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We evaluate the possibility of observable effects arising from collisions between vacuum bubbles in a
universe undergoing false-vacuum eternal inflation. Contrary to conventional wisdom, we find that under
certain assumptions most positions inside a bubble should have access to a large number of collision
events. We calculate the expected number and angular size distribution of such collisions on an observer’s
‘‘sky,’’ finding that for typical observers the distribution is anisotropic and includes many bubbles, each of
which will affect the majority of the observer’s sky. After a qualitative discussion of the physics involved
in collisions between arbitrary bubbles, we evaluate the implications of our results, and outline possible
detectable effects. In an optimistic sense, then, the present paper constitutes a first step in an assessment of
the possible effects of other bubble universes on the cosmic microwave background and other observables.
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I. INTRODUCTION

Cosmological inflation never ends globally when driven
by an inflaton potential with long-lived metastable minima.
This was discovered in the very first models of inflation as
a failure of ‘‘true’’ (lower) vacuum bubbles in a ‘‘false’’
vacuum background to percolate [1]. It was later recog-
nized as a special case of ‘‘eternal inflation’’ in which our
observable universe would lie within a single nucleated
bubble [2] while inflation continues forever outside of this
bubble (e.g., [1,3]).

While important for any sufficiently complicated infla-
ton potential, this issue has become prominent lately with
the realization that stabilized string theory compactifica-
tions appear to correspond to minima of a many-
dimensional effective potential ‘‘landscape’’ [4,5] that
would drive just this sort of eternal inflation and thus create
‘‘pocket’’ or ‘‘bubble’’ universes with diverse properties.
This has raised a number of very thorny questions regard-
ing which properties to compare to our local observations
(e.g. [6,7]), as well as debates as to whether these other
‘‘universes’’ have any meaning if they are unobservable, as
is the conventional wisdom.

But what if they are observable, so that the processes
responsible for eternal inflation can be directly probed?
What is the chance we could actually see such bubbles, and
how would they look on the sky? These are the questions
that the present paper begins to explore.

It would seem that for us to observe bubble collisions in
our past, three basic and successive criteria must be met:

(1) Compatibility: A bubble collision must allow stan-
dard cosmological evolution including inflation and
reheating—and hence be potentially compatible
with known observations—in at least part of its
future light cone.

(2) Probability: Within a given ‘‘observation bubble’’
(seen as a negatively curved Friedmann-Robertson-
Walker (FRW) model by its denizens) a randomly
chosen point in space should have a significant
probability of having (compatible) bubbles to its
past.

(3) Observability: The effects of compatible bubbles to
the past must not be diluted away by inflation into
unobservability, nor affect a negligible area of the
observer’s sky.

Although a rigorous analysis of these issues does not yet
exist, several recent studies suggest—in contrast to pre-
vious thinking—that it is actually plausible that these three
criteria may be met.

First, studies of bubble collisions ‘‘boosted’’ so that one
bubble forms much ‘‘earlier’’ than the other indicate that
the older bubble may see the younger bubble as a small
perturbation that does not disrupt its overall structure [8],
even if the younger bubble contains a big-crunch singular-
ity [9]. Second, straightforward arguments (see below),
inspired by the results of Garriga, Guth, and Vilenkin
[10] (hereafter GGV), indicate that a random position in
the FRW space within a bubble should (with probability
one) have a bubble nucleation event to its past. Third, in a
complex inflaton potential with many minima, the number
of e-foldings within a randomly chosen bubble can become
a random variable with some probability distribution.
Suppose that this distribution favors a small number of e-
foldings, and yet—either to match our observations or for
‘‘anthropic’’ reasons—we focus only on the subset of
bubbles with * Nmin � 50–60 e-foldings. Then we might
expect that our region underwent close to Nmin e-foldings
[11,12]. Thus it is plausible that just enough inflationary e-
foldings occurred to explain the largeness and approximate
flatness of the universe; and since the cosmic microwave
background (CMB) perturbations on the largest scales
formed �Nmin e-foldings before the end of inflation, per-
turbations at the beginning of inflation may then be
detectable.
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None of these studies have actually addressed whether
bubble collisions might be observable, however, and leave
many key questions unresolved. The bulk of the present
paper aims to help answer several of these questions by
calculating, given an observer at an arbitrary spacetime
point in a bubble, the expected differential number

 

dN
d d�cos��d�

(1)

of bubble collisions on the observer’s bubble wall, seen on
the sky by the observer with angular scale  and direction
��;��.

We will see that for small nucleation rates, this distribu-
tion is interesting for two cases. First, very late-time ob-
servers might see a nearly isotropic distribution of bubbles
with tiny angular scales. Second, for a typical position
inside the bubble, many bubbles enter the past light cone
at early times and with large angular scales (i.e., each
collision will affect the majority of the observer’s sky),
nearly all from a particular direction on the sky. While we
can only speculate as to how these bubbles would look
observationally, the detection of either signal would offer
direct observational evidence that we inhabit a universe
undergoing false-vacuum eternal inflation, and would bol-
ster support for fundamental theories that may drive this
type of cosmological evolution.

We proceed as follows. In Sec. II we discuss the de Sitter
(dS) background and the structure of a bubble universe
inside it, then outline the calculation to be performed and
the simplifying assumptions we will employ. In Sec. III we
display the calculation. The basic results and their impli-
cations are summarized in Sec. IV, and readers uninterested
in the details of the computations can skip from Sec. II to
this section. Finally, in Sec. V we conclude.

II. SETTING UP THE PROBLEM

The system we will study consists of a dS spacetime
supported by a false-vacuum energy, containing nucleated
Coleman-de Luccia (CDL) [13–15] bubbles of true vac-
uum. We work in the approximation where all bubbles are
nucleated with vanishing size, expand at the speed of light,
and have an infinitely thin wall. Bubble walls then corre-
spond to spherically symmetric null shells.

The geometry of the bubble interior, the background de
Sitter space, and the wall between them can all be visual-
ized and understood in terms of a 5D embedding space
with coordinates X�, � � 0 . . . 4, and Minkowski metric
ds2 � ���dX

�dX�. In this embedding, pure dS is a hy-
perboloid defined by ���X�X� � H�2, where H2 �

8���=3 in terms of the vacuum energy density ��.
In formulating the problem we employ the ‘‘flat slicing’’

coordinates �t; r; �;�� to describe the dS (with H � HF)
outside of the bubble. In the embedding space, these coor-
dinates are given by

 X0 � H�1
F sinhHFt�

HF

2
eHFtr2; Xi � reHFt!i;

X4 � H�1
F coshHFt�

HF

2
eHFtr2;

(2)

with �!1; !2; !3� � �cos�; sin� cos�; sin� sin��, 0 � r <
1, �1< t <1. This induces the metric

 ds2 � �dt2 � e2HFt�dr2 � r2d�2
2	; (3)

which covers half of the de Sitter hyperboloid.
Turning now to the bubble, the exact form of the post-

nucleation bubble interior is found from the analytic con-
tinuation of the CDL instanton [13], with the details largely
dependent on the form of the inflaton potential. The null
cone, which in our approximation traces the wall trajectory,
more generally corresponds to the post-tunneling field
value.1 Inside of this null cone, the metric is that of an
open FRW cosmology

 ds2 � �d�2 � a2����d	2 � sinh2	d�2
2	: (4)

This metric is induced by the embedding

 X0 � a��� cosh	; Xi � a��� sinh	!i;

X4 � f���;
(5)

where 0 � 	 <1, 0< �<1, and where f��� solves
f02��� � a02��� � 1. If we set a��� � H�1

T sinh�HT��, we
have f��� � H�1

T cosh�HT��, and we recover the usual
‘‘open slicing’’ of dS.

Now these two spacetimes can be ‘‘glued together’’
across the bubble wall.2 In the limit where the bubble
interior is pure dS, this corresponds to gluing two dS
hyperboloids in the embedding space, and breaks the origi-
nal SO(4,1) symmetry of empty de Sitter space to SO(3,1),
since we must choose an axis (here, we choose X4) along
which to do the pasting. This procedure is shown sche-
matically in Fig. 1. For a more general interior a��� the
picture is similar but with the ‘‘scale’’ of the hyperboloid
varying with X4 >Xwall

4 .
The basic setup of the problem we wish to consider is

shown in Fig. 2, which is the conformal diagram for de
Sitter space containing a true-vacuum bubble. In this
model our observable universe resides within the ‘‘obser-
vation bubble.’’ The spacelike slices inside this bubble
correspond to surfaces of constant-� that, by the homoge-
neity of the metric equation (4), are also surfaces of con-
stant curvature and density. These slices correspond to the

1At late times, the identification of the null cone with the
position of the bubble wall becomes an increasingly accurate
approximation, and we can safely neglect the portion of the
spacetime encompassing the wall.

