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We apply the technique of parameter splitting to existing cosmological data sets, to check for a generic
failure of dark energy models. Given a dark energy parameter, such as the energy density (), or equation
of state w, we split it into two meta-parameters with one controlling geometrical distances, and the other
controlling the growth of structure. Observational data spanning Type Ia Supernovae, the cosmic
microwave background (CMB), galaxy clustering, and weak gravitational lensing statistics are fit without
requiring the two meta-parameters to be equal. This technique checks for inconsistency between different
data sets, as well as for internal inconsistency within any one data set (e.g., CMB or lensing statistics) that
is sensitive to both geometry and growth. We find that the cosmological constant model is consistent with
current data. Theories of modified gravity generally predict a relation between growth and geometry that
is different from that of general relativity. Parameter splitting can be viewed as a crude way to parametrize
the space of such theories. Our analysis of current data already appears to put sharp limits on these
theories: assuming a flat universe, current data constrain the difference AQ, = Q, (geom) — Q5 (grow)
to be —0. 0044f8:882§f8:8%?§ (68% and 95% C.L. respectively); allowing the equation of state w to vary, the
difference Aw = w(geom) — w(grow) is constrained to be 0.37793771%. Interestingly, the region
w(grow) > w(geom), which should be generically favored by theories that slow structure formation
relative to general relativity, is quite restricted by data already. We find w(grow) < —0.80 at 2. As an
example, the best-fit flat Dvali-Gabadadze-Porrati model approximated by our parametrization lies

beyond the 30 contour for constraints from all the data sets.
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L. INTRODUCTION

Observations of distant supernovae (SNe), galaxies,
clusters of galaxies, and the cosmic microwave back-
ground (CMB) have shown that, surprisingly, the cosmic
expansion is accelerating. This reveals that fundamentally
new physics is missing from our understanding of the
universe [1].

The cosmic acceleration may arise either from ‘‘dark
energy,” a mysterious yet presently dominant component
of the total energy density, or from ‘“modified gravity,” a
modification of general relativity (GR) on large scales. The
first case includes, for example, Einstein’s cosmological
constant or quintessence, a dynamical scalar field [2]. The
second case includes modifications of four-dimensional
GR due to the presence of extra dimensions, scalar-tensor
theories, and others [3-5].

Current efforts focus, within the dark energy paradigm,
on improving the constraints on the dark energy density
Qpg, its equation of state (EOS) w = P/p, and its time
evolution dw/da (where a is the scale factor), by using
observational data that bear on geometrical distances and
the growth of structure. As first emphasized by [6] and
subsequently discussed by many others [7], GR predicts a
definite relation between geometrical distances and growth
which is generically violated by modified theories of grav-
ity. To the extent current data (that are sensitive to different
combinations of geometry and growth) yield consistent
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dark energy constraints, one can interpret this as a con-
firmation of the dark energy + GR framework. The sim-
plest dark energy model, the cosmological constant, has
passed this kind of consistency test so far [8].

In this paper, we sharpen the consistency test. Our
method goes by the name of “parameter splitting” as
proposed by [9,10]. Let us illustrate the technique using
the cosmological constant (A)-cold dark matter (CDM)
model. Instead of fitting the suite of observational data
with a single cosmological constant density parameter
Q, (in addition to, of course, other non—dark energy
parameters), we fit them with two parameters (), (geom)
and () » (grow): one determining the geometrical distances,
and the other controlling the growth of structure. The
conventional approach is to assume the two parameters
are equal. Here, they are allowed to vary separately. We
employ the Markov chain Monte Carlo (MCMC) tech-
nique [11] to derive the marginalized constraints on both
parameters. If the ACDM model is correct, these two
parameters should agree within their uncertainties. This
technique of splitting a conventional parameter into two
“meta-parameters’’ can of course be applied to any other
parameter. In this paper, we will consider the splitting of
both (), and w.

