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Linear perturbations of Friedmann-Robertson-Walker universes with any curvature and cosmological
constant are studied in a general gauge without decomposition into harmonics. Desirable gauges are
selected as those which embody best Mach’s principle: in these gauges local inertial frames can be
determined instantaneously via the perturbed Einstein field equations from the distributions of energy and
momentum in the universe. The inertial frames are identified by their ‘‘accelerations and rotations’’ with
respect to the cosmological frames associated with the ‘‘Machian gauges.’’ In closed spherical universes,
integral gauge conditions are imposed to eliminate motions generated by the conformal Killing vectors.
The meaning of Traschen’s integral-constraint vectors is thus elucidated. For all three types of Friedmann-
Robertson-Walker universes the Machian gauges admit much less residual freedom than the synchronous
or generalized harmonic gauge. Mach’s principle is best exhibited in the Machian gauges in closed
spherical universes. Independent of any Machian motivation, the general perturbation equations and
discussion of gauges are useful for cosmological perturbation theory.
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I. INTRODUCTION

Einstein preferred a finite universe, bounded in space,
over an infinite one because he wanted to avoid posing
boundary conditions. What Einstein really disliked was
that in open universes some of the motion of inertial frames
is due to dragging by matter while the rest is due to the
boundary conditions at infinity. Thirty-four years ago the
authors of the acclaimed ‘‘Gravitation’’ [1] commented on
the Einstein view in a footnote on p. 704: ‘‘Many workers
in cosmology are skeptical of Einstein’s boundary condi-
tion of closure of the universe, and will remain so until
astronomical observations confirm it.’’ The Wilkinson
Microwave Anisotropy Probe has now provided data [2]
which, among many other things, have constrained the
present value of total mass-energy density parameter of
the universe to be �0 � 1:02� 0:02. With such a result,
all three basic sets of standard Friedmann-Robertson-
Walker (FRW) cosmological models (see, e.g., [1,3]) are
compatible: the models with flat spatial sections (with
curvature index k � 0, �0 � 1), positive spatial curvature
models (k � �1, �0 > 1), as well as negative curvature
models (k � �1, �0 < 1). Nevertheless, the WMAP data
‘‘marginally prefer’’ k � �1 (see, in particular, [4]), and,
indeed, recently several authors studied closed models
again in detail (see, e.g., [5,6]), after years of preference
of flat universes which have been considered as natural
outcomes of inflation. Even an idea going back to the
Eddington-Lemaı̂tre cosmology has now been revived: if

our universe is closed today, it was always closed, and
perhaps inflation is ‘‘past-eternal’’—the universe, domi-
nated at early times by a single scalar field, could have
started asymptotically from an initial Einstein static uni-
verse which enters an inflationary expanding phase, suc-
ceeded then by standard evolution (see [7] and references
therein). The recent growing evidence for the existence of a
cosmological constant � has been an inspiration for the
reconsideration of spatially closed universes of de Sitter
type [6].

In the present work we do not, technically, bestow a
privilege to any value of spatial curvature. All three cases
k � 0;�1 are analyzed in equal detail, and we even dis-
cuss, albeit briefly, closed hyperbolic and closed flat uni-
verses with multiconnected topologies. From the physical
(to some extent perhaps ‘‘philosophical’’) point of view,
we adhere to the Einstein preference, i.e., to the closed
universes with standard (spherical) topology, because our
work on cosmological perturbation theory has been moti-
vated by Mach’s principle.

A. Mach’s principle

Mach’s principle has acquired certain unpopularity
among some relativity and cosmology circles. The primary
reason is perhaps the fact that under that name a range of
meanings and interpretations, sometimes even mutually
contradictory, has gradually accumulated. During the
Prague conference in 1988 to celebrate the 150th anniver-
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sary of Mach’s birth [8] and, in particular, at the Tübingen
conference in 1993 devoted entirely to Mach’s principle,
numerous interpretations have been given (see the excel-
lent book [9]). More recently, Bondi and Samuel [10] listed
the ‘‘zeroth’’ plus ten other versions of Mach’s principle
and described within which theoretical framework a par-
ticular statement of the principle applies—see also [11],
where the main formulations from [9,10] are summarized.
A brief history of Mach’s principle and its meaning in
general relativity and cosmology is given in the
Introduction to our first paper on the subject [12].

Despite a possible scepticism as regards the role of
Mach’s principle in contemporary cosmology, most of
the standard treatises on the subject do include a discussion
of the principle (see, e.g., [1,3,13,14]), and no one can deny
that Mach’s ideas have been a source of inspiration to
many, not only Einstein. One of the purposes of the present
work is to demonstrate that a search for a framework in
which Mach’s principle can be best embodied in the cos-
mological perturbation theory can lead to practical results,
such as the formulation of the perturbation theory in a
completely general gauge, followed by the selection of
an advantageous ‘‘Machian gauge’’ for solving specific
problems.

What then do we mean by Mach’s principle? As in our
previous work [12], as a starting point we adapt Bondi’s
original formulation from his classical book ‘‘Cosmology’’
[15]: ‘‘Local inertial frames are determined through the
distributions of energy and momentum in the Universe by
some weighted averages of the apparent motions.’’ More
specifically, we turn primarily to those among Einstein’s
equations for linear perturbations of the FRW models
which represent the constraints, i.e., under suitable con-
ditions partial differential equations of elliptic type, con-
necting the ‘‘initial values’’ for matter perturbations with
the perturbations of the metric. In [12] we went quite a way
in realizing the Machian program. We studied the frame-
dragging effects due to slowly, rigidly rotating, but collaps-
ing or expanding spheres in the (inhomogeneous)
Lemaı̂tre-Tolman-Bondi universes, and we analyzed the
dragging effects of vector perturbations of the FRW uni-
verses described in a special gauge such that three (mo-
mentum) constraint equations enabled us to determine
instantaneously metric perturbations h0

k (k � 1, 2, 3) in
terms of energy-momentum perturbations �T0

k . In the open
universes, these are determined uniquely by requiring the
perturbations to vanish at infinity—rotations are ‘‘abso-
lute’’ in this sense. In closed universes a linear combination
of six Killing vectors (three rotations plus three quasitrans-
lations) may be added to the h0

k. We still obtain the solu-
tions of the three constraint equations when angular
momenta corresponding to the three rotations and quasi-
momenta corresponding to the three quasitranslations of
the sources (determined by �T0

k ) are given. In this sense no
absolute rotations exist in closed universe; only differences

of rotation rates are determinable—in accord with Mach’s
ideas that ‘‘all motions are relative.’’ If, however, the
velocities of the bodies, described by perturbations of
perfect fluid, are given, the metric perturbations h0

k are
determined uniquely.

The last result is related to the fundamental fact that six
globally conserved quantities, corresponding to the six
Killing vectors in a FRW universe, must all vanish if
considered for the whole closed universe. The conserved
quantities, being the derivatives of superpotentials, can be
expressed as surface integrals like an electric charge by
using Gauss’ theorem. As the volume surrounded by the
surface is expanded over all the universe at a given time,
the surface must shrink to zero. It was, among others, an
attempt to understand Mach’s principle in cosmological
perturbation theory, which inspired us to formulate con-
servation laws with respect to curved backgrounds [16].
The resulting ‘‘KBL superpotential,’’ using the designation
by Julia and Silva [17], was found, after applying certain
natural criteria, to be unambiguous and most satisfactory in
spacetimes with or without a cosmological constant, in any
spacetime dimension D � 3 (see [17,18]). It also found
applications in the recent studies of the causal generation
of cosmological perturbations seeding large-scale structure
formation and of the backreactions in slow-roll inflation
(see [19,20], and references therein).

In the present paper we study general linear perturba-
tions of the FRW universes from a ‘‘Machian perspective.’’
This leads us to investigate both rotations and accelerations
of local inertial frames in perturbed universes, and to
develop all the perturbed Einstein equations in a general
gauge ‘‘ab initio.’’

B. Cosmological perturbation theory

Observational evidence for isotropy and homogeneity of
the Universe shows that it is broadly well described by a
FRW model, but the clustering, the galaxies, and the stars
constitute local perturbations from the idealized substra-
tums of cosmological models. The other goal of cosmo-
logical perturbation theory is to link the physical
conditions in the early universe with structures observed
today. From the pioneering work of Lifshitz in 1946 (see
review in [21]), there appeared numerous papers studying
linear perturbations of FRW universes; for the more recent
extensive reviews, see, for example, [22–26]. Recently,
several authors have even found the impetus and skill to
write down the complicated system of equations for the
second-order perturbations of the FRW models—see [27]
and references therein—but applications of these are yet to
appear.

In any cosmological perturbation theory, two problems
at once confront us: (i) What smooth cosmological model
is best suited to our Universe, and (ii) how do we map the
points of our inhomogeneous Universe onto a chosen
cosmological model. Both these problems are, in relativity,
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connected with the gauge freedom that changes the appar-
ent form of the perturbations by which our Universe differs
from the smooth cosmological model adopted. Although
the first problem is primarily connected with a difficult
question of an appropriate averaging of an inhomogeneous
universe, or so-called ‘‘fitting problem’’ (see, e.g., [28]), it
is also related to the gauge problem because two different
FRW universes can be close to one another, at least for
some time, so one can be considered as a perturbation of
another. When we have chosen an appropriate background,
then we are confronted with the freedom to choose coor-
dinates in the real Universe differently and so to remap the
Universe onto the background model. This gives rise to the
commonly discussed gauge freedom. Of course, what hap-
pens in the real world is independent of what background is
used and how we map onto it. This is the motive behind
gauge invariant perturbation theory, and this made the
work of Bardeen [29] in 1980, in which gauge invariant
quantities combined from cosmological perturbations were
first introduced, so influential. The gauge problem is ex-
plained in technical terms from different (equivalent) per-
spectives in depth in the literature: one can consider a one-
parameter family of 4-dimensional manifolds, with M0 a
background andM" a perturbed universe, embedded in a 5-
dimensional manifold N and connected by a ‘‘point iden-
tification map’’ which is specified by a vector field X on N
transverse to the manifolds M; the gauge transformation is
then a change of X (see, e.g., [23,30]). Alternatively, in a
more physical vein, in any chosen coordinate system in the
real Universe one assigns to all physical quantities Q�x��
also their background values �Q�x��. These, in contrast to
Q�x��, do not change their functional dependence on co-
ordinates under an infinitesimal coordinate transformation
(see [24]). Mathematically, any of these approaches lead to
the changes of physical quantities as they appear in the
following (see, in particular, Sec. IV).

There exists a well-known lemma [30] stating that the
linear perturbation of a quantity is gauge invariant only if
the quantity vanishes on the background or is a constant
(scalar or linear combination of products of Kronecker
delta). The density perturbation ��, for example, is not
gauge invariant since �� is a time-dependent function in the
FRW backgrounds. That is why, to obtain a gauge invariant
quantity, one has to consider, e.g., the gradients of density
perturbation or combine �� with some other quantities.
However, as in the black-hole perturbation theory, solving
for gauge invariant quantities may not mean finding all
quantities of interest. For example, in the problem of the
motion of a charged black hole in a weak asymptotically
uniform electric field, there is only one gauge invariant
quantity. We need to fix the gauge at the end in order to find
all perturbations of the metric and electromagnetic field to
see how the hole accelerates [31]. It is advantageous at the
start to have the possibility of a gauge choice according to
the problem in hand. Selecting a gauge which implies a

physically preferable coordinate system may eventually
give both a better physical understanding and an easier
mathematical procedure. After all, motions in the solar
system can be described as seen from a frame that rotates
to keep a planet ‘‘at rest,’’ but are much more readily
comprehended in Newton’s inertial axes.

Last but not least, physical effects associated with
Mach’s ideas like the dragging of inertial frames are of a
global nature and they do require the introduction of suit-
able coordinate frames (the ‘‘gauges’’). A true understand-
ing of inertia and inertial frames must involve specific
frames or coordinates. To borrow Dieter Brill’s comment
from Ref. [9], ‘‘Mach’s principle may point the way toward
giving physical meaning to quantities usually considered
frame-dependent.’’ We return to this issue in the conclud-
ing remarks where some of our other work on Machian
effects [32,33] is summarized in the context of the present
paper.

C. The goal

There exist many frameworks for treating linearized
perturbations of FRW universes. The one which has been
used most frequently involves the synchronous gauge, with
all quantities decomposed into suitable harmonics in ac-
cordance with the spatial curvature. In what follows we
make a general study of advantageous gauges without
imposing a priori conditions on them and without decom-
position into harmonics. We identify desirable gauges as
those which embody best Mach’s principle. We find that
these gauges are also motivated by the gauge choices used
in full nonlinear general relativity. Most importantly, how-
ever, they are distinguished by the simplifications they
bring both to the perturbed Einstein equations and to their
physical interpretation.

What do we mean by Mach’s principle within this
broader framework? We again start from Bondi’s formu-
lation that ‘‘local inertial frames are determined through
the distributions of energy and momentum in the Universe
by some weighted averages.’’ However, to determine a
local inertial frame in a general situation means to find
both its ‘‘rotation and acceleration’’ from the distributions
of energy and momentum, represented by �T�� . In a gen-
eral situation we need to know the full spacetime metric in
a neighborhood of a point in order to determine completely
local inertial frames at that point; see, e.g. [1,3]. In
Wheeler’s conception of Mach’s principle (e.g. [1,34]),
we have to specify the initial data on a Cauchy spacelike
surface like the conformal three-geometry and the mass-
energy currents, solve for the spacetime geometry g��, and
thus determine local inertial frames. In general, gravita-
tional waves will globally also contribute to the dragging
of the inertial frames but only when the waves are non-
linear perturbations of a FRW universe. However, limiting
ourselves to the linear perturbations of the FRW universes,
it is interesting to see what data are needed to determine the
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‘‘accelerations’’ and ‘‘rotations’’ of local inertial frames
with respect to what we call the cosmological (observers’)
frames. In a perturbed FRW universe, can a gauge be found
such that the distribution of �T�� determines uniquely and
instantaneously the rotations and accelerations of local
inertial frames via Einstein’s field equations?