2Even in the thin-wall limit this is only an approximate
solution to the coupled Einstein and scalar field equations (for
the full solution, see e.g. [16]), corresponding to the limit where
the initial bubble radius vanishes.
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various epochs of cosmological evolution inside of the
bubble: the beginning of inflation (near the tunnelled-to
field value), the end of inflation at the failure of slow roll,

reheating, the recombination epoch, etc., up until the
present time.3

If the nucleation rate 
 (per unit physical 4-volume) of
true-vacuum bubbles is small compared to H4

F, the obser-
vation bubble will be one of infinitely many that form as
part of what either is or approaches a ‘‘steady-state’’
bubble distribution wherein there is a foliation of the
background dS in which the bubble distribution is statisti-
cally independent of both position and time (see [17], and
also [3,18].) An infinite subset of these will actually collide
with the observation bubble.

If we now assume that our bubble experiences what a
‘‘typical’’ bubble in the steady-state distribution does, then
we can follow the strategy of GGVand consider the bubble
to exist at t � 0, model the background as having an initial
pure false-vacuum surface at t � t0 (indicated in Fig. 2),
then send t0 ! �1. (By doing this, GGV explicitly
showed that there is a ‘‘preferred frame’’ in the model of
eternal inflation they treated, which coincides with comov-
ing observers in the ‘‘steady-state’’ foliation, and is related
to the initial false-vacuum surface; observers with different
boosts with respect to this frame see bubble collisions at
different rates.)

Given an observer at time �o and hyperbolic radius 	o
inside the bubble, we can define a two-sphere by the
intersection of the observer’s past light cone (dashed lines
in Fig. 2) with another equal-� surface (i.e. corresponding
to a portion of the recombination surface or the bubble
wall). The question we now wish to address is: what is the
number of bubbles observed in a given direction ��;��
with a given angular size on the two-sphere (the observer’s
‘‘sky’’)? This quantity could provide the basis for a calcu-
lation of the impact on the observer’s CMB of incoming
bubbles that distort the recombination (or reheating, etc.)
surface.

In the next section we calculate this quantity under the
following assumptions:

(1) We assume that bubbles start at zero radius and
expand at light speed at all times. We also assume
that the bubbles do not backreact, i.e. one bubble
will not alter the trajectory of a subsequent bubble.
This may be important for directions on the sky hit
with multiple bubbles, but requires a careful treat-
ment of bubble collisions and is reserved for future
work.

(2) We assume that no bubbles form within bubbles, and
that there are no transitions from true to false vac-
uum. We comment on the implications of including
these features in Sec. IV.

(3) We assume that structure of the observation bubble
is unaffected by the incoming bubbles, and that the
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FIG. 2 (color online). The conformal diagram for a bubble
universe. We imagine an observer at some position �	o; �o; �o�
inside of the observation bubble, which is assumed to nucleate at
t � 0 and expand at the speed of light. The foliation of the
bubble interior into constant density, negative curvature, hyper-
bolic slices is indicated by the solid lines. These spacelike slices
denote epochs of cosmological evolution in the open FRW
cosmology inside of the bubble. The past light cone of the
observer is indicated by the dashed lines. There is a postulated
no-bubble surface at some time to the past of the nucleation of
the observation bubble. Also shown is a (� � �n, � � �n slice
of a) colliding bubble that nucleated at some position
�tn; rn; �n;�n�, and intersects the bubble wall within the past
light cone of the observer.

4

0

wallX4H−1 −1H X4F T X

X0X

FIG. 1 (color online). On the left is the embedding of two dS
spaces of different vacuum energy in 5D Minkowski space (three
dimensions suppressed). The construction obtained by matching
these two hyperboloids along a plane of constant X4, as shown
on the right, corresponds to the one-bubble spacetime shown in
Fig. 2 in the limit where the bubble interior is pure dS. The light
shaded (green) region represents the false-vacuum exterior
spacetime, while the dark shaded (blue) region represents the
interior spacetime.

3We note that it is difficult to construct inflaton potentials
(without considerable fine-tuning) giving rise to a cosmological
evolution inside of the bubble similar to our own.
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observed equal-� surface is at �! 0, coinciding
with the bubble wall. The first—rather strong—
assumption is discussed below in Sec. IV; the sec-
ond should be reasonable insofar as we are hoping to
assess the incoming bubbles’ impact on the first few
e-foldings of inflation.

Within this setup, let us examine why it is plausible for a
typical observer to have one or more bubble nucleations
within their past light cone. Because bubbles expand as
light cones and nucleate with some rate 
 per unit 4-
volume, the expected number of bubbles in an observer’s
past light cone is just 
V4, where V4 is the 4-volume of the
exterior spacetime contained in the past light cone of the
observer, bounded by the initial value surface, the bubble
wall, and the past light cone of the nucleation site of the
observation bubble (which enforces the no bubbles-within-
bubbles approximation). This 4-volume depends on the
position of the observer inside of the bubble and the epoch
of observation.

Now, the spatial volume in a coordinate interval d	 goes
as dV3 / 4�sinh2	d	, thus the volume is exponentially
weighted towards large 	. If observers inside of the bubble
are uniformly distributed on a given constant-� surface, we
would expect most of them to exist at large 	. But as shown
by [10], on any constant-� surface, the 4-volume relevant
for bubble nucleation diverges for large 	 as V4 / 	. Thus
even for a tiny nucleation rate4 most observers have a huge
4-volume to their past and should therefore expect bubbles
in their past.5

We now proceed to calculate the distribution of colli-
sions on our observer’s sky. Readers uninterested in the
details of this calculation can proceed to Sec. IV for a
summary of the results.

III. COMPUTATIONS

Consider an observer at coordinates �	o; �o; �o� in the
observation bubble. There is nothing breaking the symme-
try in �, so we are free to choose � � const.

(1) First, we compute the angular scale  and direction
�obs on the sky of the triple intersection of the
observer’s past light cone, the bubble wall (the �!
0 surface), and the wall of a bubble nucleated at
some point in the background spacetime.

(2) We then find the differential number (Eq. (1)) of
bubbles of angular size  in the direction �obs by
integrating the volume element for the exterior
spacetime over all available nucleation points on a
surface of constant  and �obs and multiplying by
the bubble nucleation rate 
.

Both items can be computed in two different frames that
we shall denote the ‘‘unboosted’’ and the boosted frames.
In the original unboosted frame, where the observer is at
�	o; �o; �o�, we compute the locations of triple intersec-
tions on the 2-sphere of the observer’s sky, then convert
these locations to an observed angle �obs and angular scale
 on the sky (see Sec. III A and Appendix A). While this
frame is most straightforward, the calculations are much
more tractable using a trick suggested by GVV: given the
symmetries of dS, a boost in the embedding space changes
none of the physical quantities we are interested in (see
below for elaboration). Thus we can choose a boost such
that the observer lies at 	 � 0, so that (a) �obs coincides
with the coordinate angle �n at which the bubble nucleates,
and (b) the bubble’s angular scale is just given by the
angular coordinate separation of the two triple-intersection
points. The cost of this simplification is that the initial
false-vacuum surface is boosted into a more complicated
surface. In the results to follow, we will employ both the
boosted and unboosted viewpoints, but will focus on the
boosted frame for the calculation of the distribution
function.

A. Angles according to the unboosted observer

The triple intersection between the observation bubble,
the colliding bubble, and the past light cone of the observer
represent the set of events that form a boundary to the
region on the observer’s sky affected by the collision.
Working in a plane of constant �, these will correspond
to two events, and the angle between geodesics emanating
from these two events and reaching the observer at
��o; 	o; �o� gives the observed angle on the sky. In the
particular case where the bubble interior is dS with HT �
HF, Appendix A gives the explicit solution to this problem,
although a similar (necessarily more complicated) proce-
dure can be applied to the more general case.