It is important to emphasize that parameter splitting
checks for consistency not only between different data
sets, but also for internal consistency within any single
data set that is sensitive to both geometry and growth. In
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some sense, the conventional approach of obtaining con-
straints on, e.g., {}, separately from SNe, CMB, lensing,
and so on, and checking that they are consistent, is itself a
simple form of parameter splitting, i.e., splitting (), into
O (SNe), O, (CMB), Q,(lensing), etc. The parameter
splitting that we employ here represents a more stringent,
and theoretically better motivated, consistency test. It is
also useful to note that there is a wide variety of modified
gravity theories. Our splitting of (), and w can be thought
of as a crude way to parametrize the space of such theories.
For instance, in the Dvali-Gabadadze-Porrati (DGP) theory
[3] where gravity becomes weaker on large scales, struc-
ture growth is slowed and therefore one expects qualita-
tively w(grow) > w(geom) [6,12].

We caution that should an inconsistency be discovered
via parameter splitting, modified gravity is not the only
possible interpretation. Systematic problems with the data,
as well as complications in the dark energy model (such as
a time varying w or nontrivial dark energy clustering [13]),
are also possible. Additional parameters need to be intro-
duced to check for the latter case. Parameter splitting can
be applied to the new parameters as appropriate.

II. GEOMETRY

All geometrical distances in cosmology, such as the
luminosity or angular diameter distance, are related to
the radial comoving distance
2 d7
0 HZ')’
setting the speed of light ¢ = 1. The Hubble parameter H
as a function of redshift z, i.e., the expansion history, can be
parametrized as follows:

H*(2)

H3

x(2) = (1)

=0, (1 +23+Q,(1 +2)* + Qpg(l + z)30+w),

2

where H, = 100h kms~! Mpc~! is the Hubble constant
today. Throughout this paper, we assume that the universe
is spatially flat, the dark energy has a constant EOS pa-
rameter w, and all three species of neutrinos are massless.
(), is the radiation density today, in units of the critical
density, including photons and massless neutrinos; Qpg is
the present dark energy density, denoted as (), for the
cosmological constant model (w = —1). Note that for a
flat universe, the dimensionless matter density (), can be
replaced by 1 —Q, — Qpg. We will use a superscript
“(geom)”” to denote the dark energy parameters appearing
in the expressions of geometrical distances.

III. GROWTH

Inhomogeneities grow under gravitational instability ac-
cording to the prevailing structure formation paradigm.
The dynamics within the GR framework is described by
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a set of Boltzmann-Einstein equations well documented in
the literature [14]. In this paper, we use the publicly
available code CAMB [15] to evolve these equations. For
the purpose of illustrating our method, and purely for this
purpose, let us consider the special case of subhorizon
matter fluctuations in the late universe. They evolve ac-
cording to &, +2HS, = 4nGp,,8,, where &, =
8p,,/ P 1s the matter overdensity, p,, is the average matter
density, G is the Newton constant, and the dots denote
proper time derivatives. We ignore the dark energy pertur-
bations here for simplicity. The growth equation can be
rewritten as

- m 0, 3
d1na? dlna dlna 2a°H* " ©)

a2, N [dlnH N } ds, _ 3Q,,H?
where a = 1/(1 + z) is the scale factor. Therefore, the
expansion history (Eq. (2)) that determines geometrical
distances also determines the growth of structure, in a
way that is uniquely predicted by GR.

It is not surprising that, in order to match existing data,
viable theories of modified gravity often predict an expan-
sion history (and therefore geometrical distances) that is
similar to the one in Eq. (2). Such theories, however,
generally predict a relation between expansion history
and growth that is different from the one in Eq. (3).
Given the wide variety of these theories, and in the absence
of a particularly compelling candidate [16], a crude way to
test for such a possibility is to allow the dark energy
parameters to take different values in the growth equation
(Eq. (3)) from their values in the expression for distance
(Eq. (1)), i.e., parameter splitting. We use a superscript
“(grow)” to denote the dark energy parameters character-
izing the evolution of inhomogeneities.