D. The outline

After first reviewing the properties of a general congru-
ence of timelike worldlines in a general spacetime (see,
e.g., [35]), we consider the congruence of ‘‘cosmological
observers’’ in a perturbed FRW universe with coordinates
fx�g as a ‘‘perturbation’’ of the congruence of fundamental
observers in the FRW background. We assume that in a
‘‘cosmological gauge’’ fx�g the cosmological observers
move along xi � constants, but we describe the properties
of their congruence by covariant expressions which can be
calculated in any coordinates. The cosmological observers
are equipped with their local frame vectors; the timelike
ones are their 4-velocities, and the spacelike ones lie along
their connecting vectors. Now a cosmological observer is,
in general, accelerated with respect to a local freely falling
inertial frame, in particular, the one which at a given
spacetime point moves with the same 4-velocity.
Expressing this acceleration in terms of the metric pertur-
bations, we find that only certain components of the metric
perturbations are needed. Next, we determine the rotation
of the axes of the cosmological observer with respect to the
nonrotating rigid orthogonal axes (gyroscopes held in their
centers of mass) of the local inertial frame. Having the
acceleration � and the angular velocity ! expressed, we
have determined the local inertial frame: it accelerates and
rotates with respect to the corresponding cosmological
frame with just the opposite vectors, �� and �!. All
these issues are analyzed in Sec. II.

Assuming a general congruence of cosmological observ-
ers, i.e., equivalently, a general gauge, we find that in order
to determine the accelerations and (averaged) rotations of
local inertial frames in the sense just described, we need to
know the metric perturbations �g00 and �g0i and their first
derivatives. The main issue in Secs. III and IV is to find and
study the gauges in which these quantities can be deter-
mined instantaneously from the knowledge of energy-
momentum distributions �T�� . We give the perturbed
Einstein equations for all three types of FRW universes
with any value of �, in an arbitrary gauge. We first adopt
the ‘‘relativists’ attitude’’ and start from the perturbed
FRW metric in the form

 ds2 � � �g�� � h���dx
�dx�

� dt2 � a2�t�fkldxkdxl � h��dx�dx�; (1.1)

where the spatial background metric is
fkl�xm�; k; l; m . . . � 1, 2, 3; t is the ‘‘cosmic time,’’ so
�g�� � h��. Perturbations h�� are small so that quadratic

terms can be neglected. In one of the standard coordinate
systems the background FRW metric �g�� reads

 ds2 � dt2 � a2�t�
�

dr2

1� kr2 � r
2�d�2 � sin2�d’2�

�
;

(1.2)

where in a positive curvature (closed) universe �k �
�1�r 2 h0; 1i, in flat (k � 0) and negative curvature (k �
�1) open universes r 2 <0;1�, � 2 h0; �i, ’ 2
<0; 2��. We shall also employ other common alternatives
such as, e.g., hyperspherical coordinates,

 ds2 � dt2 � a2	d�2 � �2
k�d�

2 � sin2�d’2�
; (1.3)

with �k � sin�, �, sinh� for, respectively, k � �1, 0,�1.
The perturbations �T�� are left general, but a perturbed
perfect fluid is considered as an example. In Appendix A
we give all the perturbed Einstein’s equations and the
Bianchi identities starting off from (1.1); in Sec. III we
give them using conformal time 	 and metric perturbations
defined as is usual in the cosmological literature, e.g., in
[22,24,26]—again in a completely general gauge.

We do not decompose the perturbations in harmonics
nor do we first separate them into the scalar, vector, and
tensor parts (used, e.g., in [23]). Although both methods
are very useful in cosmology, they involve nonlocal opera-
tions. In order to make Fourier-type analyses in the space
variables, one needs to know quantities in the whole space,
which is not ‘‘typical’’ in cosmology. The splitting of a
local perturbation into some scalar, vector, and tensor
perturbations is also nonlocal. Imagine a trivial (zero)
perturbation in a given domain O, and extend it to an
annulus A so that it is nonvanishing there. Hence, in O
the trivial perturbation will split into nontrivial (scalar,
vector, tensor) pieces which depend on the extension into
A. Therefore, a perturbation which is the sum of scalar,
vector, and tensor parts cannot be uniquely expressed in
terms of the Bardeen gauge invariant variables [29] which
are defined separately for each part. Without using har-
monics or splittings, the perturbed Einstein field equations
are in a form suitable for searching for solutions in terms of
Green’s functions. How the Green’s function approach can
reveal new aspects of cosmological perturbation theory has
been recently indicated by Bashinsky and Bertschinger
[36].

In Sec. IV, the main purpose is to motivate and describe
geometrically several gauges in which the accelerations
and rotations of the local inertial frames follow instanta-
neously from the field equations. We call these Machian
gauges. We also clarify the residual gauge freedom that
these gauges admit, and make a comparison with two
typically non-Machian gauges—the synchronous gauge
and the generalized Lorenz-de Donder (‘‘harmonic’’)
gauge. The Machian gauges turn out to admit much less
residual freedom. The freedom represented by the gauge
transformations generated by the conformal Killing vec-
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tors in closed (spherical) universes is removed by the
integral gauge conditions which we impose. In closed
hyperbolic universes our Machian local gauge conditions
fix coordinates uniquely.

Finally, in Sec. V we give the field equations in the
Mach 1 gauge and show how they can be solved to give
the local inertial frames when the distribution of the matter
energy-momentum is given. We also discuss Traschen’s
integral-constraint vectors [37,38] restricting possible
�T�� . According to Traschen and others [37,39], their
existence has implications for the Sachs-Wolfe effect and
for microwave background anisotropies. Traschen consid-
ered these vectors in the synchronous gauge. By contrast,
in the Mach 1 gauge, these constraints become a straight-
forward consequence of the constraint equations and ac-
quire a simple, lucid meaning. We find integral constraints
also on quantities not considered by Traschen. In closed
universes these integral constraints are satisfied automati-
cally as a consequence of our integral gauge conditions by
which motions generated by the spatial conformal Killing
vectors are eliminated. In Sec. V we also list all Green’s
functions known in the literature which solve the constraint
equations needed for the determination of the local inertial
frames; some are still unknown. We then review our recent
work [40,41] on vorticity perturbations of FRW universes
and study their effect on local inertial frames. As a second
example, we consider perturbations of potential type for
which the vorticity vanishes. At the end we analyze the
‘‘Machian’’ question of how uniquely local inertial frames
are determined in perturbed universes.

In Concluding Remarks (Sec. VI) we briefly summarize
the results and discuss global aspects of Mach’s principle.
In Appendix C the Killing and conformal Killing vectors in
FRW universes are listed, and those harmonics which are
needed in the main text are given. In Appendix D we
discuss briefly the field equations in the other gauges
considered in Sec. IV.

II. THE ACCELERATION AND ROTATION OF
LOCAL INERTIAL FRAMES

A. The congruence of cosmological observers

Consider a general spacetime with coordinates fx�g in
which a congruence of a timelike, nonintersecting world-
line of ‘‘cosmological observers’’ is given by

 x� � x��yi;p�; i � 1; 2; 3: (2.1)

The choice of fixed yi determines the worldline of a
particular observer; p is a parameter along the worldline,
commonly chosen as either the cosmological time x0 � t
or the observer’s proper time 
. The cosmological observ-
ers use their 4-velocity as their normalized timelike frame
vector,

 
� � �@x�=@
�yi � t�=�g��t�t��1=2;

t� � �@x�=@p�yi :
(2.2)

For spatial frame vectors a cosmological observer naturally
takes three independent vectors specified by �yi pointing
from him to three other observers of the congruence,
orthogonal to 
�:

 �x�? � P�� �x� � ��
�
� � 
�
���@x

�=@yi�p�y
i: (2.3)

As a triad of spatial vectors e�
�i�, any three linearly inde-

pendent vectors proportional to �x�
�i�? can be taken. A triad

based on the connecting vectors is given at a fixed space-
time point and can be extended along the observer’s world-
line because connecting vectors are Lie propagated (see,
e.g., [42,43]) along the congruence. This gives

 P���x
�
?;�


� � 
�;��x
�
?: (2.4)

Three independent connecting vectors define the triad of
unit spacelike vectors m�

�i�:

 �x�
�i�? � �l�i�m

�
�i�; m�i��m

�
�i� � �1; (2.5)

with no summation over index i. Equation (2.4) implies the
propagation equations for scalar distances �l�i�—the
‘‘generalized Hubble’s law’’ (admitting a possibly aniso-
tropic expansion) [35]—and the propagation equations for
triad m�

�i�. Decomposing the derivative of a 4-velocity in
the standard manner (e.g. [1,35]),

 
�;� � 
��� �!�� � �� �
1
3�P��; (2.6)

the acceleration ��, vorticity !�� (antisymmetric), shear
�� (symmetric), and expansion � are given, respectively,
by

 �� � 
�;�

�; (2.7)

 !�� �
1
2P

�
�P

�
��
�;� � 
�;��; (2.8)

 �� �
1
2P

�
�P���
�;� � 
�;�� �

1
3�P��; (2.9)

 � � 
�;�: (2.10)

We obtain, successively,

 P���x
�
?;�


� � �!�
� � 

�
� �

1
3�P

�
���x

�
?; (2.11)

 

d
d

��l�i��

�
�l�i� �

�
�� �

1
3�P��

�
m�
�i�m

�
�i�; (2.12)

 P��m
�
�i�;�


� � 	!�
� � �� � ���m�

�i�m
�
�i��P

�
�
m�

�i�:

(2.13)
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B. Cosmological observers in a perturbed FRW
universe: The frames

Consider first an unperturbed FRW model described by
metric (1.1) with h�� � 0. Fundamental (cosmological)
observers move along the worldlines xi � constants with
4-velocity �
� � �1; 0; 0; 0�. As the spatial triad, they take
three independent vectors �e�

�i� perpendicular to �
�. These
need not be chosen to be necessarily mutually orthogonal
if, for example, coordinates are used in which fkl in (1.1) is
not diagonal [as, e.g., in (C3)]. In standard coordinates in
FRW backgrounds like in Eqs. (1.2) and (1.3), fkl is
diagonal and the vectors

 �e �
�i� � �0; �

m
i �; �e�i�� � �0; �gim� (2.14)

are orthogonal. It is easy to normalize them:

 �m�
�i� � �� �gii��1=2	0; �mi 
; �m�i�� � �� �gii��1=2	0; �gim
;

(2.15)

again with no summation over i, index m � 1, 2, 3. The
quantities (2.7), (2.8), (2.9), and (2.10) characterizing the
congruence of the fundamental observers are well known:
��� � �!�� � ��� � 0, �� � 3 _a=a, the dot is d=dt.

In a linearly perturbed FRW universe the metric is given
by Eq. (1.1); the indices of the first-order quantities (in-
cluding h��) are shifted by the background metrics �g��,
respectively �g��. The congruence of cosmological observ-
ers will, in general coordinates, be given by (2.1). The
frame vectors can be written in the form 
� �
�
� � �
�, e�

�i� � �e�
�i� � �e

�
�i� similarly for covariant com-

ponents, and for ��, !��, ��, and �. In general coordi-
nates these quantities can be found easily from the
expressions given in Sec. II A. In the following we shall
assume that coordinates fx�g represent a ‘‘cosmological
gauge,’’ in which the congruence of cosmological observ-
ers is given by xi � yi � constants. We find 
� to be given
by

 
� � �
� � �
� � �1� 1
2h00; 0; 0; 0�: (2.16)

The spatial triad, determined by connecting vectors or-
thogonal to 
� and lying along coordinate lines, is

 e�
�i� � �e�

�i� � �e
�
�i� � ��hi0; �

m
i �; (2.17)

from which the corresponding unit spacelike vectors m�
�i�

can be found:

 m�
�i� � �m�

�i� � �m
�
�i�

� �� �gii��1=2	�hi0; �mi �1�
1
2hii= �gii�
: (2.18)

We gave here both the background and perturbed frames
for completeness. In the following we shall often use just
the background frames because only these are needed
when a small, first-order quantity is projected.

C. The acceleration of local inertial frames

We shall designate the local frame of a cosmological
observer (CO) given by tetrad 
�, e�

�i�, respectively m�
�i�, by

the COF—cosmological observer frame. This frame mov-
ing along xi � constants is, in general, accelerated with
respect to local freely falling inertial frames. Among the
inertial frames there is a frame which, moving at a given
spacetime point with 4-velocity 
�, is momentarily at rest
with respect to the COF; such a frame is called the LIF—
local inertial frame.1 The 4-acceleration of the COF with
respect to the LIF is given by Eq. (2.7). Using 
� given by
Eq. (2.16) and the perturbed metric (1.1), we find

 �� � �0; �l�; (2.19)

where

 �l � ��l00 � �glm�� 1
2h00;m � _h0m�: (2.20)

We see that only h00 and _h0m are needed in determining the
acceleration of the COF with respect to the LIF or, equiv-
alently, the acceleration of the LIF with respect to the COF
(which is ��l). Spatial metric perturbations do not even
enter in the frame components of the acceleration because
the unperturbed spatial triad is needed to the zeroth order
only:

 ��i� � e�i���
� � �e�i���

� (2.21)

(similarly with projections on unit vectors m�
�i�). Although

we calculated the acceleration in coordinates adapted to
cosmological observers, it is given by a covariant expres-
sion (2.7) which can be expressed in any coordinates. The
result is also invariant under gauge transformations (see
Sec. IV) since in the background this acceleration vanishes.

D. The rotation of local inertial frames

Next we wish to determine the rotation of the axes of the
COF with respect to the nonrotating rigid orthogonal axes
(gyroscopes held in their centers of mass) of the LIF at a
given point and thus, vice versa, the rotation of the LIF
with respect to the COF.