Let us visualize this by focusing now on the inside of the
observation bubble which (as discussed in Sec. II) is de-
scribed by an open FRW cosmology. We can use the
Poincaré disk representation to describe the hyperbolic
equal-� surfaces in this spacetime. Suppressing one of
the spatial dimensions, the metric on a spatial slice of
Eq. (4) becomes

 ds2 � 4a���
dz2 � z2d�2

�1� z2�2
: (6)

Where in terms of the embedding,

 X0 � a���
1� z2

1� z2 ; X1 � a���
2z cos�

1� z2 ;

X2 � a���
2z sin�

1� z2 ; X3 � 0; X4 � const:

(7)

Since there are collision events that disrupt large angular
scales, we find it useful for visualization purposes to let the

4We might expect a typical nucleation rate to be of order 
�
e�SF , where SF is the entropy of the exterior de Sitter space.

5If the interior vacuum energy is much lower than the exterior
one, this only increases the 4-volume accessible to the observer.
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polar angle � assume also negative values ��< � < �
and limit the range of � accordingly. Scaling by a����1

gives the disk unit radius, with z � 1 corresponding to the
wall of the observation bubble, as depicted in Fig. 3.

This figure shows the time lapse of a collision event
from the perspective of an interior observer on the Poincaré
disk. The angles �1 and �2 are the triple-intersection points.
The broken lines from these points trace the path of null
rays that reach the observer at (	o, �o, �o � 0), where we
have used the remaining symmetry of the problem to place
the observer at �o � 0.

Analyzing this geometry, the angular position of an
intersection from the perspective of an interior observer
is given by

 cos�1;2 �
tanh	o � cos�1;2

tanh	o cos�1;2 � 1
: (8)

Notice that the denominator never vanishes unless 	! 1
(the boundary) where cos� � �1, independent of �. Using
the above results, we conclude that the observer will see a
collision as having an angular scale of

  � �1 � �2; (9)

where one has to take some care choosing the correct
branch of the cosine function in the process of solving
for � using Eq. (8), see Fig. 3.

Because of the hyperbolic nature of the spatial slices, an
observer at large-	o can record an angle � that is very
different from �. To examine this limit, transform to the
Euclidean coordinates �z; �� on the disc, and expand Eq. (8)
near the boundary at z � 1� �

 cos�1;2�z; �� � �1�
1

2
cot2

�
�1;2

2

�
�2 �O��3�: (10)

Accordingly, any given angle � gets mapped to � � 
�
the closer we approach the boundary (�! 0). On the other
hand, regardless of how close to the wall we are, there are
always small enough angles � < � that will be mapped by
Eq. (7) to small hyperbolic angles �.

In the first case, choosing the branch of the cosine in
Eq. (8) determines whether the angular size is  ’ �� �
or  ’ �� �. Studying a few examples, it is easy to see
that in this limit intersections where �1;2 have opposite
signs get mapped to  � 2�, and intersections where �1;2

have the same sign get mapped to  � 0.
We will see in the following sections that most of the

phase space for bubble nucleation comes from very small
angles �obs � 0, typically yielding one intersection in the
upper half and one in the lower half of the disk. In this
frame, we also expect the angular scale j�1 � �2j to be
small, since the majority of colliding bubbles form at very
late times, and therefore have a tiny asymptotic comoving
size. All of this information taken together suggests that
typical collision events will appear to take up either very
large or very small angular scales on the observer’s sky,
depending on where the observer is situated inside of the
bubble.

B. The boosted view

We now go on to discuss the boosted frame. We will
again exploit the symmetry of the problem to position the
observer at �o � 0, and define the following transforma-
tion in the embedding space:

 X00 � 
�X0 � �X1�; X01 � 
�X1 � �X0�;

X02;3;4 � X2;3;4:
(11)

This is simply a boost in the X1-direction of the embedding
space, and respects the SO(3,1) symmetry of the one-
bubble spacetime, since it is in a direction perpendicular
to the ‘‘surface of pasting’’ described in Sec. II. If 
 �
cosh	o and � � tanh	o, the observer at 	o is translated to
the origin. More generally, in terms of the open coordinates
inside of the observation bubble (with arbitrary scale fac-
tor), this boost is equivalent to a translation (see
Appendix B for an explicit demonstration of this).

Points outside of the observation bubble are also af-
fected by the boost. We will be particularly concerned
with the effects on the initial value surface at t0 ! 1,
since this determines the available 4-volume to the past
of our observer. The boost will push portions of this initial
value surface into regions of the de Sitter manifold not
covered by the flat slicing coordinates (see Eq. (3)). It is
therefore useful to employ the third foliation of dS, into
positively curved spatial sections, which cover the entire
manifold. Using a conformal time variable, these coordi-
nates �T; �; �; �� are defined by

θ θ

2π−ψ

α α

2

2
1

1

FIG. 3 (color online). A time lapse picture of the null rays
reaching an observer from the boundary of the region affected by
a collision event in the Poincaré disk representation. The
boundaries are located at angles �1;2 from the center of the
disk, and at angles �1;2 from the location of the observer. The
total angular scale of the collision event as recorded by the
observer, which affects the region of the disk indicated by the
double lines, is given by  .
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 X0 � H�1
F tanT; Xi � H�1

F
sin�
cosT

!i;

X4 � H�1
F

cos�
cosT

;
(12)

where ��=2 � T � �=2 and 0<�<�, and the !i are
the same as in Eq. (5). This induces the metric

 ds2 �
1

H2
Fcos2T

��dT2 � d�2 � sin2�d�2
2	: (13)

The transformation between the boosted and unboosted
frames in terms of the global coordinates is given by

 tan�0 �
sin� sin�


�sin� cos�� � sinT�
; (14)

 tanT0 � 

�
tanT � �

sin� cos�
cosT

�
; (15)

 cos�0 � cosT0
cos�
cosT

: (16)

We now apply this transformation to the initial value
surface at t0 ! �1. In terms of the embedding coordi-
nates, we can define this (null) surface by X0 � X4 � 0
(T � �� �=2), which boosts to

 X00 � �X
0
1 � �

X04


: (17)

Substituting with the global coordinates, we arrive at the
relation

 sinT0 � �
�

cos�0



� � sin�0 cos�0

�
: (18)

Henceforward we will drop the prime on the boosted
coordinates unless explicitly noted.

The boosted initial value surface Eq. (18) is a function of
the coordinate angle, accounting for the dependence on
�obs of the past 4-volume for an arbitrary observer. This is
displayed for a variety of angles on the dS conformal
diagrams in the upper cell of Fig. 4.

The effects of the boost on a slice of constant (�, � � 0)
in the background spacetime is shown in the lower cell of
Fig. 4. Even for this rather modest boost (here we use 	o �
2), it can be seen that most of the points in the unboosted
frame are condensed into the wedge between the past light
cone of the nucleation event and the boosted initial value
surface.

One may be worried that the presence of colliding
bubbles, which break the SO(3,1) symmetry of the one-
bubble spacetime, invalidates our procedure. In fact, to
calculate the quantities we are interested in, we only
need a consistent description of the spacetime outside of
the colliding bubbles. We assume that the colliding bubbles
are null and since SO(3,1) symmetry transformations keep
points inside their light cones, it follows that the spacetime

outside bubbles is mapped to itself. While it may be true
that such transformation may e.g. violate causality inside
the colliding bubbles this effect does not affect the analysis
we perform here.

C. Angles according to the boosted observer

We can now calculate the angular scale of a collision on
the boosted observer’s sky. To do so, we must confront the
non-Euclidean geometry of spatial slices in the global
coordinates: constant-T slices are 3-spheres of radius
1=HF cosT. We can visualize a time slice of bubble evo-
lution by suppressing one dimension, embedding in a 3
dimensional Euclidean space, and scaling the spheres to
unit radius. The polar angle on this two-sphere is given by
� and the azimuthal angle by � (recall that we take the
range ��< �< �).