Note that one has some freedom in exactly how the
parameter splitting is performed. For instance, in Eq. (3),
the dark energy parameters show up in two places: the
second term on the left-hand side of the equation
(dInH/dIna) and the term on the right-hand side
(Q,,/H?). One could choose to assign all of them to the
“growth” category which is what we do, or one could
assign some to the ‘“‘geometry” category and the others
to the growth category. Ultimately, there are many possible
consistency tests, and here we have chosen to perform one
that is particularly simple to implement, i.e., assigning all
dark energy parameters that enter the fluctuation equations
to the growth category. It is worth noting that in a lot of
modified gravity theories, the equivalent of Poisson’s equa-
tion is often modified without modifying energy-
momentum conservation. In that case, one could argue
assigning the term on the right-hand side of Eq. (3) alone
to the growth category might make more sense. We hope to
investigate this in the future.

The exact Boltzmann-Einstein equations for the evolu-
tion of structure, allowing for multiple components, pho-
tons, neutrinos, and so on, are more complicated than
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Eq. (3). The same parameter-splitting scheme can never-
theless be applied to the exact equations, which is what we
do. This means, for example, the shape of the transfer
function, such as the radiation-matter equality peak of
the power spectrum, is determined by the growth parame-
ters—recall that the transfer function is completely deter-
mined by the dynamics of fluctuation growth. The
conversion of a feature, such as the radiation-matter equal-
ity length scale to an observed angle, on the other hand,
involves the geometry parameters.

IV. THE PARAMETER-SPLITTING TECHNIQUE

To illustrate how the splitting of dark energy parameters
into the geometry and growth categories is done in our
analysis, we start with the weak lensing (WL) observables.
There exists a natural division between the two categories
for each term involved in the calculation [9].

WL surveys measure the aperture mass statistic on
different angular scales 6:

(o) = 5= [aerowien, @

where W is a window function with no dependence on
cosmology. P,(£) is the convergence power spectrum at
the angular wave number €, given by

P (€)= %Q;Hg ﬂ:o dz(1 + z)?

X [d’;iZ)}gz(z)Pa[%, z} (5)

éo= [ dz/ngal(z')[W}

Here Pgs[€/y, z] is the matter power spectrum at wave
number k = €/x and redshift z, ng, is the normalized
redshift distribution of the background galaxies, and we
have used Limber’s approximation. We express everything
in terms of the redshift z, which is an observable of the
surveys.

Consider for instance the splitting of ), for the flat
ACDM model. The 3D matter power spectrum Pg and the
mean matter density ), (= 1 — €, where the contribu-
tion of radiation is neglected at low redshifts) sitting out-
side the integral both describe the foreground
inhomogeneities through which photons travel. Therefore
they go into the growth category and are calculated using
Q'Y Al y’s within the integral fall naturally in the
geometry category. This includes the y in the wave number
€/ x, which reflects the conversion between the observed
angle and the physical length scale. These geometrical

distances are all calculated using Q%eom). A similar split

can be applied to w in the context of the quintessence (Q)
CDM model.

PHYSICAL REVIEW D 76, 063503 (2007)

With the WL example in mind, we next consider the
CMB. The temperature anisotropy power spectrum is given
by

2

@g(k, = 0) (6)

2
=2 f kzdkPq,(k)‘ e

where W(k) is the primordial metric perturbation (in con-
formal Newtonian gauge), Py (k) = k™=~* is the power
spectrum of W, and O, is given by [14]

Ok z = 0) — fo T A28k k) (D)

where j, is the spherical Bessel function and S; denotes
some source function. All the complicated dynamics is
contained in S7. Publicly available Boltzmann codes
[15,17] can be used to compute Sy, and therefore ®,, for
any given primordial perturbation ¥ (®,/¥ is indepen-
dent of ¥; see [14]).