First consider a cosmological observer carrying a gyro-
scope described by a spacelike vectorW�, perpendicular to

�. The gyroscope is transported along the observer’s
worldline by Fermi-Walker transport. Another gyroscope,
carried by an inertial observer moving with the same 
� at
a given point, does not rotate relative to W�. However, a
vector S�, perpendicular to 
�, which is transported along
the worldline of CO in a general manner, will rotate
relative to W� by �DFS���
, where DFS� is the Fermi-

1There are of course infinitely many LIFs moving with the 4-
velocity 
� at a given point. However, they differ just by purely
spatial transformations or constant shifts of time. Among them,
there is also such a LIF that its origin coincides with that of a
corresponding COF and its acceleration is ��l.
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Walker time derivative defined by (see Fig. 1, and e.g. [44])

 

DFS�

d

� P��S

�
;�
� � S�;�
� � ���S��
�; (2.22)

where �� is the acceleration (2.7) and S�
� � 0 was used.
For the gyroscope, DFW

�=d
 � 0.
Now regarding Eq. (2.11) we see that the left-hand side

(l.h.s.) is just equal to the Fermi-Walker derivative of the
connecting vector so that

 

DF�x
�
?

d

�

�
!�

� � 
�
� �

1
3 �P

�
�

�
�x�?: (2.23)

Therefore, since the congruence of cosmological observers
has, in general, a nonvanishing vorticity and shear, the
connecting vectors rotate with respect to gyroscopes. The
last term in Eq. (2.23) is proportional to �x�? and represents
only a dilation of the connecting vector due to the (iso-
tropic) expansion of the congruence. Similarly, unit vectors
m�
�i� of the COFs rotate with respect to gyroscopes accord-

ing to Eq. (2.13):

 

DFm
�
�i�

d

� 	!�

� � 
�
� � ���m

�
�i�m

�
�i��P

�
� 
m�

�i�: (2.24)

Turning now to the perturbed FRW universes we find,
using 
� from Eq. (2.16) and the perturbed metric (1.1), the
vorticity (2.8) to have a simple form

 !kl � �!kl �
1
2�h0k;l � h0l;k�; !0� � �!0� � 0;

(2.25)

the shear (2.9) turns out to be

 kl � �kl �
1

2
_hkl �

1

6
_hmm �gkl �

_a
a
hkl;

0� � �0� � 0;
(2.26)

and the expansion (2.10) reads

 � � ��� �� �
3 _a
a
�

1

2

�
_hmm �

3 _a
a
h0

0

�
: (2.27)

Since both !�
� and �� are of the first order in h��, on the

right-hand side (r.h.s.) of Eq. (2.24) only �m�
�i� enters and the

equation takes the form

 

DFm
l
�i�

d

� 	!l

k � 
l
k � �ab �ma

�i� �mb
�i���

l
k
 �mk

�i�; (2.28)

where �mk
�i� � �� �g�ii��

�1=2�ki , and !l
k, 

l
k are given by

Eqs. (2.25) and (2.26).
Clearly, the vector ml

�i� rotates relative to the gyroscopes
and, hence, a gyroscope will rotate relative to the COF not
only due to a nonvanishing vorticity but also due to the
presence of a shear. A gyroscope will precess in a gravita-
tional wave described by _hkl (cf. the discussion in [45]); it
is not true, as sometimes stated ([26], p. 334) that a spin (a
gyroscope) precesses relative to the cosmological frame at
a rate given just by the vorticity !kl.

The axes of a LIF are determined by three orthogonal
gyroscopes, while those of a COF are determined by three
approximately orthogonal vectors e�

�i� or, after their nor-
malization, by unit vectors m�

�i�. As a consequence, on
average the rotation of the COF relative to the LIF (moving
with the same 
� at a given point) is determined just by
vorticity !kl. Indeed, there is a significant difference be-
tween the terms on the r.h.s. of Eq. (2.28): !kl is antisym-
metric while kl is symmetric and traceless. If at a given
instant a vector m�

�i� lies along a principal direction of kl,
its direction will be changed only by the vorticity. As in
fluid kinematics [46], it is just the vorticity which describes
the ‘‘effective angular velocity’’ of the fluid (see Fig. 2).

Hence, we conclude that, in order to determine the
averaged rotations of local inertial frames with respect to
the cosmological frames in the perturbed FRW universes, it
is sufficient to determine the vorticity tensor (2.25), i.e.,
spatial gradients of h0k.

Rather than by !kl the rotation is usually represented by
the ’’cosmologist’s vorticity vector’’

 !� � 1
2 �"��� �
!��; (2.29)

where

 �" ���� � �� �g��1=2	����
; �g � det� �g���; (2.30)

and 	����
 is the permutation symbol. In our case we get

 !� � �0; !l�; !l � 1
2"
lmnh0n;m; (2.31)

"lmn � � ����1=2	lmn
, �� � det�� �gik�. Considering h0k as a

FIG. 1. The Fermi-Walker time derivative DFS� (based in part
on Fig. 2 in [44]). The cosmological observer o with four-
velocity e�

�0� carries with himself a gyroscope, represented by
the spatial vector W� (dashed arrow), and a spatial vector S�

which are both perpendicular to e�
�0� and identical at the observ-

er’s proper time 
. After d
, both S� and W� remain perpen-
dicular to e�

�0� but the generally propagating vector S� will differ
from the nonrotating, Fermi-Walker transported gyroscope by
the Fermi-Walker time derivative �DFS��d
.
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3-dimensional velocity vector, the cosmologist’s vorticity
(2.29) yields 1

2 of the standard vorticity, curl v, in fluid
dynamics. However, curl v represents twice the effective
rigid local angular velocity of the fluid in an inertial frame
[46]. Therefore, the averaged rigid angular velocity of
COFs with respect to LIFs is determined exactly by !l

given by Eq. (2.31). Equivalently, LIFs rotate with respect
to COFs with angular velocity �!l.

E. A note on generalized backgrounds

When the background is not FRW but, say, a Lemaı̂tre-
Tolman-Bondi or Bianchi model, the accelerations and the
averaged rotations of the LIFs with respect to the COFs can
still be determined from only perturbations h00 and hi0. For
example, if the coordinates can be chosen such that g�� �
�g�� � h��, where �g0i � 0, �g00 is an arbitrary function of
time x0, and �gik are arbitrary functions of x�, then cosmo-
logical observers given by xi � constants have their accel-
erations with respect to LIFs equal to
�l � �glm�� 1

2h00;m � h0m;0 �
1
2 �g00 �g00hm0�, and their vor-

ticity is �!�� � 0, !kl � �!kl �
1
2 � �g00�

�1=2�h0k;l � h0l;k�,
!0� � 0.

F. Sources and their description in the cosmological
frame

In the FRW universes the background energy-
momentum tensor is commonly taken to be the perfect-
fluid stress tensor, �T�� � � ��� �p� �U�

�U� � �p���, so that in
the comoving coordinates

 

�T 0
0 � ��; �Tij � � �p�ij; �T0

j �
�Tj0 � 0: (2.32)

The energy density �� and the pressure �p of the matter can
describe a standard perfect fluid with a given equation of
state. Alternatively, one may regard these expressions as

the stress tensor components of a homogeneous time-
dependent scalar field � of an inflationary model with
the energy density �� � �� and effective pressure �p �
p� (see, e.g., [47]). The special case with ��� �p � 0, �� �
� �p � constant, corresponds to the de Sitter vacuum
spacetime with a cosmological constant � � � �p � ��,
commonly interpreted as a vacuum energy. Any of these
background matter contents can be considered in the
present work. We shall thus not, in general, specify the
form of the perturbations �T�� of the energy-momentum
tensor. Employing the frame vectors e�

��� given by (2.17),
we find the frame components of perturbations (indicated
by 	e
 and 	m
) for a general energy-momentum tensor to
be given by

 �T�0�
	e
�0� � �T�0�

	m
�0� � �T0
0 ;

�T�0�
	e
�i� � �� �gii�

1=2�T�0�
	m
�i� � �T0

i � � ��� �p�h0i;
(2.33)

 

�T�i�
	e
�0� � �� �gii��1=2�T�i�

	m
�0� � �Ti0;

�T�k�
	e
�i� � � �gii= �gkk�

1=2�T�k�
	m
�i� � �Tki ;

(2.34)

with no summation over i, k. By employing the ‘‘mixed’’
tensorial coordinate components of perturbations, we see
that their values, except for �T0

i , coincide—up to the
background ‘‘normalization’’ factors ��� �gii�

�1=2 —with
their frame scalar components.

In the case of a perfect fluid the coordinate components
read

 �T0
0 � ��; �T0

i � � ��� �p��hi0 � Vi�;

�Ti0 � � ��� �p�Vi; �Tki � ��p�
k
i ;

(2.35)

where �� and �p are perturbations of the matter density
and pressure. The velocity

 Vi �
dxi

dt
(2.36)

is the spatial part of the perturbation of the fluid’s 4-
velocity

 U� � �U� � �U� � �1� 1
2h00; Vi�: (2.37)

It is easy to see that the 4-velocity is approximately the unit
timelike vector since we assume Vi  1, and terms pro-
portional to V2 and Vh can thus be neglected. The 4-
acceleration of the fluid is defined by A� � U�

;�U�. Since
the background value �A� � 0, A� is of the first order. The
standard condition A�U� � 0 thus implies A� �U� � 0,
and hence A0 � 0. The calculation of the spatial compo-
nents yields

 Ai � _Vi � 2
_a
a
Vi �

1

2
�gish00;s � �gis _hs0

� _Vi � 2
_a
a
Vi � �i; (2.38)

FIG. 2. Because of the shear with the principal axes a, b,
almost orthogonal unit vectors m�1�, m�2� change their directions
but they do not, on average, rotate with respect to the fixed axes
x1, x2.
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where �i is the acceleration (2.20) of the cosmological
frame with respect to the local inertial frame, or��i is the
acceleration of the LIF with respect to the COF. The
acceleration (2.38) is the fluid’s acceleration with respect
to the LIF, whereas _Vi characterizes its acceleration with
respect to the COF. If the fluid is momentarily at rest in the
COF, Vi � 0, and the fluid has the same acceleration with
respect to the COF as the LIF has, _Vi � ��i, then Ai � 0,
as it should. Since the fluid’s acceleration vanishes for the
background, its frame components are just A�i�

	e
 �

�� �gii��1=2A�i�
	m
 � Ai. It is not difficult to check that the

acceleration (2.38) satisfies the perturbed relativistic
Euler’s equations,

 � ��� �p�Ai � ���i�p;��; �i� � gi� �UiU�;

(2.39)

where �i� is the projection tensor into the 3-space or-
thogonal to U�. As we shall notice in Sec. III B, these are
just the spatial parts of the perturbed Bianchi identities.

The vorticity of the fluid is defined by

 �� � 1
2 "

����U����;

��� �
1
2�U�;���

� �U�;���
� �:

(2.40)

Since ��U� � U���� � 0 and �’s are of the first order,
we again get �0 � 0 � �0�. The nonvanishing spatial
parts turn out to be

 �kl �
1
2 	�Vk � h0k�;l � �Vl � h0l�;k
;

�i � 1
2"

ikl�Vl � h0l�;k �
1
2"

iklVl;k �!i;
(2.41)

!i is the vorticity vector (2.31) of the cosmological frame.
Again, this result is plausible in the following sense: Since
the LIF rotates with respect to the COF with �!i, then if
the fluid rotates with respect to the COF with 1

2"
iklVl;k �

�!i, it does not rotate with respect to the LIF, �i � 0. As
with the acceleration, the frame components are simply
given by ��i�

	e
 � �� �gii�
�1=2��i�

	m
 � �i.
From Eqs. (2.33), (2.34), and (2.35) it is evident that to

give the frame components of the source we need to know
only the perturbations ��, �p, and Vi of the fluid. No
metric perturbations are needed—in contrast to the coor-
dinate components �T0

i in which h0i enters. This is impor-
tant for our understanding of Mach’s principle.

III. FIELD EQUATIONS

We have seen that the accelerations and rotations of LIFs
with respect to the COFs are determined in a general gauge
by h00 and h0l components of the perturbations. We shall
now write the perturbed Einstein equations for the FRW

backgrounds in a general gauge.2 We then shall see later
which gauges will enable us to determine instantaneously
perturbations h00 and h0l (separately from hkl) in terms of
matter perturbations.

A straightforward way to express the perturbations of
Einstein’s equations is in terms of a physical cosmic time t
and some convenient spatial coordinates xl of the FRW
background. However, there are advantages in using con-
formal time 	, given by a�	�d	 � dt. Both t and 	 are
common in the literature and we shall thus give explicitly
the perturbation equations in two forms—with t in
Appendix A and with 	 in this section.

A. Perturbed field equations with a conformal time �

In terms of coordinates ~x� � �	; xk� the metric of the
background is

 d �s2 � ~�g��d~x�d~x� � a2e��d~x�d~x�

� a2	d	2 � fkldxkdxl
; (3.1)

where we introduced the conformally related static back-
ground metric e�� by

 e00 � 1; e0l � 0; ekl � �fkl�xi�: (3.2)

The components of a tensor, say ~W�
�, are related to those of

the tensor W�
� in x� � �t; xk� coordinates as follows:

 

~W 0
0 � W0

0 ; ~W0
l � a�1W0

l ;

~Wl
0 � aWl

0; ~Wl
k � Wl

k:
(3.3)

Defining the dimensionless ‘‘relative Hubble constant’’ by
H � 1

a
da
d	 �

a0
a � _a � aH, we can write the nonvanishing

background Christoffel symbols as

 

~�� 0
00 �H ; ~��

0
kl �H fkl;

~��
m
0l �H�ml ;

~��
m
kl � ��mkl;

(3.4)

where ��mkl is given in Appendix A. The prime hereafter
denotes the derivative with respect to 	. (Later, it will also
be used to denote a coordinate change, but no confusion
should arise.) The nonzero components of the background
Einstein equations become

2Some of the equations presented here have been derived
independently by Langlois (1994) in his Ph.D. thesis and by P.
Uzan and N. Deruelle (private communication). The perturbed
Ricci tensor components and the equations of motion have been
written down by Bardeen (1980) [29] after a decomposition of
the metric into scalar, vector, and tensor parts using his specific
amplitudes.
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~�G 0
0 �

�G0
0 �

3

a2 �k�H 2� � � ����;

~�Gm
k � �Gm

k �
1

a2 �
m
k �k�H 2 � 2H 0� � ��� �p����mk :

(3.5)

The linearly perturbed Einstein equations will be written
in terms of the dimensionless perturbations ~h�� of e��,
 

ds2 � �~�g�� � �~g���d~x�d~x� � a2�e�� � ~h���d~x�d~x�

� a2	�1� ~h00�d	
2 � 2~h0kd	dx

k

� �fkl � ~hkl�dxkdxl
; (3.6)

which means that �~g�� � a2 ~h��. It is important to em-
phasize that, in contrast to tensors like in Eq. (3.3), ~h��’s
are not components (in coordinates ~x�) of h�� used in (1.1)
and Appendix A; as seen from Eq. (3.6), they represent the
perturbations of the static conformal metric e��, whereas
h��’s represent perturbations of the physical background
metric �g��. In a �1� 3� decomposition, i.e., in quantities
~h00, ~h0l, ~hkl, we do not raise the index 0 and we raise the
spatial indices only with fkl; thus ~hm0 � fml ~h0l, ~hmn �
fmkfnl ~hkl, etc. The explicit relations between h��, h��, or
h�� and ~h��, ~h��, or ~h�� are given in Appendix A.