A bubble wall appears as an evolving circle on the unit
two-sphere. Allowing for arbitrary bubble interiors, and
continuing the global coordinate equal time slices (X0 �
const in the embedding) into them, a spatial slice is not
quite a two-sphere, but rather a two-sphere with divets and
bumps describing the varying curvature of the spacetime
inside of the bubbles. For colliding bubbles, these struc-
tures—no matter how extreme—are irrelevant, as we will
only employ information about the bubble wall.

But the observation bubble requires more care, since we
are ultimately interested in a description of collision events

FIG. 4 (color online). The effects of the boost. The top cell
shows the boosted initial value surface (at t0 ! �1 in the
unboosted frame) for small (left) and large (right) 	o for a
variety of angles (with the bottom curve (red) corresponding
to � � 0, the top (yellow) corresponding to � � �, and other
lines corresponding to intermediate angles at intervals of �=4).
The bottom cell shows the effects of the boost on points in the
exterior spacetime on a slice of constant (�, � � 0). Note that
even for this very modest boost (	o � 2), most of the points are
condensed into the wedge created by the past light cone of the
nucleation event and the boosted initial value surface.
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from the perspective of an inside observer. Whatever form
the embedding of the bubble interior may take, by sym-
metry, the bubble wall will be a latitude on the background
two-sphere. It will have � � T (since it nucleates at T �
0), and span all � from�� to �. For T < �=2 it looks like
a circle, with the bubble interior the portion of the sphere
bounded by this circle. At T � �=2 the circle is a great
circle and the bubble exterior a hemisphere. If we had
chosen a frame in which the observation bubble was
formed at some Tn < 0, then for T � Tn > �=2 the bubble
wall would again become a ‘‘small’’ circle, with the por-
tion of the sphere bounded by this circle corresponding to
the bubble exterior. By homogeneity of the space a bubble
nucleated elsewhere would appear similarly.

In the spherically symmetric, open FRW coordinates
that describe the interior of the observation bubble, the
boosted observer lies at the origin, which coincides with
Xi � 0 in the embedding space. Because of the spherical
symmetry of this metric, radial incoming null rays from the
bubble wall follow trajectories of constant � and�, and the
angle on the sky is identical to the angle we would find if
the bubble interior were replaced by a continuation of the
background dS. In terms of calculating the observed angle,
we can therefore largely ignore the hyperbolic geometry of
the bubble interior, and visualize the collision between the
observation bubble and an incoming bubble as the inter-
section of two circles on the T � const sphere, as shown in
Fig. 5.

In analyzing the geometry it is helpful to perform a
stereographic projection onto a plane tangent to the north
pole of the two-sphere (� � 0) as shown in Fig. 5. This
projection maps circles on the two-sphere to circles in the

plane, and also preserves angles since the map is
conformal.

Examining the projection, there are three cases to con-
sider. Colliding bubbles with an interior that does not cut
out the south pole appear as filled circles in the projection
(upper-left panel of Fig. 6, where the light (yellow) disc
represents the observation bubble and the dark (blue) disc
represents the colliding bubble). On the time slice when a
bubble wall intersects the south pole, the wall appears as a
line in the projection, bisecting the plane into a region
inside, and outside, the bubble (upper-right panel of
Fig. 6). If the bubble interior cuts out the south pole, it
projects to a circle whose interior corresponds to the region
outside of the bubble (see the lower panel of Fig. 6).

Now consider a bubble nucleated at arbitrary coordi-
nates �Tn; �n; �n�. Ingoing and outgoing radial null rays
from the center of this bubble (corresponding to the loca-
tion of the bubble wall) obey:

 � � �n 
 �T � Tn� � �n 
 �T: (19)

We are interested in the projection of this bubble at the
global time slice Tco (and bubble coordinate time �co ! 0)
when the observer’s past light cone intersects the observa-
tion bubble wall (see Fig. 2). If we follow the past light
cone of the observer we find

 	 �
Z �o

�
d�=a���: (20)

To determine Tco, a valid junction between the interior and
exterior spacetimes requires that the physical radius of
two-spheres (the coefficients of d�2 in Eqs. (4) and (13))
at the location of the wall match, and gives

FIG. 5 (color online). A spatial slice in the global foliation of
the background de Sitter space, and its stereographic projection.
The observation bubble is shaded light (yellow) and the colliding
bubble is shaded dark (blue). The angle  is indicated in the
plane of projection.

FIG. 6 (color online). The three cases of bubble intersection in
the plane of projection. The top left cell displays the case where
the bubble interior does not encompass the south pole of the
projected two-sphere, the top right cell displays the case where
the bubble wall intersects the south pole, and the lower cell
displays the case where the bubble interior includes the south
pole.
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 Tco � arctan
�
HF lim

�!0
a��� sinh

�Z �o

�
d�=a���

��
: (21)

In the case where the interior is pure dS (where a��� �
H�1
T sinhHT�), this works out to Tco � arctan��HF=HT��

tanh�HT�o=2�	. As we send �o ! 1, it can be seen that
this ranges between Tco � �=4 for HT � HF and Tco �
�=2 for HT 
 HF.

Viewed in the projected plane using polar coordinates
��;�proj�, the incoming bubble has a center at �� � ��2 �

�1�=2, and a radius �� � ��2 � �1�=2 as shown in the
upper-left panel of Fig. 6. Then, since the projection of an
arbitrary point gives � � 2 tan�=2 (this can be seen by
analyzing the geometry of Fig. 5), we can work out:

 �� �
2 sin�n

cos�n � cos�T
; �� �

2 sin�T
cos�n � cos�T

: (22)

Finally, on the plane we can find the angle  between the
two radial null rays that come to the observer from the two
intersection points, which is given by

 cos
�
 
2

�
� � cot�n cotTco �

cos�Tn � Tco�

sin�n sinTco
: (23)

At 	 � � � 0, observers at rest in the open and closed
coordinates are in the same frame, so  is the actual
angular scale on the sky of the bubble’s ‘‘sphere of influ-
ence,’’ as seen by the observer.

We can now foliate the background spacetime into
surfaces of constant  , as shown in Fig. 7. From the
symmetries of the boosted frame, this foliation is indepen-
dent of � and � (although the angular dependence of the
boosted initial value surface will play an important role in
defining the statistical distribution of collisions). This pro-

vides a map between the nucleation site of a colliding
bubble and the observed angular scale of the collision.
The number of collisions of a given angular scale can be
found by examining how the exterior four-volume is dis-
tributed in the causal past of the observer.

In the 	o ! 1 limit, there is a divergent 4-volume
containing nucleation sites that correspond to  � 2�
and �n ’ 0 (in the corner near past null infinity enclosed
by the shaded boxes of Fig. 7). Considering the time
evolution of an observer starting from � ’ 0, most of the
4-volume in this region will come into the observer’s past
light cone at very early times. The observer will therefore
see new bubble collisions at a rate that is very high at first
(formally divergent as 	! 1), and decreases with time.6

In the limit where HT 
 HF, for all 	o, there is also a
very large 4-volume containing nucleation sites that cor-
respond to  � 0 (in the corner near future null infinity
enclosed by the shaded box), though the observer will not
have access to these collisions until late times. In this late-
time limit (and even for 	o ! 1), the boosted initial value
surface cuts into the relevant phase space only when �obs �
�, so the distribution is nearly isotropic.

Assembling this information, we predict that the distri-
bution function has two potentially large peaks: one at  �
2� and �n � 0, for large 	o, and one at  � 0 and all
angles, for large �o; both are in complete agreement with
the analysis of the unboosted frame. Collisions with  �
2� are recorded at very early observation times, while
those with  � 0 are recorded at very late observation
times. We now directly confirm these predictions by ex-
plicitly calculating the distribution function in the boosted
frame.

D. Angular distribution function

We now calculate dN
d d cos�obsd�obs

, the differential number
of bubbles with an observed angular scale  in a direction
on the sky given by ��obs; �obs�. In Sec. III C we found a
mapping (Eq. (23)) between the position at which a collid-
ing bubble nucleates and the observed angular scale  as
seen by an observer situated at the origin (for which �obs �
�n,�obs � �n). We can therefore calculate the distribution
function by determining the density of nucleation events on
surfaces of constant  and �n. (The symmetry in� implies
that the distribution is independent of �n.)

The differential number of bubbles nucleating in a parcel
of 4-volume somewhere to the past of the observation
bubble is

 dN � 
dV4 � 
H�4
F

sin2�n
cos4Tn

dTnd�nd�cos�n�d�n: (24)

A more complete analysis would include the probability
that a given nucleation site is not already inside of a bubble.