We perform the geometry-growth split of Eq. (7) as
follows [18]: Sy falls under the growth category and the
rest (namely x(z’) in the argument of j,) falls under the
geometry category [19]. The rationale for this particular
way of splitting is most transparent when considering the
Sachs-Wolfe term [20], where ST(k, z) is well approxi-
mated by Sp(z — z.)[®¢ + W](k, z.). Here 6p(z — z.) is
the Dirac delta function with z, being the redshift of last
scattering, and O (k, z.) and W(k, z,) are the temperature
monopole and metric perturbations at last scattering.
Therefore, the Sachs-Wolfe term is

and our geometry-growth split is equivalent to using the
growth parameters to compute [@, + W](k, z,) and the
geometry parameters to compute Y., the distance to last
scattering.

It is straightforward to generalize the above splitting
scheme to similar expressions describing the polarization
spectrum. In the case of SNe, parameter splitting is trivial
since SNe constrain only the geometry parameters. The
splitting for galaxy clustering is done as follows. As dis-
cussed earlier, the growth (as opposed to geometry) pa-
rameters determine the transfer function for the matter
power spectrum. On the other hand, to measure the 3D
power spectrum of galaxies as a function of comoving
spatial scale, one has to adopt a cosmological model in
order to convert the observed redshifts and angular sepa-
rations into comoving distances. This conversion is trivial
for low-redshift surveys (involving only H) such as the
Two-Degree Field Galaxy Redshift Survey (2dFGRS), but
is nontrivial for moderate redshift samples, such as the
luminous red galaxies (LRGs) in the Sloan Digital Sky
Survey (SDSS). For the LRGs, we follow [21] and include
a cosmology-dependent rescaling of the k axes [22]. This
rescaling is included in the geometry category.
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V. CURRENT OBSERVATIONS

Below we list the four data sets used in our analysis.
Many of these, though not all, are included in the
COSMOMC package [23].

A. Cosmic microwave background

We use (i) the recent Wilkinson Microwave Anisotropy
Probe (WMAP) three-year data set [8], and (ii) small scale
CMB observational data including Arcminute Cosmology
Bolometer Array Receiver [24], Balloon Observations of
Millimetric Extragalactic Radiation and Geophysics [25],
and Cosmic Background Imager [26]. We modify the
Boltzmann code CAMB [15] by splitting the dark energy
parameters as described above. We assume adiabatic initial
fluctuations, and neglect B-mode polarization and tensor
modes.

B. Supernovae

We use the SNe data set for the Supernova Legacy
Survey (SNLS) analysis described in [27].

C. Galaxy clustering

We use data sets from (i) the 2dFGRS [28], which probes
the galaxy distribution at redshift z ~ 0.1 and the power
spectrum on scales of 0.0224 Mpc ™! < k < 0.18h Mpc ™!,
and (ii) the luminous red galaxies in the SDSS [21], which
are at an effective redshift of z ~ 0.35 and cover scales
between 0.01272 Mpc™! < k < 0.20h Mpc~!. Redshift-
space distortions, galaxy biasing, and nonlinear clustering
[29] are dealt with in ways described in [21,28].

D. Weak gravitational lensing

Cosmic shear, due to WL by large scale structures, has
been detected by several groups [30]. The data set used in
our analysis is from the 75 deg®> Cerro Tololo Inter-
American Observatory (CTIO) lensing survey [31]. It cov-
ers scales between 1 arc min <6 <1 deg. To utilize the
WL measurements on small scales, we take into account
nonlinear effects using (i) in the ACDM case, the nonlinear
power spectrum based on the halo model [32]; or (ii) in the
QCDM case, the mapping prescription in [33].