The perturbations of Einstein’s equations in terms of ~h��
can be obtained from equations in Appendix A. We shall
introduce two special symbols which not only simplify the
equations but are also helpful in suggesting particularly
useful gauge conditions. We set

 K � 3
2H

~h00 �
1
2�

~hnn�0 � rn ~hn0 : (3.7)

The second quantity we shall employ is defined with the
traceless part of ~hlk,

 

~h lTk � ~hlk �
1
3�

l
k

~hnn: (3.8)

We set

 T k � rl ~h
l
Tk: (3.9)

Now we give Einstein’s perturbation equations, separating
� ~Gl

Tk, the traceless part of � ~Gl
k, from the trace � ~Gn

n which
we combine with � ~G0

0 for a reason to be seen below. Thus,
recalling that r2 � fklrkl, we have the following dimen-
sionless equations:

 a2�� ~T0
0 � a2� ~G0

0 �
1
3r

2 ~hnn � k~hnn � 2HK� 1
2rkT

k;

(3.10)

 a2�� ~T0
k � a2� ~G0

k

� 1
2r

2 ~hk0 � k~hk0 �
1
6rkl

~hl0 �
2
3rkK� 1

2�T k�
0;

(3.11)

 a2��� ~T0
0 � � ~Tnn� � a2�� ~G0

0 � � ~Gn
n�

� r2 ~h00 � 3a
�

1

a
H

�
0
~h00 �

2

a
�aK�0;

(3.12)

and

 

a2�
�
� ~Tlk �

1

3
�lk� ~Tnn

�
� a2� ~Gl

Tk

� �
1

2
r2 ~hT

l
k � k~hlTk �

1

2a2 	a
2�~hlTk�

0
0 � flm
�
r�mT k� �

1

3
fmkrnT

n
�

�
1

a2 f
lm
�
a2

�
r�m

~hk�0 �
1

3
fmkrn ~hn0

��
0

�
1

2
flm

�
rmk �

1

3
fmkr

2

��
~h00 �

1

3
~hnn

�
: (3.13)

For completeness we also write down the equation which
can be derived from Eq. (3.11):
 

a2�� ~Tk0 � �
1

2
r2 ~hk0 �

�
k� 2a

�
1

a
H

�
0
�

~hk0 �
1

6
rkrl ~h

l
0

�
2

3
rkK�

1

2
�T k�0: (3.14)

This equation follows from Eq. (3.11) by using the relation

 � ~T0
k � �fkl� ~Tl0 �

2

�a2

�
�k� a

�
H

a

�
0
�

~h0k: (3.15)

In the case of perfect-fluid perturbations we define the
local coordinate velocity by

 

~V k �
dxk�	�
d	

: (3.16)

Notice that ~Vk is not equal to Vk [defined in Eq. (2.36)]
expressed in coordinates ~x� because ~Vk is defined with
respect to the conformal time. Since ~xk � xk, in both
coordinates we have simple relations,

 

~V k � aVk;

~Vn � fnm ~Vm � fnmaV
m � �a�1 �gnmV

m � �a�1Vn:

(3.17)

Nevertheless, the fluid’s 4-velocity components (2.37)
transform as a general tensor like (3.3).
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In the case of perfect fluid the energy-momentum tensor
perturbations become

 a2�� ~T0
0 � a2���;

a2�� ~T0
k � 2�k�H 2 �H 0��� ~Vk � ~hk0�;

a2�� ~Tk0 � 2�k�H 2 �H 0� ~Vk;

a2�� ~Tlk � �a
2��lk�p;

(3.18)

so that the left-hand sides of Eqs. (3.12) and (3.13) are

 a2��� ~T0
0 � � ~Tnn� � a2����� 3�p�;

a2��� ~Tlk �
1
3�

l
k� ~Tnn� � 0:

(3.19)

We combined Einstein’s equations in such a way that
Eqs. (3.10) and (3.12) contain scalars under the transfor-
mation of spatial coordinates, whereas Eq. (3.13) involves
tensorial quantities only. In the perfect-fluid case, the
‘‘source’’ in Eq. (3.13) vanishes so that this equation
represents propagation of a free gravitational field, i.e., of
gravitational waves described by traceless quantities ~hlTk.
The first and the third terms on the r.h.s. of Eq. (3.13)
combine into a d’Alembert wave operator modified by the
time dependence of the expansion factor a�	�. More gen-
erally, however, the perturbed fluid could be an imperfect
fluid which includes shear viscosity. This can be described
by an additional term in �T��, given by a symmetric shear
tensor ���

� which is traceless, ���
� � 0, and purely spa-

tial in the fluid rest frame, U����
� � 0 (see, e.g., [26]).

Then the shear would appear as a source in Eq. (3.13).

B. Bianchi identities and conservation laws

The perturbed contracted Bianchi identities, r�G�
� � 0

for � � 0 and � � k, imply
 

1

a2�a
2� ~G0

0�
� �

_a
a
�� ~G0

0 � � ~Gn
n� �

1

a
rk� ~G0

k

�
3

2a
�� ��� �p�

�
_a~h00 �

2

3
K

�
� 0; (3.20)

 

1

a3
�a4� ~G0

k�
� � rm� ~Gm

k �
1

2
�� ��� �p�rk ~h00 � 0: (3.21)

Replacing � ~G�
� by � ~T�� from the field equations we get the

conservation laws for � ~T�� :
 

�� ~T0
0�
� �

_a
a
�3� ~T0

0 � � ~Tkk� �
1

a
rk� ~T0

k

�
3

2a
� ��� �p�

�
_a~h00 �

2

3
K

�
� 0; (3.22)

 

1

a3
�a4� ~T0

k�
� � rm� ~Tmk �

1

2
� ��� �p�rk ~h00 � 0: (3.23)

In the case of a perfect fluid the conservation laws become

 

����� �
3 _a
a
���� �p� �

1

a
� ��� �p�rk� ~V

k � ~hk0�

�
3

2a
� ��� �p�

�
_a~h00 �

2

3
K

�
� 0; (3.24)

 

1

a3 	a
4� ��� �p�� ~Vk� ~hk0�


� �rk�p�
1

2
� ��� �p�rk ~h00 � 0:

(3.25)

The first equation expresses the conservation of the mass
energy ��. The second is the equation of motion; when the
time-derivative term is negligible it represents the equilib-
rium condition between the gradients of pressure and
gravitational potential 1

2
~h00, which would be much harder

to see in the synchronous gauge with ~h00 � 0. Until now,
all equations have been in an arbitrary gauge. The next
section is devoted to the choice of ‘‘appropriate gauges.’’

IV. GAUGES

A change of the gauge can be regarded as an infinitesi-
mal coordinate transformation x� ! x�

0
� x� � ���x�.

Under the gauge transformations, the metric changes by
the Lie derivative (e.g. [23]) as �g�� � L�g�� �
lim�!0	g���x0� � g0���x0�
 � ��;� � ��;�. The explicit
formulas are given in Appendix B.

Since gauge transformations contain four arbitrary func-
tions, we can impose four gauge conditions. Regarding the
field equations (3.10), (3.11), (3.12), and (3.13) we see
instantly that four gauge conditions K � 0 � T k de-
couple the first three equations from the rest.
Equations (3.10), (3.11), and (3.12) determine directly the
metric components ~h00, ~hk0, and ~hnn from the instantaneous
distribution of sources given by � ~T0

0, � ~T0
k, and � ~T0

0 � � ~Tnn;
no time integration is needed. Accelerations and rotations
of local inertial frames follow then from (2.20) and (2.25).
Such an instantaneous determination of local inertial
frames is also possible by employing other gauges. We
call these gauges Machian.

The purpose of this section is to motivate and describe
geometrically several Machian gauges, and to clarify what
the residual gauge freedom is that these gauges admit. For
a comparison we shall also consider two typically non-
Machian gauges—the synchronous gauge and the gener-
alized Lorenz-de Donder, or ‘‘harmonic’’ gauge. In the
next section these gauges will be used to analyze the field
equations and the way they can be solved to determine
local inertial frames. In the Machian gauges we shall al-
ways restrict the spatial part of the metric by requiring the
three gauge conditions T k � 0, where T k is given by
Eq. (3.9). These conditions will be motivated first.

A. Gauge conditions on the spatial metric

We start beyond the linear perturbation theory. Smarr
and York (1978) [48], in treating full general relativity as
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an evolution from given initial Cauchy data on one space-
like slice to the next slice, studied the kinematics of the
observers threading the slices. The evolution is represented
in terms of coordinates attached to these ‘‘coordinate ob-
servers.’’ Kinematical and dynamical effects can be suit-
ably separated if a relative velocity of the coordinate
observers, with respect to the (Eulerian) observers whose
worldlines are perpendicular to the given slicing, is such
that the shear of coordinates arising if one goes from one
slice to the next is minimized. For a given slicing the
relative velocity is determined by the shift vector and,
therefore, Smarr and York require ‘‘the minimal-
distortion’’ shift vector. This condition is equivalent to
the equation

 Dj _~�ij � 0; (4.1)

where ~�ij � �det���1=3�ij is the conformal 3-metric on a
given slice, the dot denotes the time derivative, and Dj

denotes the covariant derivative with respect to the spatial
metric �ij induced on a given slicing by the 4-dimensional
metric g��. The condition (4.1) is a natural choice from a
number of points of view. We refer the reader to the
original paper [48] for the details; here we wish to make
just a few comments. In the weak-field limit in the wave
zone, condition (4.1) generalizes and includes the well-
known ‘‘transverse-traceless’’ gauges of Arnowitt, Deser,
and Misner (1962) and of Dirac (1959) (see, e.g., [1]). In
the linearized gravity in generally curved coordinates with
g�� � �g�� � h��, where �g00 � 1, �g0i � 0, @t �gij � 0, the
condition (4.1) implies @t �DjhTij � 0, where hTij � hij �
1
3 h �gij, h � �gijhij, and �Dj is the spatial covariant derivative
with respect to �gij. This is analogous to the radiation (or
Coulomb) gauge condition in electrodynamics. In station-
ary spacetimes with a timelike Killing vector �� the gauge
condition (4.1) is satisfied if the slicing is carried into itself
by the �� isometry and �� is tangent to coordinate observ-
ers. It is interesting to consider more general slicings.
Choosing in Schwarzschild spacetime the slices orthogo-
nal to the geodesics of particles freely falling from rest at
infinity, one finds that the condition (4.1) implies

 ds2 � �1� 2M=r�d
2 � 2�2M=r�1=2drd
� dr2

� r2�d�2 � sin2�’2�; (4.2)

i.e., one obtains the time-independent but nondiagonal
form (4.2) with the spatially flat metric on the slices.3

Now in our case of the perturbed FRW metric it is easy
to see that the conformal 3-metric is ~�ij � f�1=3	fij �
~hTij
, f � det�fij�, and ~hTij is given by (3.8). Therefore,

the condition (4.1) implies _T k � 0, with T k given by
(3.9). It is the last condition which converts Eq. (3.11)
into the equation for ~hk0 without the terms depending on
the traceless part of ~hkl.

Motivated by the analysis above, we shall assume that,
in fact, a slightly stronger condition,

 T k � rl ~h
l
Tk � 0; (4.3)

is satisfied. This just means that the spatial coordinates are
restricted on an initial slice and this restriction is then
maintained by the original condition. Notice that (4.3) is
covariant under 3-dimensional coordinate transformations
within chosen slices.

B. Gauge conditions on the time slicing

The three gauge conditions T k � 0, k � 1, 2, 3, do not
restrict the time coordinate, i.e., the slicing by spatial
hypersurfaces x0 � constant. We thus supplement them
with the fourth gauge condition fixing the slices. In order
to understand its geometrical meaning, we first calculate
the geometrical quantities characterizing the slices. Using
the perturbed FRW metrics in a general gauge, we find that
the unit timelike vector field n� orthogonal to each slice is
given by

 ~n � � ~�n� � �~n�; (4.4)

where ~�n� � �a�1; 0; 0; 0�, �~n� � a�1�� 1
2

~h00; ~hj0�.
Calculating the expansion � � ~n�;� of the congruence of
timelike curves that meet the slices orthogonally, we find

 � � ��� �� � 3
a0

a2 �
3

2a

�
a0

a
~h00 �

1

3
�~hnn�

0 �
2

3
P

�

� ���K;

where K is given by Eq. (3.7), and

 P � rl ~h
l
0: (4.5)

For the shear of the congruence we obtain ~�� � �~��,
�~00 � 0, � ~0i � 0,

 � ~ij � �ar�i ~hj�0 �
1
3afijrm

~hm0 �
1
2a

~h0Tij

� �ar�i ~hj�0 �
1
3afijP �

1
2a

~h0Tij: (4.6)

The uniform-Hubble-expansion gauge, introduced by
Bardeen (1980) [29], but apparently not used much later
(though see [50]), requires �� � 0, i.e.