FIG. 7 (color online). The foliation of the exterior de Sitter
space into surfaces of constant  for junctions with HT �HF
(left) and HT 
 HF (right). Dark regions correspond to small  
and light regions correspond to large  . Superimposed on this
picture is the boosted initial value surface for various �n in the
limit of large-	o.

6Surfaces of constant 	 are nearly null at early times, so this
effect can be viewed as due to time dilation in the boosted frame.
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Under our assumption that bubble walls are null, this
probability is given by fout � e�
V

past
4 ��n;Tn;�n� [19], where

Vpast
4 ��n; Tn; �n� is the 4-volume to the past of a given

nucleation point. Consider some parcel of 4-volume from
which bubbles might nucleate. At late times, in the un-
boosted frame, a straightforward calculation shows that the
4-volume to the past of any point is proportional to t, the
flat slicing time. This yields a differential number of
nucleated bubbles:

 

dN
dtdrd�cos��d�

� 
r2e�3�c
H
�4�Ht ’ 
r2e3Ht; (25)

where c is a constant of order unity, and we have used the
fact that in any model of eternal inflation 
H�4 
 1. The
total number of bubbles is found by integrating, and it can
be seen (essentially for the same reason that inflation is
eternal in these models) that including fout only minutely
affects both the differential and total bubble counts. We
will therefore neglect this correction in our calculation.

Returning to Eq. (24), changing variables from Tn to  
using Eq. (23), and integrating �n at constant  ��n; Tn�,
we obtain the distribution function
 

dN
d d�cos�obs�d�obs�

�
dN

d d�cos�n�d�n

� 
H�4
F

�Z �max�	o; ;�n�

0
d�n

�
sin2�n

cos4�Tn� ;�n; Tco��

�

��������@Tn� ;�n; Tco�

@ 

��������
�
; (26)

with the Jacobian given by
 ��������@Tn� ;�n; Tco�

@ 

�������� � 1

2
sin�n sinTco sin

�
 
2

��
1�

�
cos

�
 
2

�

� cot�n cotTco

�
2

� sin2�nsin2Tco

�
�1=2

: (27)

The lower limit of integration at �n � 0 can be under-
stood by tracing the surfaces of constant  in Fig. 7 and
also by noting that for all  and Tco, Eq. (23) yields
Tn� ;�n � 0; Tco� � 0. The upper limit of integration,
�max�	o;  ; �n�, is found by determining the intersection
of the surfaces of constant- with the boosted initial value
surface; this intersection depends on �n and 	o (due to the
boosted initial value surface equation 4), reflecting the
dependence of the past 4-volume on the position of the
observer.

The properties of the observation bubble enter this cal-
culation through the determination of Tco via Eq. (21).
Recall that for late-time observers (�o ! 1), Tco can range
from �

4 for HT � HF to �
2 for HT 
 HF.

We first examine the behavior of the distribution func-
tion Eq. (26) for an observer at the origin, 	o � 0. In this
limit, the distribution is isotropic, and based upon the
discussion surrounding Fig. 7, we expect it to have a large
peak around  � 0 as Tco ! �=2 (HT=HF ! 0 and �o !
1). Integrating Eq. (26), we see in Fig. 8 that this behavior
is indeed observed. For fixed HT=HF, the amplitude of the
distribution function approaches a constant maximum
value as �o ! 1 (Tco approaches its maximum). We will
see in the next section that the total number of observable
collisions at late times is bounded, reflecting the behavior
of the distribution function.

From the analysis of the boosted initial value surface in
Sec. III B, we predicted that in the limit of large-	o, the
distribution function Eq. (26) should be anisotropic, peak-
ing around �n � 0. Figure 9 shows a number of
constant-��n;�n� slices through the distribution function
for Tco �

�
4 and 	o � 25, where we see that this behavior is

indeed present. The peak at large  , which was predicted to
arise based upon the analysis in both the unboosted
(Sec. III A) and boosted frames (Sec. III C), is present in
this example as well. Finally, we observe that as �n ! 0,
the distribution peaks at progressively larger  . This fea-
ture can be predicted from Fig. 7 by noting that as �n ! 0,
an increasing fraction of the 4-volume above the boosted
initial value surface corresponds to nucleation sites that
produce a large  (the shaded box near past null infinity in
Fig. 7).

Focusing on a slice through the distribution function
with (�n � 0, �n � const)—for which the amplitude is

FIG. 8 (color online). The distribution function Eq. (26) for an
observer at 	o � 0 with (from the blue curve on the bottom to
the red curve on top) Tco �

�
4 , 3�

8 , �2 (corresponding to a varying
HT), factoring out the overall scale 
H�4

F . (This factor will in
general be astronomically small, but we choose this convention
to more clearly display the functional behavior of the distribution
function.) This function is independent of �n for this observer.
As Tco ! �=2 (HT=HF ! 0), a divergent peak around  � 0
develops.
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largest—we can study the effects of varying Tco and 	o.
Figure 10 shows the distribution function for fixed �n � 0
and Tco �

3�
8 with varying 	o. As 	o increases, the ampli-

tude of the peak at large  increases, while the peak at
small  remains unaffected. This can be understood from
Figs. 4 and 7 by recognizing that as 	o grows, the phase
space near past null infinity—corresponding to nucleation
points producing  � 2�—grows, while the phase space
near the intersection of the past light cone and the obser-
vation bubble wall—corresponding to nucleation points
producing  � 0—remains constant.

Finally, Fig. 11 shows the evolution of the distribution
function produced by fixing �n � 0 and position 	o � 2

and increasing Tco (corresponding to the actual time evo-
lution of the distribution function seen by this observer).
Here, the bimodality of the distribution becomes apparent.
Based on Fig. 7, we determined that bubbles with large
angular scales form at early (open slicing) observation
times, and bubbles with small angular scales form at late
times. This can be seen in the distribution function of
Fig. 11. As Tco increases, the peak near  ’ 0 becomes
more and more pronounced, overtaking the amplitude of
the  ’ 2� peak, whose growth eventually stagnates. The
positions of the peaks also shift, moving towards  � 0
and  � 2�, respectively, as Tco increases.

E. Behavior of the distribution near  ’ 2� and  ’ 0

Since the distribution function (as displayed in the fig-
ures) is multiplied by 
H�4

F 
 1, it must have a very large
amplitude for our hypothetical observer to hope to see any
collisions. We have seen that the distribution function is
largest for  ’ 2� (corresponding to collisions occurring
at small �) in the large-	o, small-�n limit as well as for  ’
0 (corresponding to collisions occurring at large �) in the
limit where HT 
 HF. The origin of these peaks was
discussed in Sec. III C, but now we assess them
quantitatively.

1. The peak at  � 0

The total number of late-time collisions can be found by
evaluating 
 times the 4-volume V �0

4 in the exterior
spacetime corresponding to small angles. Assuming that
the bubble interior and exterior are pure dS and taking the

FIG. 10 (color online). The distribution function Eq. (26) with
�n � 0 and �co �

3�
8 for 	o � �1:5; 2; 100�, factoring out the

overall scale 
H�4
F . As 	o gets large, the peak near  � 2�

grows, while the peak near  � 0 remains of constant amplitude.

FIG. 11 (color online). The distribution function Eq. (26) with
�n � 0 and 	o � 2 for Tco � �

�
4 ;

3�
8 ;

7�
16�, factoring out the over-

all scale 
H�4
F . As Tco grows, the bimodality of the distribution

becomes more and more pronounced. Both the peak about  ’ 0
and  ’ 2� grow, with the growth of the  ’ 0 peak eventually
overtaking the growth of the  ’ 2� peak. The position of the
peaks shift as well, with one peak approaching  � 0 and the
other  � 2� as Tco !

�
2 .