VI. ESTIMATING LIKELIHOODS

We use the MCMC package COSMOMC [23] to perform
our likelihood analysis. COSMOMC uses CAMB [15] to cal-
culate the temperature, polarization, and matter power
spectra. We modify both the CAMB and the MCMC por-
tions to implement the parameter-splitting technique. In
addition to the dark energy density and EOS parameters
(Q%eom), Q(Agmw), wlgeom) -y, (erow)y - our cosmological pa-
rameter space includes the baryon density, the Hubble
constant, the reionization optical depth, the scalar spectral
index, and amplitude of the primordial power spectrum
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(Q,h2, h, 7, ng, A;). When w&") = —1, sound speed of
the dark energy is set as 1 in CAMB [15]. For simplicity, we
assume a flat universe for both geometry and growth
parameters. The Monte Carlo chains are generated by the
Metropolis-Hastings algorithm [34]. We adopt Gaussian
priors of Q,h? = 0.022 + 0.002 from Big Bang nucleo-
synthesis (BBN) [35] and H, =72 * 8 kms™ ! Mpc™!
from the Hubble Space Telescope (HST) key project [36].

VII. RESULTS

Applying our consistency test to the ACDM model,
where the EOS parameters are fixed as w(€2eom = yy(erow) =
—1, the upper panel in Fig. 1 shows the marginalized

constraints on the Qg\gmw) Vs Q%’eom)

plane. The confidence
contours follow roughly, but not exactly, the Qs\geom) =

Q(Agmw) line. The interesting quantity in this case is the
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FIG. 1 (color online). Joint constraints on Q%e‘)m) and ngmw)
in a ACDM model (upper panel) and the normalized likelihood
distribution of AQ , = Q%eom) - Q%mw) (lower panel). Here the
equation of state parameters are fixed as w(€om = y(zow) =
—1. The contours and curves show the 68% confidence limits
from the marginalized distributions. The thick gray lines show
Qg\geom) = Qfmw). The data sets used are described in the text.
Different contours and curves represent constraints from differ-
ent combinations of the data sets. The smallest contour and the
most narrow curve (black solid line) represent constraints from
all the data. No significant difference is found and deviations are
constrained to AQ, = —0.00443 50380019 (68% and 95%
C.L).
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difference AQ, = Qg\geom) - Q(Agrow), whose normalized
probability distribution is shown in the lower panel of
Fig. 1. When all data are utilized, we find the marginalized
constraint AQ, = —0.0044 0008 +00108 (68% and 95%
C.L. respectively). Figure 1 also shows that CMB anisot-
ropies, when combined either with galaxy clustering or
SNe, deliver most of the overall constraining power, i.e.,
having the narrowest likelihood distributions.

We also find the marginalized constraint on the average
O, = (Q([feom) + Q(Agmw)) /2 using all data sets: Q, =
0.74470:016+0039 The constraint on the difference is almost
3 times better than the constraint on the average. The CMB
contour in Fig. 1, even without the addition of other data,
already exhibits this trend. Let us therefore focus on under-
standing this phenomenon in the context of CMB.

As illustrated in Fig. 2, increasing both Q%eom) and

Q(Agrow) by the same amount (with all the other cosmologi-
cal parameters fixed) produces only a small shift of the
predicted C, (blue dashed curve). However, moving in the
orthogonal direction, i.e., increasing Q%mw) while decreas-

ing Q%eom), creates a much larger shift (red dot-dashed
curve). It appears partial cancellations occur between the
shift in the distance to last scattering (a geometrical quan-
tity) and the shift in the sound horizon (which controls
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FIG. 2 (color online). Variations of CMB temperature power
spectra due to different changes of Qs\geom) and QE\gmw) (with all
the other cosmological parameters fixed) as illustrated in the
inset on the Qs\geom) Vs Q%mw) plane. The black solid curve
corresponds to the black square symbol, which is our best-fit
ACDM model with Q€™ = Q&) = (.744. The blue dashed
curve corresponds to the blue circular symbol, which is obtained
from the best-fit model by fixing ngeom) = Q¥ and increas-
ing both parameters by 0.03. The red dot-dashed curve corre-
sponds to the red triangular symbol, which is obtained by fixing
Q, and increasing Q%mw) by 0.03 while decreasing Qﬂ\gmm) by
0.03.
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fluctuation growth) when one changes both Q%mm) and
Q(Agmw) by the same small amount, creating a roughly

degenerate direction along Q(Ageom) = Q<Agr°w). Conversely,
the effects of the two different shifts roughly add when one
changes Q%mm) and Q%mw) in opposite directions, making
AQ, highly constrained.