 K �
3

2

a0

a
~h00 �

1

2
�~hnn�0 � P � 0: (4.7)

This gauge condition is again motivated by the popular
choice of the ‘‘constant mean curvature slices’’ in the full
theory (the trace of the extrinsic curvature tensor—the
mean curvature—of a spacelike hypersurface with normal
n� is K � �n�;�). The condition (4.7) thus means that we

3More recently, (4.2) was rediscovered as a technically suit-
able form of the Schwarzschild metric for describing the
Hamiltonian dynamics for spherically symmetric gravitating
shells by Kraus and Wilczek (1995) [49] without any geomet-
rical argumentation.
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choose such a time coordinate in the perturbed FRW uni-
verses that the extrinsic curvature of the 	 � constant
hypersurfaces is the same as in the unperturbed universe,
i.e., it is constant along each hypersurface. Much work has
been done on the existence and properties of such folia-
tions (see [51] for the recent review and references).

The gauge condition (4.7) for time slicing combined
with the gauge conditions (4.3) for the spatial part of the
metric will be called the Mach 1 gauge. We have not found
it in the literature, although the gauge conditions (4.3) and
(4.7) were used separately.

Another basic geometrical object associated with a
spacelike slice is its intrinsic curvature, the simplest mea-
sure of which is the intrinsic (3-dimensional) scalar curva-
ture. In the perturbed FRW universes R � �R� �R,
�R � � 6k

a2 , and
 

�R � �
2

3a2 �r
2 ~hnn � 3k~hnn�

�
1

a2rnT
n: (4.8)

When the gauge condition (4.3) is combined with the
‘‘uniform-intrinsic-scalar curvature’’ condition �R � 0,
i.e.

 r2 ~hnn � 3k~hnn � 0; (4.9)

we speak about the Mach 2 gauge. A stronger version—
the Mach 2� gauge—requires

 

~h nn � 0: (4.10)

Another possible condition for the choice of slicing is
rirjK

ij � 0, where Kij is the extrinsic curvature tensor.
Nothing appears to be known about this choice in the
nonlinear context. In our formalism this condition reads
[using Eq. (4.6) for the shear]

 0 � rirj�~ij � �
2
3a�r

2 � 3k�rl ~h
l
0 �

1
2ar

lT 0
l; (4.11)

which justifies the name ‘‘minimal-shear hypersurface
condition’’ suggested by Bardeen [29]. Combined with
the conditions (4.3) the last equation implies the gauge
condition

 �r2 � 3k�rl ~h
l
0 � 0: (4.12)

The Mach 3 gauge is defined by the gauge conditions (4.3)
and (4.12). Its stronger version, the Mach 3* gauge,

 P � rl ~h
l
0 � 0; (4.13)

combined with (4.3), has been called the Poisson gauge by
Bertschinger [26] in 1995. He analyzed its advantages for
physical interpretation of cosmological perturbations, in
particular, as compared with the synchronous gauge. The
same gauge has already been proposed in 1994 by
Bombelli, Couch, and Torrence [52] who called it the
‘‘cosmological gauge.’’

We also mention the standard synchronous gauge, still
used most commonly in cosmology,

 

~h 00 � ~h0i � 0; (4.14)

and, in more detail, the generalized Lorenz-de Donder
gauge (frequently also called the harmonic gauge—cf.,
e.g., [3], and recently [53]),

 

�r ���
�������
�g
p

g��� � 0: (4.15)

This has been extensively used in a number of problems, in
particular, in weak-field approximations dealing with
equations of motion and gravitational radiation (see, e.g.,
[54]), but not in cosmology. The gauge conditions (4.15)
for � � 0 imply

 �rl ~h
l
0 �

1
2 �

~h00 � ~hnn�0 �H �3~h00 � ~hnn� � 0; (4.16)

and for � � k we get

 �rl ~h
l
Tk �

1
6rk�

~hnn � 3~h00� � ~h00k � 4H ~h0k � 0:

(4.17)

We shall now analyze the residual gauge freedom which
the gauges introduced above admit.

C. Gauge fixing and residual gauge freedom

From relations (B3)–(B6) in Appendix B we readily
obtain the changes of the geometrical quantities defined
in (3.7), (3.9), (4.5), and (4.6) under gauge transformations:

 �T k � ��rl ~h
l
Tk� � ��r

2�k � 2k�k �
1
3rkrl�

l�;

(4.18)

 �P � ��rl ~h
l
0� �

1

a
r2�0 � ark _�k; (4.19)

 �K � �
1

a

�
r2�0 � 3a2

�
_a
a

�
�

�0

�
; (4.20)

 �R �
4

3a2 �r
2 � 3k�

�
rl�

l � 3
_a
a
�0

�
; (4.21)

 ��rkrl� ~kl� � �
2
3�r

2 � 3k�r2�0: (4.22)

We shall discuss first the minimal-distortion spatial
gauge condition: T k � 0.

Starting from a general gauge, we reach the required
condition by purely spatial gauge transformations given by
�k, which satisfy the inhomogeneous equation with given
l.h.s. �T k. The residual gauge freedom is determined by
�k solving the homogeneous equation

 r2�k � 2k�k �
1
3rkrl�

l � 0: (4.23)

There are solutions of this equation given by linear combi-
nations (with time-dependent coefficients) of the confor-
mal Killing vectors in the constant-curvature spaces S3, R3,
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H3. To see this, recall that in 3-dimensional space a con-
formal Killing vector satisfies

 rl�k �rk�l �
2
3fklrn�

n: (4.24)

Since spaces of constant curvature are conformally flat,
they admit ten linearly independent conformal Killing
vectors as E3 (see, e.g., [55]). Their explicit forms are
given in Appendix C, where their relationship to the scalar
and vector hyperspherical harmonics is also elucidated.
Among the ten conformal Killing vectors, six are pure
Killing vectors, ��A�i , A � 1; 2; . . . ; 6; the remaining four
 �B�i , B � 1; . . . ; 4 do not reduce to the Killing vectors. In
spaces of nonvanishing constant curvature,  �B�i can be
written as gradients of scalars:

 k � �1:  �B�i � @iQB � riQB; B � 1; . . . ; 4:

(4.25)

The four scalar fields, QB, are equal, up to a multiplicative
constant, to the following four scalar harmonics (see
Appendix C for details):
 

k � �1: Q�L�1;l�0;m�0� ’ cos�;

Q�L�1;l�1;m��1;0;�1� ’ sin�Y1m��; ’�; (4.26)

 

k � �1: Q���2i;l�0;m�0� ’ cosh�;

Q���2i;l�1;m��1;0;�1� ’ sinh�Y1m��;’�: (4.27)

Taking the divergence of Eq. (4.24) and using (A5) and
(A6) in Appendix A to commute the derivatives, we obtain
Eq. (4.23). Hence, any conformal Killing vector �k solves
Eq. (4.23). In open universes, all such solutions �k diverge
at infinity (�! 1), except for translations in a flat (k � 0)
universe when �k are constant in Cartesian-like coordi-
nates. We now prove that there exist no bounded solutions
of Eq. (4.23) other than conformal Killing vectors in S3 and
translations in E3. To prove this we decompose �k into a
gradient of a scalar and a transverse vector:

 �k � rkZ� �Tk; rk�Tk � 0: (4.28)

This decomposition is unique up to Z! Z� constant, if
for open universes we require �k to decay asymptotically so
that

R
rk�kdV converges [23]. Substituting then (4.28) into

(4.24) and commuting the derivatives, we find

 r2r2Z� 3kr2Z � 0: (4.29)

In S3 the only smooth solutions of the equation

 r2Q� 3Q � 0 (4.30)

are given by the linear combination of the four scalar
harmonics (4.26), the gradients of which give the confor-
mal Killing vectors. In closed space the solution of (4.29) is
thus, with �B�t� arbitrary,

 Z �
X4

B�1

�B�t�QB � Z0�t�: (4.31)

In H3 Eq. (4.29) becomes

 r2Q� 3Q � 0: (4.32)

The solutions are four scalar harmonics given in (4.27)—
these, however, diverge at infinity. In open universes the
only solution of (4.32) leading to asymptotically well-
behaved �k is Z � Z0�t�, the gradient of which does not
contribute to �k. Substituting now for �k in Eq. (4.23) the
decomposition (4.28), and regarding the above results for
Z, we find that Eq. (4.23) reduces to the equation r2�Tk �
2k�Tk � 0. In open universes this equation does not admit
any asymptotically well-behaved solutions, except for
�Tk � constant for k � 0. In a closed universe the equation
is equivalent to the Killing equation (Appendix C). Hence,
under the assumption that the vector �i is bounded, the
condition (4.3) fixes the spatial coordinates uniquely inH3;
and in E3 the remaining gauge freedom is just �i �P3
A�1 fA�t��

�A�i
tr , corresponding to a time-dependent linear

combination of translations. In S3 the residual gauge free-
dom is given by a linear combination of ten conformal
Killing vectors (six Killing and four conformal Killing):

 �i �
X6

A�1

�A�t��
�A�i �

X4

B�1

�B�t� 
�B�i: (4.33)

We now discuss the three Machian gauges successively.

1. Mach 1: Uniform-Hubble-expansion gauge

From Eq. (4.20) we see that the residual freedom in �0 is
given by the solutions of

 r2�0 � 3a2

�
_a
a

�
�

�0 � 0: (4.34)

Multiplying Eq. (4.34) by �0 and integrating by parts over a
domain D, we find

 

Z
D
�0r2�0d�3�V �

Z
@D
�0rk�

0dSk

�
Z
D
fklrk�0rl�0d�3�V

� �
Z
D

3a2

�
_a
a

�
�
��0�2d�3�V; (4.35)

where d�3�V �
���
f
p
d3x, f � det�fkl�; a3

0d
�3�V, a0 � a�x0�,

is the proper volume in a slice x0 � constant. Taking D to
be all space, then the integral over the boundary vanishes in
open spaces because of the boundary condition on �0, and
it is zero in closed spaces because there is no boundary.
Therefore,

 

Z
D
fklrk�0rl�0d�3�V � 3a2

�
_a
a

�
� Z

D
��0�2d�3�V: (4.36)
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The factor on the r.h.s. can be rewritten using the FRW
background equations:

 A �t� � 3a2

�
_a
a

�
�

� 3a2 _H � 3k�
3

2
a2�� ��� �p�

� �3a2

�
H2 �

1

3
�
�
�

1

2
a2�� ��� 3 �p�: (4.37)

In all standard models the strong energy condition ���
3 �p > 0 is valid so that A< 0 (H2 � 1

3 �> 0 is satisfied in
realistic models). In inflationary universe models with ���
�p � 0 �� � 0�, the function A�t�< 0 for open universes.
In all these cases the r.h.s. of Eq. (4.37) is nonpositive,
whereas the l.h.s. is non-negative. Therefore, the only
solution of Eq. (4.34) is �0 � 0. In the standard inflationary
model with k � 0, ��� �p � 0, we have A � 0, and �0 �
�0�t� is an admissible solution of Eq. (4.34) which is
bounded and has a vanishing gradient (reflecting the higher
symmetries of de Sitter space to which the FRW models
reduce). If k � �1 and ��� �p � 0, the relation (4.37)
turns Eq. (4.34) (for any �) into r2�0 � 3�0 � 0, which
is Eq. (4.30), the solutions thus being

 �0 �
X4

B�1

B�t�QB; (4.38)

where 4 scalar harmonics QB are given in (4.26), and B
are arbitrary.

Let us summarize. Assuming �� bounded, the Mach 1
gauge fixes the coordinates uniquely in the open universes
with k � �1, and for k � 0 it determines the spatial
coordinates up to time-dependent translations, �k�t�,
whereas the time slicing is unique if the background matter
satisfies the strong energy condition; x0 can be shifted by
�0�t� in the inflationary universe. In closed universes the
spatial coordinates are determined up to the time-
dependent motions (4.33) given by the Killing and confor-
mal Killing vectors; the time slicing is unique in the
standard backgrounds with the strong energy condition
satisfied. In the inflationary backgrounds the time can be
shifted by �0 determined by Eq. (4.38).

2. Mach 2: Uniform-scalar-curvature gauge

Requiring the scalar 3-curvature of the time slices to be
equal to the background values fixes the gauge up to the
transformations satisfying [see Eq. (4.21)]

 �r2 � 3k�
�
rl�l � 3

_a
a
�0

�
� 0: (4.39)

Assuming again the condition (4.3), we restricted �l al-
ready by Eq. (4.23), which implies the divergence rl�l to
satisfy �r2 � 3k�rl�

l � 0. Equation (4.39) thus reduces to
(assuming _a � 0) �r2 � 3k��0 � 0. As discussed above
[cf. (4.30) or (4.32)], the only bounded solutions are �0 � 0
if k � �1, �0 � �0�t� if k � 0, and �0 is given in terms of
QB for k � �1.

Mach 2*: The traceless gauge.—The gauge condition
~hnn � 0 implies the previous one, and is stronger. Indeed,
regarding Eq. (B6), we see that the residual gauge freedom
is given by rk�k � 3 _a

a �
0 � 0, which determines �0 in

terms of �k (assuming _a � 0). With the gauge conditions
(4.3), �0 � 0 in open spaces, in S3 the residual freedom in
�k is given by Eq. (4.33) which implies rk�k �P4
B�1 �B�t�r

2QB [see Eq. (4.25)], and thus leads to [using
(4.30)]

 �0 � �a= _a�
X4

B�1

�B�t�Q
B; (4.40)

where �B�t� are arbitrary.

3. Mach 3: The minimal-shear gauge

As seen from Eq. (4.22) this gauge condition allows the
transformations restricted by

 �r2 � 3k��r2�0 � a2rk _�k� � 0; (4.41)

which, using �k that satisfy (4.3), reduces to �r2 �
3k�r2�0 � 0. This is the same as (4.29). In open spaces
the only bounded solutions are �0 � �0�t�. In closed spaces

 �0 �
X4

B�1

B�t�Q
B � 0�t�; (4.42)

where ’s are arbitrary, and QB is given by Eq. (4.26).
Mach 3*: The Poisson gauge.—The condition rlhl0 � 0

admits a smaller freedom. Equation (4.41) becomes

 r2�0 � a2rk _�k � 0; (4.43)

which, after substituting for �k from Eq. (4.33), for k � �1
gives

 �0 �
X4

B�1

a2 _�B�t�QB � 0�t�; (4.44)

where 0 is arbitrary but �B�t� are the same functions as
those in �k in Eq. (4.33)—in contrast to Eq. (4.42) where
’s are independent of �’s. In open universes the only
residual freedom in the choice of time is given by arbitrary
�0�t�.