FIG. 9 (color online). The distribution function Eq. (26) for an
observer at 	o � 25, with Tco �

�
4 , for � � �

10 , �15 , �
20 , factoring

out the overall scale 
H�4
F . As �n ! 0, the position of the peak

shifts to larger  , and increases in amplitude, displaying the
predicted anisotropic peak about large angular scales.
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limit of large �o with HT 
 HF, we obtain

 N �0 �
4�


3H2
TH

2
F

tanh2

�
HT�o

2

�
�O

�
log
HF

HT

�
: (28)

For fixed HT this approaches a fixed number as �o ! 1,
but this number can be arbitrarily large if HT ! 0. We see
also that for N �0 * 0, we require both HT < 
1=2H�1

F

and �o * HF
�1=2.
The angular scale of late-time collisions decreases with

�o, as exhibited by Fig. 11; one might then ask what total
angular area on the sky is affected. This can be found by
evaluating

 � � 

Z
dV4 2 (29)

over the volume outside of the observation bubble avail-
able for the nucleation of colliding bubbles, where  is a
function of the exterior spacetime coordinates as in
Eq. (23). As it turns out, the decrease in angular scale
nearly cancels the growth in N �0, so while the latter
scales as �HF=HT�

2, the maximal sky fraction is nearly
logarithmic inHF=HT , as shown in Fig. 12. Since 
H�4

F 

1, the total angular area is very small unless HT is essen-
tially zero (and �o absurdly large); thus for any realistic
scenario the bubble distribution should be considered a set
of point sources with infinitesimal total solid angle.

2. The peak at  � 2�

Let us now consider the large-	o, small-�n limit. To do
so, we take  � 2�� � with �
 1 and look at Tco �
�=4 (the amplitude of the peak would only be larger if we
were to take Tco >�=4, so this gives a lower bound).
Keeping terms to first order in �, we can simplify the
various objects in Eq. (26) immensely: Tn along constant
 surfaces is given approximately by Tn � ��n, and the
Jacobian reduces to

 

��������@Tn� ;�n�@ 

��������� �
4

sin�n���������������������������
1� sin�2�n�

p (30)

yielding a distribution

 

dN
d d�nd�cos�n�

�

H�4

F �
4

�
Z �max

0

�tan�n�3

cos�n
���������������������������
1� sin�2�n�

p d�n:

(31)

In the limiting case under discussion, we can solve for
�max from the simplified form of the initial value surface
(obtained from Eq. (18))

 sin�max �
cos�max



� � sin�max (32)

yielding

 �max � sec�1�e	o
���������������������
1� e�2	o

p
�; (33)

where we have not yet taken 	o large. Integrating Eq. (31),
substituting with �max, and taking 	o � 1, we obtain

 

dN
d d�nd�cos�n�

�

H�4

F �
12

e3	o ; (34)

which diverges as 	o ! 1.
Integrating the distribution function over the neighbor-

hood of  � 2� and small �n would yield the total number
of observed early-time collisions, which is given by
N �2� ’ 4�	o
H

�4
F [10]. Since each of these collision

events can in principle affect an angular scale of order  ’
2�, only a vanishing fraction of the total angular area on
the sky remains unaffected in the 	o ! 1 limit (unlike the
long-time limit of late-time collisions discussed above).

IV. SUMMARY OF RESULTS AND IMPLICATIONS

A. Properties of the distribution function

Given an observer at some point in their bubble defined
by (�o, 	o, �o � 0), we have calculated the expected
number, angular size, and direction ��obs; �obs� of regions
on the sky affected by bubble collisions, under the assump-
tion that those collisions merely perturb the observation
bubble.

Three key features of this distribution
dN=d d�cos�obs�d�obs are:

(i) For observers at 	o � 0 inside bubbles with HT 

HF, the distribution is bimodal, with peaks at  ’ 0
and  ’ 2� forming at late and early observation
times, respectively.

(ii) For early-time collisions with  ’ 2�, the distribu-
tion is strongly anisotropic as 	o ! 1, with the
overwhelming majority of collision events originat-
ing from �obs ’ 0, while the distribution of collision
events with  ’ 0 becomes isotropic at late times.

10 102 103 104 105

HF

HT

10

15

20

30

50

Ω

λ HF
− 4

FIG. 12. A log-log plot (calculated numerically) of the total
angular area on the sky taken up by late-time collisions with  ’
0.
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(iii) For a given HT , HF, and �o, the peak at  ’ 2�
diverges as exp�3	o�; the peak at  ’ 0 has fixed
amplitude, with the total number of such collisions
bounded by N �0 & 
H�2

T H�2
F .

Although different observers see qualitatively different
bubble distributions, we can focus on two key classes:
those at large 	o and those at very late times �o.

Because the bubble interior is naturally foliated into a set
of homogeneous spaces that accord no particular prefer-
ence to 	o � 0, we might imagine observers distributed
uniformly over these spaces. In this case (as argued in
Sec. II) a typical observer would be at large 	o, and have
causal access to a large number of collision events (as long
as 	o * H4

F

�1). If such collisions are compatible (with

our observations), we should therefore expect that they
exist to our past.

At very late times, observers at any position 	o will have
access to nearly the same distribution of collisions. We
have seen that such an observer would typically record the
first collision at exponentially late times (of order �o �

�1=2HF), with tiny angular scale. Thereafter, the number
of collisions would grow to asymptotically approach
�H�2

T H�2
F , and the distribution would become nearly iso-

tropic. Note that this analysis is relevant to the suggestion
by [20,21] that an observer residing at 	o � 0 inside of a
bubble with HT � 0 (the ‘‘census taker’’ of [21]) could be
used to define a measure over the pocket universes in
eternal inflation; it may also be relevant for evaluating
the quantum-gravitational degrees of freedom of an eter-
nally inflating de Sitter space [22]. In terms of our obser-
vations, if we fix HT to be the vacuum energy we currently
observe, and �o �H

�1
T , late-time, small angular scale

collisions could be observable if 
H�4
F * 10�100. While

perhaps an atypically large tunneling rate, this is well
within the limit 
H�4

F 
 1 required for eternal inflation
in our parent vacuum.

Because all observers might potentially ‘‘see’’ bubbles
at late times (for sufficiently large 
), and essentially
(except for a set of measure zero) all should ‘‘see’’ colli-
sions at early times, it is interesting to ask what potential
observational effects might exist.

B. A classification of collision events

Unfortunately, assessing any potentially observational
effects of this scenario requires a good understanding of
the outcome of bubble collisions under a variety of circum-
stances, which is presently lacking. As a preliminary step,
we can qualitatively survey the general types of collision
events that might occur in a universe undergoing false-
vacuum eternal inflation; after this we return to what these
collision types could imply observationally.

Each cell of Fig. 13 depicts two bubbles near future null
infinity in the eternally inflating background dS. Cell A
depicts the situation considered thus far, of two colliding

true-vacuum bubbles (‘‘downward-bubbles’’ for present
purposes). Others show also transitions upward from the
false vacuum (‘‘upward-bubbles’’); the structure of such
bubbles is very different: they collapse due to the inward
pressure gradient [23], so if they contain a finite region of
future null infinity, then they must form with super-
(exterior) horizon size7 (e.g., [24]).

The first column (A–D) shows situations where bubbles
actually collide; the right-hand column (E–G) shows cases
in which the dynamics of the bubble walls prevent a
collision from occurring (we display these solutions to
illustrate that there are cases in which pairs of bubbles
nucleated rather close to one another will not collide).
Concentrating on the first column, cell A shows the colli-
sion between two downward-bubbles (which may or may
not be of the same vacuum energy). Downward-bubbles
can also collide with upward-bubbles (cell B), but because
the latter accelerate inward, and have strongly suppressed
formation rates relative to downward-bubbles, such colli-
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FIG. 13. A general set of situations which might involve
collisions between two bubbles in an eternally inflating space-
time. Each cell represents a region near future null infinity
(horizontal solid line) of an eternally inflating background dS.
True-vacuum bubbles form at very small radius and expand,
while false-vacuum bubbles form larger than the exterior horizon
size, and contract. Collisions are denoted by filled circles, with
the uncertainty of the post-collision spacetime indicated by a
question mark.

7Or form on the other side of an Einstein-Rosen bridge.
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sions should be extremely rare. Collisions of type C, be-
tween nested bubbles, occur if a downward-bubble quickly
nucleates within an upward-bubble, our observation bubble
is unlikely to be such an early bubble—infinitely many
others will form later within the same false-vacuum bub-
ble. Finally, nested upward-bubbles may collide (cell D),
but only very rarely.

