, Y3He by �0:9%, Y4He by less than
0.1%, Y7Li by�3%. Hence we do not consider this refitting
as significant, except in the case of the d��; ��6Li reaction.
Depending on whether this reaction was fit to NETGEN, or
to the cross section values of [72], we found a 6Li abun-
dance larger by a factor of 1.02, or 3.3, respectively. Given
the unclear observational status of 6Li this discrepancy is
not currently worth pursuing.

3. Scaling of dimensionful nuclear parameters

The variation of nuclear binding energies and reactions
involve (in most cases) only two mass scales: the QCD
invariant scale �c, and the average light quark mass m̂,
which indicates the departure from the chiral limitmq ! 0.
In the chiral limit the dependence of binding energies and
strong interaction cross sections becomes extremely sim-
ple: all dimensionful parameters are simply proportional to

a power of �c. Switching on the quark masses, one obtains
a finite range for pion-mediated interactions, which may
greatly affect static and dynamical properties of nuclei.
Also, the masses of all hadrons are affected at some order
in chiral perturbation theory [52]. However, if both �c and
mq are varied by a common factor, while all dimensionless
couplings are held constant, dimensionful quantities in-
volving strong interactions (and to a good approximation
electromagnetic interactions) scale with some power of
this common factor. Such a variation of dimensionful
parameters is equivalent to a redefinition or variation of
the units of mass or energy.

Since we fix our unit of mass to be a constant times �c,
the correct behavior of dimensionful quantities associated
with QCD or the strong nuclear force is automatic. So long
as quark masses are proportional to �c, such quantities are
unchanged. The effects of other dimensionful parameters
h
i and GN are then transparent.

If, however, �c is formally allowed to vary, the scaling
properties of QCD, and hence of the strong nuclear force,
provide a simple check on the dependence of physical
quantities on dimensionful parameters. For example, we
will write the dependence of the deuteron binding energy
BD on the pion mass as

 � lnBD � r� lnm	 (A3)

in units where �c is constant. We may thus rewrite varia-
tions of dimensionful quantities as, for instance,
� ln�BD=�c� and obtain

 � lnBD � r� lnm	 � �1� r�� ln�c; (A4)

allowing us to compare results obtained with different
choices of unit. For this type of equation relating fractional
variations of dimensionful quantities, there is a simple
check on whether it behaves correctly under redefinition
of units. Each term is a numerical coefficient ri times the
fractional variation � lnQi of a quantity Qi with mass-
energy dimension Di: then the sum of riDi on each side
of the equation must match.

APPENDIX B: OBSERVATIONAL SITUATION AND
UNCERTAINTIES

One of the biggest success of standard BBN is the
matching of theoretically predicted and observed primor-
dial abundances for major elements. For a review of the
theoretical and observational status and obstacles see [25].
The highest precision measurement is that of the 4He
abundance (conventionally written YP); however the actual
precision of the determinations and possible systematic
errors are currently debated [25]. The situation is exempli-
fied by recent contradictory observational determinations
[74]. It was argued in [62] that given a range of systematic
effects the observational data indicated a primordial abun-
dance of
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 YP � 0:249
 0:009 (B1)

which we take to be a 1� range. However, given the
probable dominance of systematic effects, instead of using
2� bounds to determine the range of allowed variations,
we rather use the ‘‘conservative allowable range’’ of YP
given in [62] as

 0:232 � YP � 0:258: (B2)

The determination of the primordial deuterium abun-
dance follows from a small number of observed systems.
Recent determinations [75,76] yield a value of

 D =H � �2:8
 0:4� � 10�5 (B3)

where the large scatter between values determined from
different systems should be noted.

Determinations of the 3He abundance typically have a
large scatter. Considering also the complex post-BBN
development of this isotope, 3He abundance determina-
tions cannot be considered as good tracers for the primor-
dial abundance [77].

Observations of the 7Li abundance show a plateau at old,
metal-poor halo stars, suggesting that the plateau value is
closely related to the primordial one. The most recent
determinations of the abundance are quite small: 7Li=H �
�1:3
 0:3� � 10�10 [78] (see also [42]). It has been sug-

gested that there are unresolved systematic errors relating
to the effective temperature of the stars [79] which may
imply a value as large as 7Li=H � �1:64
 0:3� � 10�10. To
account for this possible systematic, we adopt a value

 

7Li=H � �1:5
 0:5� � 10�10: (B4)

Thus the observed 7Li abundance is about a factor of 3
smaller than the standard theoretical prediction.

A possible detection of 6Li was discussed in [42], though
not at high statistical significance. If the detection is cor-
rect, the 6Li abundance is about a factor 1000 larger than
the SBBN prediction. Given the unclear observational
status and post-BBN history of the isotope, we do not
include 6Li in the final analysis.

Theoretically predicted primordial abundances also
come with an error, mainly due to cross section uncertain-
ties. Our numerical procedures do not provide error esti-
mates, so we adopt the 1� ranges from [80], using a baryon
density �bh

2 � 0:0224 [81]:
 

D=H � �2:61
 0:04� � 10�5;
3He=H � �1:03
 0:03� � 10�5;

YP � 0:2478
 0:0002;
7Li=H � �4:5
 0:4� � 10�10:

(B5)
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