Regarding the gauge freedom in T k � 0, we see that the
Poisson gauge in the case k � �1 fixes the spatial coor-
dinates uniquely; the time coordinate is fixed up to �0�t�. In
the case k � 0 the spatial coordinates are fixed up to
translations �i�t� and time shifts �0�t�. In the closed case
the freedom in spatial coordinates is determined by linear
combinations of the Killing and conformal Killing vectors
(4.33), whereas the time coordinate is determined by the
combination (4.44) of scalar harmonics QB. Hence, in the
closed case there are 11 arbitrary functions of time which
represent the gauge freedom.

These results are at variance with Bertschinger’s state-
ment [26] that there is ‘‘an almost unique transformation
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from an arbitrary gauge to the Poisson gauge.’’ Clearly,
Bertschinger does not consider the possibility that his �
solves equation �r2 � 3k�r2� � 0 [i.e. our Eq. (4.29)]
which preserves the gauge condition rlhlTk � 0.
Solutions for � for k � �1 are as in Eq. (4.31), where
Z0�t� indeed has no effect but the terms containing QB do
have an effect—not only on �k but also on �0 as described
above.

Let us now mention the gauge freedom in two typical
‘‘non-Machian’’ gauges.

4. Synchronous gauge

From Eqs. (B3) and (B4) it is immediately seen that the
synchronous gauge admits the well-known residual free-
dom given by transformations satisfying

 

_� 0 � 0; rl�
0 � a2 _�l; (4.45)

which imply

 �0 � �0�xi�; �l �
�Z dt

a2�t�

�
rl�

0�xi� � Zl�x
i�:

(4.46)

Functions �0�xi� and Zl�xi� are arbitrary. The gauge free-
dom is the same for both open and closed universes.

5. The generalized Lorenz-de Donder gauge

Requiring the gauge conditions (4.16) and (4.17) to be
satisfied, we can use relations (B3)–(B6) to find out the
residual freedom in this gauge. It turns out to be restricted
by

 r2�0 � a2 	�0 � 3a _a _�0 � 3�a 	a� _a2��0 � 2a _arl�l � 0;

(4.47)

 r2�k � a
2 	�k � 2k�k � 5 _aa _�k � 2� _a=a�rk�

0 � 0:

(4.48)

The only feasible way to solve this coupled system appears
to be the use of harmonics, but here we shall just restrict
ourselves to noticing that, for a slowly changing expansion
factor ( _a, 	a small), the system turns just into two decoupled
wave equations,

 

1

a2
r2�0 � 	�0 � 0;

1

a2r
2�k � 	�k �

2k

a2 �k � 0:

(4.49)

In the flat case these are just wave equations in flat space
with coordinates axi (which give the proper lengths in k �
0 universes). The gauge freedom is thus analogous to the
freedom of the Lorenz gauge in electrodynamics. Any
solution of a wave equation can be characterized by its
Cauchy values—here �0�xi�, _�0�xi�, �k�xi�, and _�k�xi�, i.e.,
by eight functions of spatial coordinates.

Summarizing, we find that the Machian gauges are
substantially more restrictive than the synchronous gauge
and the generalized Lorenz-de Donder gauge. The last two
gauges admit transformations characterized by several
(two and eight) arbitrary functions of three variables—
of the spatial coordinates xi. All the Machian gauges admit
only several arbitrary functions of time. In some cases they
fix the coordinates uniquely. An arbitrary additive function
of time, �0�t�, represents just the changes of the units of
time: dt0 � �1� _�0�dt. The spatially homogeneous
changes of xi by �i�t� describe just the shifts of the origin
of spatial coordinates. Otherwise, all three Machian
gauges fix the coordinates uniquely in the hyperbolic uni-
verses H3 as a consequence of boundary conditions at
infinity. The remaining functions of time in spherical uni-
verses S3 will be interpreted in the following.

D. Integral gauge conditions in closed universes with
standard spherical topology

In the closed spherical spaces the spatial coordinates xi

are fixed up to the transformations xi ! x0i � xi � �i,
where �i is given by a linear combination of six Killing
and four (proper) conformal Killing vectors of S3, in which
the coefficients are arbitrary functions of time.

In order to acquire an insight into the effects such
coordinate changes can produce, consider an unperturbed
FRW universe with standard spherical topology (k � �1).
Transform the metric in the hyperspherical coordinates
(1.3) by a gauge transformation generated by one transla-
tional, one rotational, and one conformal Killing vector
which have the simplest forms in the hyperspherical coor-
dinates: �itr � �cos�;� cot� sin�; 0�, �irot � �0; 0; 1�,
�iconf � �� sin�; 0; 0� (cf. Appendix C). Admitting the
time-dependent coefficients, the transformation has the
form

 �0 � �� ��t� cos�� ��t� sin�;

�0 � �� ��t� cot� sin�; ’0 � ’� ��t�;
(4.50)

which can easily be inverted since �, �, � are small. In
addition to the transformation (4.50) we consider a change
of the time coordinate (time slicing) allowed by our
Machian gauge conditions in closed universes.

Hence, we take �0 of the form (4.42) because other
possibilities (4.38), (4.40), and (4.44) are included in
(4.42). However, since in (4.50) only the simplest confor-
mal Killing vector enters, it is sufficient to take only those
time transformations which are associated with this vector
and with the shift of the time origin which is also allowed
by Eq. (4.41):

 t0 � t� a2	��t� cos�� �t�
; (4.51)

where for convenience the expansion factor is pulled out.
Under the transformations (4.50) and (4.51) the standard
FRW metric with k � �1 becomes
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ds2 � 	1� �2a2��� cos�0 � �2a2�:
dt02

� a2	1� 2��� a _a�� cos�0 � 2a _a


� 	d�02 � sin2�0�d�02 � sin2�0d’02�


� 2a2f	 _� cos�0 � ��� _�� sin�0
d�0

� _� sin�0 cos�0 sin�0d�0 � _�sin2�0sin2�0d’0gdt0:

(4.52)

Since �; . . . ;  are, in general, time-dependent and h000, h00i
nonvanishing, the frames associated with �0, �0, ’0 fixed
are noninertial in general, and the inertial frames, momen-
tarily at rest with respect to them, are seen to have the
acceleration [cf. Eq. (2.20)]
 

�0� � ��1=a2�f	2a2��� _��
� sin�0 � �a2 _��� cos�0g;

�0� � ��1=a2��a2 _��� cot�0 sin�0;

�0’ � ��1=a2��a2 _���; (4.53)

and to rotate with the vorticity [cf. Eq. (2.25)]

 !0�� � a2 _�sin2�0 sin�0;

!0�’ � a2 _� sin�0 cos�0sin2�0;

!0�’ � �a
2 _�sin2�0 sin�0 cos�0;

(4.54)

i.e., with the vorticity 3-vector (2.31) given by

 !0� � �1=a� _� cos�0;

!0� � �1=a� _� cot�0 sin�0;

!0’ � �1=a� _�:

(4.55)

The above results are easily understood: time-dependent
rotations in the ’ direction, with � � 0, and the ’ axis
fixed, imply nonvanishing accelerations in this direction
only, whereas the corresponding vorticity vector has no ’
component. The translational Killing vector which for, say,
� � 0 represents rotations in the � direction (with � �
�=2 fixed), leads to accelerations only in the � direction,
and the vorticity vector in the ’ direction.

None of these acceleration or vorticity vectors can be
compensated by an allowed change (4.51) of time slicing.
As expected, the shift of the time origin, �t�, does not
enter Eqs. (4.53), (4.54), and (4.55). However, the effect of
the transformation generated by the conformal Killing
vector, which appears only in the � component of the
acceleration, can be annulled by choosing � � _�.
Nevertheless, this condition does not remove the effect of
both � and � in the conformal factor of the spatial back-
ground metric. The metric (4.52) implies a nonvanishing
trace of the form (omitting the ‘‘time shift’’ )

 h0nn � �~h0nn � 6��� a _a�� cos�0: (4.56)

Therefore, the spatial metric differs from the canonical
metric of a homogeneous and isotropic 3-sphere. This

metric is preserved only by transformations representing
real symmetries, i.e., those generated by the Killing
vectors.4

We have described the particular effects of the gauge
freedom corresponding to the Killing and (proper) confor-
mal Killing vectors in order to show their different char-
acter. In a general, linearly perturbed, FRW universe, the
metric will be much more complicated than that of
Eq. (4.52). If it contains terms appearing in (4.52) (and
those corresponding to other Killing and conformal Killing
vectors), they can, of course, be removed by gauge trans-
formations of the form (4.50) and (4.51). Since a natural
goal in a relativistic perturbation theory is to fix the gauge
at the end as uniquely as possible, we shall now require, in
all Machian gauges, additional gauge conditions which
exclude the freedom corresponding to the gauge transfor-
mations generated by (proper) conformal Killing vectors.
However, we leave the freedom corresponding to the
Killing vectors since these exhibit the symmetry of the
background universe at any given time.

The trace (4.56) is, at a given time, proportional to cos�
[we omit primes in metric (4.52)], i.e., just to the first of the
scalar harmonics in Eq. (4.26). Neglecting the time shift
��t�, the perturbation h00 � ~h00 in (4.52) is also propor-
tional to this harmonic. The term in h0i�� a~h0i� in (4.52)
corresponding to the same conformal transformation of the
spatial coordinates and of the time slicing is proportional to
the gradient of cos� but the scalar P � rl ~h

l
0 is again

proportional to this harmonic.5 The metric perturbations
which arise or may be removed by gauge transformations
generated by the conformal Killing vectors (i.e., the vec-
tors of the form �i �

P4
B�1 �B 

�B�i �
P4
B�1 �Br

iQB)
will be eliminated by the following integral gauge condi-
tions. These will be imposed at all times:

 

Z
S3

~hnnQ
Bd�3�V �

Z
S3

~h00Q
Bd�3�V �

Z
S3
PQBd�3�V � 0;

(4.57)

where ~hnn, ~h00, P � rl ~h
l
0 are functions of all spacetime

coordinates, and harmonics QB��; �; ’� are given in
Eq. (4.26). The integral gauge conditions (4.57) require
that spatial scalars ~hnn, ~h00, and P are orthogonal to the 4-
dimensional functional space spanned by QB, i.e., by har-
monics which are eigenfunctions with zero eigenvalues of
the operator (r2 � 3) in S3. In Sec. V we shall notice that
conditions (4.57) are closely related to Traschen’s integral
constraints [37,38] which restrict perturbations of energy-
momentum tensors representing sources. In this way we
make sure that conditions (4.57) do not restrict physics.

4As in flat space, the canonical flat-space metric in Cartesian
coordinates is preserved only by rigid translations and rotations,
but not by dilatations.

5We do not consider the scalar rlrk ~hlkT since the gauge
condition (4.3) guarantees that it vanishes in all Machian gauges.
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E. Machian gauges in closed spherical universes:
Summary

After adopting the integral gauge conditions (4.57), the
gauge freedom in all three Machian gauges becomes trans-
parent and simple: It reflects the proper (Killing) symmetry
of the background universe at any fixed time. The minimal-
distortion shift gauge condition (4.3), together with integral
gauge conditions (4.57), which we assume in all Machian
gauges, fix the spatial coordinates uniquely up to trans-
formations xi ! x0i � xi � �i with

 �i �
X6

A�1

�A�t��
�A�i; (4.58)

where ��A�i are six spatial Killing vectors—three (quasi)-
rotations and three (quasi)translations.

In the Mach 1 gauge the time slicing is unique even
without requiring integral gauge conditions (4.57) if the
background matter satisfies the strong energy condition.
After requiring (4.57), it is also unique in the inflationary
backgrounds. In the uniform-scalar-curvature gauge
(Mach 2), with (4.57) satisfied, the time coordinate is
unique, the same being true for the special case of the
traceless gauge (Mach 2*). Finally, in the minimal-shear
gauge (Mach 3) and its special case of the Poisson gauge
(Mach 3*), the adoption of the integral conditions (4.57)
leaves the only freedom in Eqs. (4.42) and (4.44) to be
�0 � 0�t�, i.e., the time coordinate is fixed up to trivial,
‘‘universal’’ shifts depending just on an arbitrary function
of time. This, as noticed below Eqs. (4.53), (4.54), and
(4.55), does not influence accelerations and rotations of
local inertial frames. Therefore, all our Machian gauges fix
coordinates uniquely up to the ‘‘time-dependent’’ Killing
motions (4.58) of spatial coordinates. The Machian gauges
with the integral gauge conditions (4.57) are thus determin-
ing coordinates both more restrictively and more plausibly
than the synchronous and generalized Lorenz-de Donder
gauge.

F. On closed hyperbolic and flat universes

Although in this work we generally assume the cosmo-
logical backgrounds with standard topologies only, and
thus with geometries which are homogeneous and isotropic
also globally, in this intermezzo we consider 3-dimensional
backgrounds represented by closed flat (k � 0) and hyper-
bolic (k � �1) 3-manifolds. Finite universes with multi-
connected topologies have become popular in recent years
in the light of new theories extending general relativity, and
in the view of a possibility (in principle) to determine the
topology of our universe by means of cosmic microwave
background observations, or from the distribution of dis-
tant sources. A comprehensive, nice review containing
many references appeared recently [56].