This general survey of two-bubble collision events, in-
dicates that the focus on situation A alone is quite justified:
all other possible collision events should be negligibly rare.

Determining the detailed aftermath of a collision event
between two vacuum bubbles of arbitrary vacuum energy
is a very complicated problem, most likely involving nu-
merical relativity. Previous numerical and analytic studies
have treated cases where the vacuum energy inside both
bubbles vanishes [8,25], cases where both bubbles have
negative vacuum energy [26], and cases where a zero and
negative vacuum energy bubble collide [9].

In the absence of detailed computations, but based on
these studies, we can outline a few generic possibilities.
For collisions between bubbles of the same vacuum, the
disturbed intersection region might radiate away much of
the wall’s energy, then be smoothed out by subsequent
inflation. For bubbles of different vacuum field value,
wall energy may still radiate away (as demonstrated in
[25,26]), but a domain wall must remain, and would pre-
sumably accelerate into the bubble of higher vacuum
energy.

In terms of the effect on an observation bubble, it would
seem that collisions resulting primarily in a domain wall
accelerating away from an observer are likely to be ‘‘com-
patible’’ (in the terminology of Sec. I) over a significant
part of the collision’s future. Even if considerable energy is
released, it will be redshifted by the epoch of inflation
within the bubble, perhaps resulting in only a minor per-
turbation of the interior cosmology. On the other hand, a
domain wall accelerating towards the observer will almost
certainly be catastrophic (and hence not compatible). In
between, bubbles of the same vacuum (where there is no
domain wall), or collisions resulting in a timelike domain
wall (as in [9]), may or may not be compatible (for all or
just a portion of the causal future of the collision) depend-
ing on the details of the collision.

Returning to Fig. 13, cells A–C depict collision events
potentially relevant to the observation bubble. In each case,
if the vacuum energy of the observation bubble is lower
than the vacuum energy of both the background dS and the
colliding bubble, it seems likely that the collision is com-
patible over most of its future. A or C could alternatively be
fatal if the incoming bubble (in cell A) or the background
space (in cell C) are at lower vacuum energy than the
observation bubble. However, the finer details will need
to be studied to provide a definitive classification of these
collision events and to what degree they satisfy the com-
patibility condition.

C. Observational implications

What does all of this mean for making predictions start-
ing from a fundamental theory that drives eternal inflation?
The above discussion of the possible results of bubble
collisions suggests a spectrum ranging from what might
be called ‘‘fatal’’ collisions to ‘‘perturbative’’ ones. Fatal
collisions would destroy all observers to their future, while
perturbative collisions would merely ‘‘paint’’ their effect
on the observation bubble. Realistic collisions would fall in
between these extremes.

Consider first a scenario in which fatal (downward)
bubbles can form at rate 
fatal and collide with our obser-
vation bubble. Focusing on the � � �o spatial slice, on
which we presumably exist now, we must be at a position
that has not yet experienced such a collision. The unaf-
fected volume fraction will be fOK � exp��
fatalV4�	o�	
(where V4 measures the available past 4-volume for nucle-
ations, which for 	o � 1 is V4�	o� ’ 4�	oH

�4
F ), and as

discussed in Sec. II, the 3-volume element goes as dV3 �
4�H�3

T sinh2�	o�d	o. Combining these, the distribution in
	o, for 	o � 1, of volume unaffected by fatal bubbles goes
as

 dV3fOK / exp
��

2�
4�
3

fatalH

�4
F

�
	o

�
d	o;

for 
fatalH�4
F < 3

2� (which will be satisfied for any theory of
eternal inflation) this diverges as 	o ! 1, so we would
expect even the surviving regions to be dominated by the
largest 	o.

Now, if we assume ourselves to be in a typical surviving
region, there are two cases of interest. If we are in a bubble
with HT & 
1=2

fatalH
�1
F , then as time increases, we will have

an increasing risk of being hit by fatal bubble (as discussed
in Sec. III C), and would expect such a collision after a
cosmological time of order �o � 


�1=2
fatal HF. Even if HT �

0, for exponentially small nucleation rates this can easily
be a reassuringly long time8; conversely, we can use our
survival to rule out scenarios that include fatal bubbles with

�1=2

fatal HF * 10 Gyr. If, instead,HT * 
1=2
fatalH

�1
F , then all of

the collision events likely to ever affect us happened in the
distant past, and we will safely inhabit our unaffected
region of the observation bubble, oblivious to the fact
that fatal collisions may have occurred elsewhere.

Let us consider collisions that are compatible but not
fatal, so that we might exist in at least part of the collision’s
future. If this part is relatively small, or excludes the region
that we are likely to be in, we might treat these bubbles as
fatal, and simply assume that we are not in the future of any
of them. If, on the other hand, we might exist in essentially
all of the collision’s future, we might treat them as pertur-
bative. If a theory predicts that at least one collision type is

8This analysis agrees with that of GGV, who essentially
assumed that collisions are all fatal and then found that we are
unlikely to hit by such a bubble soon.
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effectively perturbative, then we can simply assume our-
selves to be in a region unaffected by nonperturbative
bubbles, but should still expect to see perturbative colli-
sions to our past, following our derived distribution func-
tion. Determining whether a compatible collision is
effectively fatal or perturbative will be difficult, as it
requires a detailed understanding of the collision’s after-
math, and may also involve ‘‘measure’’ issues to determine
whether or not the (putative) observers in question are
likely be in the perturbed or the destroyed part of the
collision result. (One cause for concern in this regard is
that the 	o ! 1 observers likely to see many collisions are
very highly boosted. Therefore even if an incoming bubble
is almost perfectly perturbative, this perturbation might be
extremely dangerous to such a highly boosted worldline.
Another way to see this is to note that most collisions
observed at early times by the boosted observer in Fig. 7
come from very early cosmological times.)

In our analysis, we have concentrated on determining
the region of the observer’s sky that is in principle affected
by (a set of) collision events. Further, we have used the
bubble wall as the surface upon which the observer is
examining the effects of collisions. This has allowed us
to avoid making any assumptions about how collision
products may travel inside of the observation bubble.
However, the most relevant calculation is to determine
the effects of bubble collisions on the post-tunneling
equal-field surface, then in turn the observable effect on
the last-scattering surface (and therefore in the CMB). This
will necessarily involve a better understanding of the phys-
ics involved in bubble collisions, an investigation that we
reserve for future work.

That being said, we might speculate that the gross
features of the distribution function on the last-scattering
surface will be similar to the analysis we have carried out,
suggesting that bubble collisions would produce anisotro-
pies and features on large angular scales in the CMB.
Because of the bimodality of the distribution function,
the subdominant peak around  ’ 0 might also produce
observable effects akin to point sources, but only if 
 *

�HTHF�
�2 for some bubble type. These speculations must

be put on much firmer ground before any conclusions can
be drawn from current or future data.

V. DISCUSSION

In Sec. I, we outlined three conditions that must be met
for there to be observable effects of bubble collisions in
false-vacuum eternal inflation: compatibility, probability,
and observability. What do our results imply about these?

We have not gone beyond the general arguments con-
cerning compatibility given in Sec. I, except to note that
incoming bubbles of higher vacuum energy are likely to be
separated from us by a domain wall that accelerates away
from us, greatly enhancing the likelihood that they will
merely perturb the ‘‘observation bubble.’’ We have not,

however, actually shown that bubbles with the requisite
level of compatibility are expected; it will be necessary to
extend previous bubble-collision analyses [8,9,25,26] to
answer this question decisively, as well as to assess the
result of multiple bubble collisions affecting a single point
inside the observation bubble.

Our main result is a calculation of the statistical distri-
bution of collisions coming from a direction ��n;�n� that
can affect an angular scale  on the two-sphere defined by
the portion of the bubble wall causally accessible to an
observer at some instant in time, assuming that the incom-
ing bubbles merely perturb the observation bubble. The
properties of this distribution function depend upon the
location of the observer inside of the observation bubble,
which we have evaluated in complete generality, but there
are two limiting cases of interest.

First, if we sit very far from the finite ‘‘unaffected’’
region near the center of the bubble (defined by 	o &


H�4
F in terms of the false-vacuum Hubble parameter

HF), then our results show that most collisions come
from the direction of the bubble wall, happen at early
observation times, and have a large angular scale  ’
2�. If such bubble collisions are compatible with our
observations, there is no reason to expect that they are
not causally accessible to us.