One could argue that in theories of modified gravity
constructed to explain the late time cosmic acceleration,
the growth of fluctuations should only deviate from GR at
late times. A better approximation of such theories is
perhaps to split the EOS parameter w. We therefore next
apply our consistency test to the more general QCDM

e
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FIG. 3 (color online). Joint constraints on w€m and (€W jp
a QCDM model (upper panel) and the normalized likelihood
distribution of Aw = wgeom) — ,(gow) (Jower panel). Here the
energy density parameters are fixed as Q™ = Q&Y The
contours and curves show the 68% confidence limits from the
marginalized distributions. The thick gray lines show w(gem) =
w(@W)_ The data sets used are described in the text. Different
contours and curves represent constraints from different combi-
nations of the data sets (see legend in Fig. 1). The smallest
contour and the most narrow curve (black solid line) represent
constraints from all the data. No significant difference is found
and deviations are constrained to Aw = 0.377037* 192 (68% and
95% C.L.). The star-shaped symbol corresponds to the effective
wleeom and (W) which approximately match the expansion
history and the growth history, respectively, of a flat DGP model
with our best-fit .
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model. The EOS parameters, wleow) and w(ge"m), are as-

sumed constant, but are allowed to vary independently. In

this test, we assume Q™ = (8°% The upper panel in

Fig. 3 shows the marginalized constraints in the w(€°") vs
w(eeom) plane [37]. We again find that the difference Aw =
wleeom) — ,(grow) ¢ congistent with zero; deviations are
constrained by combining all data to Aw = 0.377037+1%
(lower panel in Fig. 3). The average is constrained to be
w = (wleeom) 4 yylgrow)) /5 — —1.13f8:%gf8:§§.

Figure 3 shows a long tail towards large negative values
of w(&*") which can be understood as follows. Density
perturbations can grow significantly only during the
matter-dominated epoch, and as w(€°") becomes more
negative, this epoch is longer (i.e., dark energy domination
occurs more recently). The extension of the likelihood
contours in the large negative direction of w€°" reflects
the fact that a very recent dark energy domination is
actually acceptable as far as the growth of structure is
concerned. This does not imply the data is consistent
with the absence of dark energy, however. On the contrary,
the data prefer a low (), which for a flat universe implies
the presence of ()pg. It is interesting to note that qualita-
tively, the DGP theory prefers w(€©% > yylecom) [612]
region that is quite restricted by data already. In fact, we
find that a DGP model with our best-fit (), represented
effectively by the star-shaped symbol in Fig. 3, lies beyond
the 30 contour for constraints from all the data sets;
varying (), in the DGP model within its 3¢ limits has
little effect on the position of the point. We also find the
upper limits of w(&°%) < —0.97 at 1o and w(&°%) < —0.80
at 20 [38].

VIII. DISCUSSIONS

Our study reveals no evidence of a discrepancy between
the two split meta-parameters. The difference is consistent
with zero at the 1o level for the ACDM model and 20
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level for the QCDM model. We find tight constraints from
the existing data sets, especially on the difference between
Q) derived from growth and ), derived from geometry
(better than 1%). In other words, the cosmological constant
model fits current data very well. Current data do not
appear to demand modified gravity theories. Parameter
splitting can be thought of as a crude way to parametrize
the space of these theories. As such, our constraints can be
viewed as putting restrictions on modified gravity theories,
but the precise constraints on any particular theory must be
worked out on a case by case basis. The kind of constraints
we obtain here are likely to significantly improve in the
future, as the cosmological data improve in quality and
quantity. The power of future surveys is demonstrated by a
calculation that a Large Synoptic Survey Telescope
(LSST)-like survey could constrain Aw to 0.04, using
shear tomography alone, an order of magnitude better
than current constraint from all data sets [9,39].
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