Globally, these universes are different; in particular, they
admit smaller families of continuous symmetries. Closed

hyperbolic 3-manifolds do not have smooth Killing vectors
at all [56] and do not possess nontrivial solutions of the
equation r2�� 3k� � 0. Indeed, multiplying this equa-
tion by �, integrating by parts over a 3-dimensional do-
main D [cf. Eq. (4.35)], we get
 Z
@D
�rj�dSj�

Z
D
rj�r

j�d�3�V� 3k
Z
D
�2d�3�V � 0:

(4.59)

Taking D to be whole closed space, the first integral
vanishes, because there is no boundary, and since both
the second and the third integrals are non-negative,
Eq. (4.59) for k � �1 can be satisfied only with � � 0.
Hence, Eq. (4.32) has only solutions Q � 0, so Z in
Eq. (4.28) does not contribute to �k. Analogously, the
equation for the transverse part of �k, after being multiplied
by �Tm�km, and integrated by parts, becomes
 Z
@D
�mk�Tmrj�TkdSj �

Z
D
�mkrj�Tmrj�Tkd�3�V

� 2k
Z
D
�mk�Tm�Tkd

�3�V � 0: (4.60)

Again, taking D to be all closed space, the first term is
zero, and as the other integrals are non-negative, (4.60) for
k � �1 is solved only by �Tk � 0. It is easily seen that,
except for trivial shifts �t� in the Mach 3 gauge, in closed
hyperbolic universes our instantaneous Machian local
gauge conditions fix coordinates uniquely, without integral
gauge conditions being imposed.

For closed flat (k � 0) universes, Eq. (4.59) implies� �
��t� and Eq. (4.60) gives rj�Tm � 0 so that �i �P3
A�1 fA�t��

�A�i
tr , where ��A�itr , A � 1, 2, 3, are translation

Killing vectors. Hence the condition (4.3) determines the
spatial coordinates up to arbitrary time-dependent linear
combinations of translations. That the rotational Killing
vectors are globally ruled out can be well understood in the
simplest example of a compact flat 3-manifold—a 3-torus
T3. All closed flat 3-manifolds are given in Fig. 26 in [56].
In fact, only the 3-torus admits globally a 3-parameter
family of translational symmetries given in Cartesian co-
ordinates by the 3 independent constant Killing vectors.
Considering just T3, we find that the gauge condition (4.3)
fixes spatial coordinates up to

 xi ! x0i � xi � �i�t� � xi �
X3

A�1

fA�t��
�A�i
tr ; (4.61)

where ��A�itr , A � 1, 2, 3, are 3 translation Killing vectors.
In the Cartesian-type coordinates these can be chosen as
�i�1� � �1; 0; 0�, etc., so that the transformation generated
by them is

 x � x0 � f�1��t�; y � y0 � f�2��t�;

z � z0 � f�3��t�:
(4.62)
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This brings the FRW background metric with k � 0 into
the form
 

ds2 � dt2 � a2�dx02 � dy02 � dz02� � 2a2� _f�1�dtdx
0

� _f�2�dtdy
0 � _f�3�dtdz

0�: (4.63)

The acceleration of the local inertial frames with respect to
the frame with x0, y0, z0 fixed is thus given by
[cf. Eq. (2.20)]

 �0x � ��1=a2��a2 _f�1���;

�0y � ��1=a2��a2 _f�2��
�;

�0z � ��1=a2��a2 _f�3���:

(4.64)

Since the gradients h00k;l are vanishing, local inertial frames
do not rotate.

V. FIELD EQUATIONS, INTEGRAL
CONSTRAINTS, SOLUTIONS, AND INERTIAL

FRAMES

We now turn to the equations for perturbations in the
Machian gauges. Here we pay attention to the Mach 1
gauge. Its choice of the constant mean curvature slices is
most natural from the perspective of the full nonlinear
theory. Moreover, the structure of the field equations for
linear perturbations and their solutions do not differ sig-
nificantly for the Mach gauges considered. The equations
in Mach 2 and 3 gauges and in the generalized Lorenz-de
Donder gauge are briefly discussed in Appendix D.
Whenever solutions are known in terms of the Green’s
functions, we write them down. They can be used to
determine the accelerations and rotations of local inertial
frames. Alternatively, solutions in terms of harmonics
[22,57] can be obtained by direct calculations, but they
will not be studied in the present work.

A. Field equations in the Mach 1 gauge

The minimal-distortion shift condition (4.3) is combined
with the constant mean external curvature condition, i.e.,
with [cf. Eq. (4.7)]

 

3
2 _a~h00 �

1
2a

_~h
n
n � P � 0; P � rl ~h

l
0: (5.1)

In addition, we impose integral gauge conditions (4.57). As
a consequence of the differential gauge conditions (4.3)
and (5.1), the field equations (3.10), (3.11), (3.12), (3.13),
and (3.14) simplify considerably:

 r2 ~hnn � 3k~hnn � 3a2�� ~T0
0; (5.2)

 r2 ~hk0 � 2k~hk0 �
1
3rkP � 2a2�� ~T0

k; (5.3)

 r2 ~h00 � 3a2

�
_a
a

�
�
~h00 � a2��� ~T0

0 � � ~Tnn�: (5.4)

Instead of Eq. (5.3) we may, equivalently, consider the

equation

 r2 ~hk0 � 2
�
k� 2a

�
1

a
H

�
0
�

~hk0 �
1

3
rkP � �2a2�� ~Tk0;

(5.5)

in which � ~Tk0 plays the role of a source. The field equation
(3.13) can be written in the form

 r2 ~hlTk � 2k~hlTk �
1

a
�a3 _~h

l
Tk�
� �F f~h00; ~hnn; ~h0k;

_~h0kg

� �2a2�� ~TlTk; (5.6)

where F f. . .g denotes terms linear in the quantities in the
brackets and in their spatial derivatives. If F and � ~TlTk are
known, the last equation is a wave-type equation for ~hlTk.

It is remarkable that in this gauge none of Eqs. (5.2),
(5.3), (5.4), and (5.5) contain any time derivative. All four
of these equations are elliptic equations for ~hnn, ~hk0, and
~h00, when the right-hand sides are given. The first two are
standard constraint equations, and the third became an
elliptic equation for ~h00 as a consequence of the gauge
conditions. Another remarkable feature of (5.2), (5.3),
(5.4), and (5.5) is that, with � ~T0

0, � ~T0
k, � ~Tnn, � ~Tk0 given,

they represent a completely separated system of four equa-
tions for, subsequently, ~hnn, ~hk0, and ~h00. P � rl ~h

l
0 in

Eq. (5.3) is governed by a separate equation. Applying
rk on Eq. (3.11) and commuting derivatives, we obtain

 r2P � 3kP �r2K � 3
2a

2�rk� ~T0
k; (5.7)

which, in gauges for which K � 0, turns into

 r2P � 3kP � 3
2a

2�rk� ~T0
k: (5.8)

This has exactly the same form as (5.2) for ~hnn. With � ~T0
k

given, we can solve (5.8) for P and substitute into
Eq. (5.3), which can then be written as

 r2 ~hk0 � 2k~hk0 � 2a2�� ~T0
k �

1
3rkP ; (5.9)

where the ‘‘source’’ term on the r.h.s. is known.
Considering, alternatively, Eq. (5.5), we get

 r2P � 3a
�

1

a
H

�
0
P � �

3

2
a2�rk� ~Tk0; (5.10)

 r2 ~hk0 � 2
�
k� 2a

�
1

a
H

�
0
�

~hk0 � �2a2�� ~Tk0 �
1

3
rkP :

(5.11)

B. Global gauge conditions and integral-constraint
vectors for spherical universes

Let us now consider the integral gauge conditions (4.57).
We wish to elucidate their relation to Traschen’s constraint
vectors [37,38]. An integral-constraint vector V� is defined
by the relation
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Z
D
�T��V

�n�d
�3�V �

Z
@D
d�lB

l; (5.12)

in which D is (possibly a part of) a spacelike hypersurface,
n� its normal, @D its 2-dimensional boundary; Bl depends
on h�� and its derivatives and it vanishes if these are zero
on @D; V� is gauge independent. Since V� does not
depend on �T��, Eq. (5.12) represents simple constraints
on source perturbations.

There exist 10 integral-constraint vectors in each of the
FRW universes but 6 of them are just spatial Killing
vectors. The other 4 are more interesting—Traschen and
others considered their implications for microwave back-
ground anisotropies (see, e.g., [37,39]). The time compo-
nents of the 4 Traschen vectors are proportional to the
scalars QB [Eqs. (4.26) and (4.27)], the spatial parts—to
riQB. In a closed spherical universe

 V�
�B� � �Q

B; a�1 _ariQB�: (5.13)

Applying (5.12) to the whole closed universe, it takes the
form

 

Z
S3

�
QB�T0

0 �
_a
a
riQB�T0

i

�
d�3�V � 0: (5.14)

Integrating by parts in the second term, we obtain

 

Z
S3

�
QB�T0

0 �
_a
a
QBri�T0

i

�
d�3�V � 0: (5.15)

In order to deduce the simplest constraints on the matter
perturbations, Traschen et al. [37–39] consider the syn-
chronous gauge and, in addition, restrict ‘‘physics’’ in
assuming vanishing pressure so that the synchronous co-
ordinates can be chosen to be comoving with the fluid (in
fact dust) since the flow is irrotational. Then the fluid
velocity Vk � �gklV

l � �gkl�U
l � 0 and �T0

i � � ��� �p��
�hi0 � Vi� � 0 in the synchronous gauge. Since the second
integral in (5.14) vanishes in this case, the constraints
imply just [see, e.g., (14) in [39]]

 

Z
S3
QB��d�3�V � 0: (5.16)

In the Mach 1 gauge the constraints (5.14) and (5.15)
have clear, simple consequences without any necessity to
restrict physics. Since both the constraint equations (5.2)
and (5.8) have on the l.h.s. the operator r2 � 3 which has
eigenfunctions QB with zero eigenvalues (see
Appendix C), it is evident that the sources on the r.h.s.
must be orthogonal to the 4-dimensional function space
spanned by 4 harmonicsQB. Therefore, in closed universes
the perturbations �T�� of any type of matter have to satisfy
separately the constraints

 

Z
S3
QB�T0

0d
�3�V � 0 (5.17)

and

 

Z
S3
QBri�T0

i d
�3�V � 0; (5.18)

the last being equivalent to

 

Z
S3
riQB�T0

i d
�3�V � 0: (5.19)

The same is true for � ~T0
i � a�1�T0

i and � ~T0
0 � �T0

0 .
Hence, Traschen’s constraints (5.12), resp. (5.14), are in-
deed satisfied—in such a way that, in fact, both integrals in
the constraints have to vanish separately. The constraints
now become a straightforward consequence of the Einstein
equations. This is not the case in the synchronous gauge
where the constraint equations are coupled and there are
more complicated equations for ~hnn, T k � rl ~h

l
Tk and their

derivatives, as can be seen from Eqs. (3.9) and (3.10) with
~h00 � ~hk0 � 0.

The constraints (5.17) and (5.18) and the constraint field
equations (5.2) and (5.8) also demonstrate, why our global
gauge conditions (4.57) do not restrict physics. They just
eliminate solutions of the homogeneous equations which,
in any case, can be removed by gauge transformations
generated by conformal Killing vectors. The gauge condi-
tion (5.1) implies that the same integral gauge constraint,
satisfied for ~hnn and P , is valid also for the spatial scalar
~h00, as is also required in (4.57). As a consequence, from
the field equation (5.4) another constraint, which has not
been discussed by Traschen et al., follows:

 

Z
S3

QB�Tnnd�3�V � 0; (5.20)

the same for � ~Tnn�� �Tnn �. Hence, in the Mach 1 gauge the
whole picture of the Traschen-type constraints and our
global integral gauge conditions is nicely symmetrical:
all scalar perturbations in both the metric and the energy-
momentum tensor, ~hnn, ~h0

0, P � rk ~hk0, � ~Tnn, � ~T0
0, and

rk� ~T0
k, are orthogonal to the 4-dimensional space spanned

by harmonics QB.

C. Solutions of the field equations and local inertial
frames

We are interested in solutions for ~h00, ~h0i, and ~hnn when
the sources are given in terms of � ~T�� . These quantities
determine local inertial frames. Hence, we wish to solve
elliptic equations (5.2), (5.3), and (5.4). Solutions can be
given in terms of harmonics but these will not be consid-
ered here. However, several of these equations have been
solved in the literature in terms of the Green’s functions.
The Green’s functions for the equation

 r2��xi� � 3k��xi� � �2P�xi�; (5.21)

where xi � f�; �; ’g are the hyperspherical coordinates,
are [39]
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 GS3�x; x0� � ��1=4��
�

cos2 
sin 

�
1�

 
�

�
�

1

2�
cos 

�
;

(5.22)

 GE3�x; x0� � ��1=4��
1
~l
; (5.23)

 GH3�x; x0� � ��1=4��
�

cosh2�
sinh�

� 2 cosh�
�
; (5.24)

where cos � cos� cos�0 � sin� sin�0 cos� (k � �1),
~l � l2 � l02 � 2ll0 cos� (k � 0), cosh�� cosh�cosh�0 �
sinh�sinh�0cos� (k � �1), and cos� � cos� cos�0 �
sin� sin�0 cos�’� ’0�. Here � is the geodesic distance
under the metric fij between the ‘‘source point’’ x0i �
f�0; �0; ’0g and the ‘‘field point’’ xi � f�; �; ’g. The
Green’s functions satisfy the equations

 �r2 � 3K�G�x; x0� � f�1=2�x���x; x0�; (5.25)

where r2 refers to the point xi, ��x; x0� is the Dirac
distribution, and f � detfij. In terms of the Green’s func-
tions (5.22), (5.23), and (5.24) the solution to Eq. (5.21) is
given by

 ��x� � �2
Z
G�x; x0�P�x0�d�3�V0: (5.26)

Hence, given � ~T0
0 and rk� ~T0

k we can determine ~hnn and P

from Eqs. (5.2) and (5.8). ~h00 can be determined from the
gauge condition (5.1), or by solving (5.4) if � ~Tnn is known.
Notice, however, that to determine ~h00 from (5.1) we need

to know also the time derivative _~h
n
n. This can be found by

taking the derivative of Eq. (5.2) and assuming that � _~T0
0 is

known. [� _~T0
0 can be expressed from the Bianchi identity

(3.22) in terms of � ~T�� and ~h00.] The solutions for _~h
n
n can

then be constructed.
Knowing P from Eq. (5.8), we can determine ~hk0 from

Eq. (5.9) or (5.11). In general, we need to find a Green’s
function bitensor Ga

b0 �x; x0� satisfying

 flmrlrmGa
b0 �x; x0� � 2kGab

0
�x; x0� � f�1=2�x��b

0

a ��x; x0�

(5.27)

in the case of Eq. (5.9) [analogously for Eq. (5.11)]. Then
the solution for ~h0k can be written as