Second, for an observer at any 	o, bubbles can poten-
tially be encountered (or come into view) at late times �o �

�1=2HF if HT & 
1=2H�1

F . (Note that such values of 
 are
large compared to typical exponentially suppressed nu-
cleation rates, but still small compared to values that would
allow percolation and thus preclude eternal inflation.)

Now consider observability. One might have guessed
that even if an infinite number of bubbles collide with
ours, they might be of infinitesimal angular size on the
sky, perhaps even taking up small total sky fraction. Indeed
this appears to be true for the small scale, late-time colli-
sions, but is not the case for the early-time collisions—
which take up large angular scales. Therefore, these early-
time collisions will at least partially satisfy the observabil-
ity criterion.

Assessing the other half of observability (that the effects
of the collisions must survive inflation within the bubble)
would, in the context of eternal inflation, require both an
accurate model of the inflaton potential, and also a measure
over transitions within this potential so as to give a proba-
bility distribution over e-foldings [27]. Neither is in hand
but the present results increase the importance of making
progress in this area.

In addition, one must understand exactly how the effects
of early-time collisions would be imprinted on an observ-
able like the CMB. The surface of constant density corre-
sponding to the beginning of inflation will presumably be
perturbed by collision products that propagate into the
bubble, and these effects translate into density fluctuations
on the surface of last scattering. Because we have only
treated the effects of collisions on the bubble wall, our
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analysis is only a preliminary step to answering such de-
tailed questions. Nonetheless, it seems likely that some
basic features of the distribution function, such as anisot-
ropy and effects on large angular scales, will persist.

In some sense, bubble collisions are the most generic
prediction made by false-vacuum eternal inflation, inde-
pendent of the properties of the fundamental theory that
may drive it. While connecting this prediction to real
observational signatures will entail both difficult and com-
prehensive future work (and probably no small measure of
good luck), it appears worth pursuing. For a confirmed
observational signature of other universes, while currently
speculative even in principle, and probably far off in prac-
tice, would surely constitute an epochal discovery.
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APPENDIX A: TRIPLE INTERSECTION IN THE
UNBOOSTED FRAME

In this appendix we solve directly for the coordinate
angles denoting the boundaries of a collision on the
Poincaré disk. We specialize to the case HT � HF � H,
where it is possible to foliate the bubble interior with the
flat slicing. Working in a plane of constant-�,9 we are
attempting to find the triple intersection between three
circles representing the observation bubble, the colliding
bubble, and the past light cone of the observer, whose radii
are given by

 robs � 1� e�Ht; (A1)

 rcoll � e�Htn � e�Ht; (A2)

 rplc � e�Ht � e�Hto : (A3)

Using up the remaining symmetry of the problem we can
assume that the observer is at �o � 0. The free parameters
that must be specified are then the position at which the
colliding bubble is nucleated �tn; rn; �n� and the position of
the observer �to; ro� in terms of the flat slicing coordinates.
The transformation between the open and flat slicing loca-
tion of the observer is given by

 ro �
H�1 sinh	o sinh�o

cosh�o � cosh	o sinh�o
;

to � H�1 log�cosh�o � cosh	o sinh�o�:

(A4)

The observation bubble introduces no new free parameters,
since it is centered around the origin, and nucleates at t �
0.

We find it useful to parametrize time with x � 1� e�Ht

(this way r � x is the observation bubble). It is straightfor-
ward to conclude that the three light-cones are the set of
points (r�x; ��, x, �) parametrized as follows:

(i) Observation bubble future light cone:

 �r � x; x; �� 0 � x � 1; �� � � � �

(A5)

(ii) Observer’s past light cone:
 

�ro cos�

�����������������������������������������
�x� xo�2 � r2

osin2�
q

; x; �� x � xo;

j�j �
��������arcsin

�
x� xo
ro

��������� (A6)

(iii) New bubble future light cone:
 

�rn cos��� �n� 

������������������������������������������������������
�xn� x�2� r2

nsin2��� �n�
q

; x;��

xn � x; j�� �nj �
��������arcsin

�
xn� x
rn

��������� (A7)

The triple intersection is the set of points belonging

to all three groups. Demanding first that 1�x�

ro cos�

���������������������������������������
�x�xo�

2�r2
osin2�

p
and repeating for 1�

x � rn cos��� �n� 

��������������������������������������������������������
�xn � x�2 � r2

nsin2��� �n�
p

,
then solving for x��� we obtain

 2x �
r2
o � x2

o

ro cos�� xo
�

r2
n � x2

n

rn cos��� �n� � xn
; (A8)

giving an equation for �:
 

A cos�� B sin�� C � 0;

where A � ro�x
2
n � r

2
n� � cos�nrn�x

2
o � r

2
o�;

B � � sin�nrn�x
2
o � r

2
o�;

C � xn�x2
o � r2

o� � xo�x2
n � r2

n�: (A9)

There are two solutions10 to Eq. (A9),

 cos�1;2 � �
�AC
 B

�����������������������������
A2 � B2 � C2
p

�

A2 � B2 : (A10)

One can now solve for the time of the intersection by

9As before, we work with the convention where ��< �< �
to cover full circles.

10The denominator A2 � B2 never vanishes because the ob-
server and the nucleated bubble never sit on the observation
bubble wall. Also, notice that the symmetry in � is reflected in
the fact that the positive solution for a given �n is the negative
solution for ��n.
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plugging �1;2 into Eq. (A8). This gives the coordi-
nates of the two desired intersection events in the flat
slicing where the angle is measured from the origin.
By spherical symmetry, these angles are the same as
the coordinate angles measured from the origin of
the bubble interior as described by the open slicing
coordinates. We can then use the angles �1;2 to define
the angle as measured by the observer sitting at some
open slicing coordinates (	o, �o, �o � 0) via Eq. (8).

APPENDIX B: EFFECTS OF BOOSTS ON THE
BUBBLE

In Sec. III B, we used the symmetries of the one-bubble
spacetime to justify performing a boost that would bring us
to a frame where the observer is at the origin. Here, we
explore the effects of this boost on the interior spacetime in
greater detail.

In terms of the embedding coordinates, the transforma-
tion is given by Eq. (12). The first important property to
note is that the X4 coordinate is invariant. In the open
slicing, surfaces of constant X4 are surfaces of constant
�, and so we see that the boost preserves the open slicing
time. The second important property is that the observer at
(	o, �o, �o � 0) is translated to the origin (	0o � 0, �0o �
�o, �0o � 0) of the boosted frame. From the relation for X00
in Eq. (12),

 cosh	0o � cosh	o�cosh	o � tanh	o sinh	o� � 1; (B1)

and therefore 	0o � 0.
In Sec. III, we derived a formula for the observed

angular scale of a collision event in both the boosted and
unboosted frames. We now establish the invariance of this

quantity by directly applying the transformation to Eq. (8).
The angle � in this equation corresponds to the angular
position of the intersection on the null wall of the obser-
vation bubble (as defined by the origin in the unboosted
frame), so using � � T, the boosted angle from Eq. (14) is

 tan�0 �
sin�


�cos�� ��
: (B2)

In this frame, �0 can be identified as �, the actual observed
angle at which the boundary of the collision lies (which is
used to find the total angular scale of the collision in
Eq. (8)). Solving for cos�0,

 cos�0 �
sinh	o � cos� cosh	o��������������������������������������������������������������������

sin2�� �sinh	o � cos� cosh	o�2
p ; (B3)

and expanding into exponentials reveals that this expres-
sion is in fact equal to Eq. (8), as evidenced by

 cos� � cos�0

� �
1� 2ei� � e2i� � e2i	o � 2ei��2	o � e2i��2	o

1� 2ei� � e2i� � e2i	o � 2ei��2	o � e2i��2	o
:

(B4)

In the Poincaré disk representation, using the hyperbolic
law of cosines, this implies that all of the angles in the
triangle composed of (and therefore the lengths between)
the observation point, the unboosted position of the origin,
and the edge of the collision, remain invariant under the
boost. More generally, the distance between any two points
on the disk will be invariant under the boost (as one can
check on a point-by-point basis), and so we can identify the
boost as a pure translation in the open coordinates.
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