 

~h 0k �
Z
Gk

b0 �x; x0�S�A�b0 �x
0�d�3�V0; (5.28)

by the source Sb
�A�, A � I, II, the r.h.s. of Eq. (5.9),

respectively (5.11), is denoted.
In a spatially flat universe, the easiest way is to write

Eqs. (5.9) and (5.11) in Cartesian coordinates. Then (5.9)
decouples into three Poisson equations for each ~hk0, the
Green’s functions are standard, and the solutions are given
by Poisson integrals over the source:

 

~h 0k�xi; t� �
Z S�I�k �x

0�

jx� x0j
d3x0;

S�I�k � 2a2�� ~T0
k �

1

3
@kP :

(5.29)

Equation (5.11) turns into three equations of the Yukawa-
type, as noticed recently by Schmid [58]. Indeed, the l.h.s.
of Eq. (5.11) is of the form r2 ~hk0 � �

2�	�~hk0, so two
Green’s functions are given by

 G�x; x0� � �
1

4�
e��jx�x

0j

jx� x0j
; (5.30)

where

 �2�	� � �4a�H =a�0; �2�t� � �4a2 _H: (5.31)

Usually _H < 0, so � is real. The well-behaved solution of
Eq. (5.11) is thus

 

~h k0 � �
1

2�

Z
S�II�k �x

0�
e��jx�x

0j

jx� x0j
d3x0;

S�II�k � �2a2�� ~Tk0 �
1

3
@kP :

(5.32)

For open universes, the properties of the Green’s biten-
sor Ga

b0 solving Eq. (5.27) with k � �1 have been studied
by d’Eath [59]. In particular, it can be shown that suchGa

b0

exists which satisfies the boundary conditions at the source
points and decays as exp	�3d�x; x0�
 as d�x; x0� ! 1, with
d�x; x0� being the geodesic distance between the points x, x0

under the metric of an open universe. In hyperspherical
coordinates, d � �, where � is given below Eq. (5.24). In
fact, it was d’Eath [59] who found the explicit form of the
(scalar) Green’s function (5.24), but the explicit form of the
Green’s bitensor for solving the equations for vector per-
turbations for k � �1 does not seem to be known. The
same is the case with spherical universes where only the
Green’s function (5.22) for the scalar equation (5.21) with
k � �1 is known. Nevertheless, we can find explicit solu-
tions for quite general classes of the vector perturbations
also in the case of k � �1.

1. Axisymmetric rotational perturbations

Recently we solved Eqs. (5.9) and (5.11) for all odd-
parity vector perturbations, i.e. those, for example, corre-
sponding to rotational perturbations with axial symmetry
[40,41]. We decomposed perturbations in coordinates �, ’
on spheres only and assumed axial symmetry (spherical
functions Ylm havingm � 0). Since the backgrounds admit
homogeneous, isotropic foliations, nonsymmetric pertur-
bations can be found from the axisymmetric ones [41].
Thus, we write in spherical coordinates of Eq. (1.2)

 

~h 0’ �
X1
l�1

	~h0’�	; r�
l sin�Yl0;�; (5.33)
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 � ~T0
’ �

X1
l�1

	� ~T0
’�	; r�
l sin�Yl0;�; (5.34)

where Yl0;� � @�Yl0, and �T�� may represent any pertur-
bation. In the case of perfect fluid, the fluid angular veloc-
ity [cf. Eq. (3.16)] is ~� � ~V’ � d’=d	 � �=a, and we
write

 

~V ’ � �a
2r2

X1
l�1

~�l�t; r� sin�Yl0;�: (5.35)

Putting

 	~h0’
l � a2r2sin2� ~!l�t; r�; (5.36)

we have

 	� ~T0
’
l � a2� ��� �p�r2sin2�� ~!l �

~�l�: (5.37)

These perturbations are transverse: rk ~hk0 � 0 � rk ~Tk0,
P � 0. Equations (5.9) and (5.11) become

 r2 ~h0’ � 2k~h0’ � 2a2�� ~T0
’; (5.38)

respectively,

 r2 ~h’0 � 2	k� 2a�H =a�0
~h’0 � �2a2�� ~T’0 : (5.39)

The relation (3.15) now implies

 � ~T0
’ � �r

2sin2�
�
� ~T’0 �

2

�a2

�
�k� a

�
H

a

�
0
�

~h’0

�
;

(5.40)

so Eq. (5.39) immediately follows from Eq. (5.38) and vice
versa. Nevertheless, the equations differ in the sense that in
Eq. (5.38) � ~T0

’ is considered as a source, whereas in (5.39)
the source is given by � ~T’0 . � ~T0

’ determines (up to factor
a4) the density of the angular momentum—the perturbed
Bianchi identities (3.23) imply the conservation law

 �a4� ~T0
’�
� � 0: (5.41)

On the other hand, � ~T’0 determines the energy current.
This is most apparent in the case of perfect fluid: � ~T0

’ is
given by Eqs. (5.34) and (5.37), while

 � ~T’0 � � ��� �p� ~V’ � � ��� �p� ~�

�
X1
l�1

	� ~T’0 
l�sin���1Yl0;�; (5.42)

where 	� ~T’0 �	; r�
l � � ��� �p� ~�l. Substituting the expan-
sions into Eq. (5.38), and using the orthogonality of
sin�Yl0;� for different l’s, we obtain the ‘‘radial’’ equation
for each l:

 

�
����������������
1� kr2

p 1

r2

@
@r

� ����������������
1� kr2

p @
@r
�r2 ~!l�

�
�
l�l� 1�

r2 ~!l

� 4k ~!l � 2a2�� ��� �p�� ~�l � ~!l� � �2� ~�l � ~!l�:

(5.43)

For l � 1 the perturbations correspond to the ‘‘rigidly
rotating spherical shells’’ in the FRW universes [12,40].
Each sphere rotates with no shear but it expands/contracts
with the background so that its angular velocity changes.
For l � 2 the motion of the fluid is ‘‘toroidal’’ [41]. In the
case of closed universes the Legendre equation which
follows from Eq. (5.43) requires a special treatment. For
example, for k � �1, functions ~!l�t; r� determining ~h0’

by (5.33) and (5.36) turn out to be (r � sin�)

 ~! l � 2k�sin���3=2

�
~P l

2

Z �

0

~Ql
2

Wlsin1=2�0
��T0

’�ld�
0

� ~Ql
2

Z �

�

~P l
2

Wlsin1=2�0
��T0

’�ld�
0

�
; (5.44)

where Wl is the Wronskian of the functions ~P l
2���, ~Ql

2���
which are derived from the derivatives of the appropriate
Legendre functions with respect to their degree [41].

The properties of the solutions of Eq. (5.43) differ sig-
nificantly according to whether we consider the right-hand
side of (5.43), i.e., the angular momentum density � ~T0

’ as
the source of ~!l, or we solve (5.43) for ~!l with ~�l given,
i.e., with the angular velocity as the source.

The rotation of inertial frames (2.30) is given by the
angular velocity

 �!j �
1

2a

�X1
l�1

l�l� 1�!lYl0;
X1
l�1

1

r2

d
dr
�r2!l�Yl0;�; 0

�
:

(5.45)

The complete solutions for!l for both � ~T0
’ and � ~T’0 given

are determined in [41]. Roughly speaking, in flat and open
universes the effects of toroidal motions beyond the cos-
mological horizons are exponentially damped when the
angular velocity of matter is given. For flat universes,
this was first noticed by Schmid [58]. We shall see it occurs
also for accelerations. However, these dragging effects are
not damped when angular momenta are given as sources.
In [40] we give the physical explanation. Since Eqs. (5.9)
and (5.11) are elliptic equations, in both cases the inertial
influences of ‘‘distant matter’’ are expressed instanta-
neously.

We found toroidal perturbations to cause the rotation of
local inertial frames by the angular velocity (5.44). Do they
cause their acceleration? Since now only ~h0’ � 0 among
all ~h��, the only nonvanishing component of the accelera-
tion (2.20) is
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 �’ �
1

r2sin2�
�a~h0’�

�: (5.46)

Substituting for ~h0’ from Eqs. (5.33) and (5.36), and ex-
pressing the acceleration in the ‘‘background’’ frame, we
find

 ��’� � �r
X1
l�1

1

a
�a2!l�

�Yl0;�: (5.47)

The acceleration vanishes at the axis of rotation. More
interestingly, it vanishes everywhere in a static (Einstein)
universe if the matter rotates uniformly. Indeed, the angular
momentum density conservation law requires 	a5���
p��!���
� � 0, which implies _! � 0 and hence ��’� �
0 for time-independent � and a � constant. In the FRW
universes the acceleration (5.47) is nonvanishing, thus
resembling the acceleration of the local inertial frames
with respect to the static frames inside a collapsing, slowly
rotating shell where particles at rest with respect to infinity
experience the Euler acceleration, although the spacetime
inside the shell is flat [32]. For all three types of FRW
universes the solutions are of the form !l � gl�r�a�3�t�,
where gl�r� are explicitly given in terms of the integrals of
the special functions mentioned above and the sources
	�T0

’
l. Hence, the accelerations (5.47) are of the form

 ��’� � ��H=a
2�r

X1
l�1

gl�r�Yl0;�: (5.48)

As an illustration, for k � 0 and l � 1 perturbation we get

 ��’� � 2�H=a2�r sin�
�
J�<r�

r3 �
Z 1
r

dJ
dr0

r0�3dr0
�
; (5.49)

where J�<r� is the angular momentum inside r. With
angular velocity � considered as a source, ! shows the
exponential decline near the origin when the source is
beyond the horizon [41]. As a consequence of Eq. (5.47)
the acceleration behaves similarly.

2. Perturbations of potential type

In the example of toroidal perturbations, we had � ~T0
0 �

rk ~Vk � rk� ~Tk0 � rk ~hk0 � ~h00 � 0. As a second ex-
ample, consider briefly the case in which these quantities
may be nonvanishing but ~Vk and ~hk0 have a vanishing
transverse part so that ~hk0 � rkh for some scalar h, and
similarly for ~Vk � rkw. Physically, such perturbations
describe a change in the matter density and a curl-free
velocity field. No rotation of local inertial frames arises for
such perturbations—the vorticity vector (2.29) vanishes
for these ‘‘scalar perturbations.’’

In order to determine the acceleration, we can use the
gauge condition (5.1). It enables us to find ~h00 in terms of
_~h
n
n and P . Both ~hnn and _~h

n
n can be determined from (5.2) and

its time derivative. With � ~T0
0 given, the Green’s functions

(5.22), (5.23), and (5.24) yield _~h
n
n. In the simplest case of a

flat universe,

 

_~h nn � �
Z �a2� ~T0

0�
�

jx� x0j
d3x0: (5.50)

The scalar P can be obtained by solving either Eq. (5.8) or
Eq. (5.10). As with toroidal perturbations, when the angu-
lar momentum � ~T0

k is prescribed, P � rk ~hk0 will not be
suppressed at the origin if � ~T0

k occurs beyond a horizon. A
suppression takes place if the velocity, or the energy cur-
rent � ~Tk0, is prescribed, as it corresponds to solving
Eq. (5.10). In the flat universe, for example, Eq. (5.10)
reads

 r2P � 3a2

�
_a
a

�
�

P � �
3

2
a2�rl� ~Tl0; (5.51)

which is a Yukawa-type equation with the solution
[�2�t� � �3a2� _a=a��]

 P � �
3a2�
8�

Z
�rl� ~Tl0��x

0�
e��jx�x

0j

jx� x0j
: (5.52)

If we start from Eq. (5.8) with � ~T0
k given as a source, the

solutions can be written in terms of the Green’s functions
(5.22), (5.23), and (5.24). Taking @=@t of (5.8) and assum-
ing � _~T0

k given, the same Green’s functions will yield _P .
Since ~h0k � rkh, P � r2h, _P � r2 _h, we can find ~hk0

and _~hk0 by solving Laplace equations for h and _h with P
and _P given. The solutions are unique up to an additive
function of time which does not contribute to ~h0k. Knowing
_~hk0 and ~h00 �

2
3 _a�1�P � 1

2 a
_~h
n
n� from the gauge condition,

the acceleration (2.20) of the local inertial frames can be
determined in terms of the sources.

Alternatively, we can start from Eq. (5.4) to determine
directly ~h00 in terms of the matter perturbations � ~T0

0 and
� ~Tnn. Equation (5.4) for k � 0 becomes just a Yukawa-type
equation exactly in the form of Eq. (5.52). ~h00 exhibits an
exponential suppression near the origin if the source � ~T0

0,
� ~Tnn occurs beyond the cosmological horizon. The sup-
pression enters the formula (2.20) for the acceleration.

However, the term _~h0k will not be suppressed if the angular
momentum � ~T0

k is prescribed. If the energy current � ~Tk0 is

considered as a source of _~h0k, the total acceleration will be
exponentially suppressed. In both cases, however, the ac-
celeration is determined instantaneously.

D. The determination of local inertial frames

We described how the accelerations and rotations of the
local inertial frames can be determined explicitly in these
specific examples in order to illustrate the general frame-
work. Finally, let us discuss, within the Mach 1 gauge, a
question of the uniqueness of the solutions of the field
equations for general perturbations and of the resulting
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expressions for the acceleration and rotation of local iner-
tial frames. The homogeneous equation corresponding to
Eq. (5.3) for ~hk0 is identical to Eq. (4.23), the well-behaved
solutions of which were analyzed in detail between
Eqs. (4.23) and (4.33). They do not exist in H3; in E3

they describe the time-dependent linear combination of
translations, which can be eliminated by requiring ~hk0 to
decay at infinity. In S3, they correspond to the time-
dependent linear combinations of 10 conformal Killing
vectors. However, by imposing our integral gauge condi-
tions (4.57), we dispose of the four conformal Killing
vectors which are not Killing.

Therefore, the complete general solution of Eq. (5.3) has
for k � 1 the form

 

~h 0k � ~h0k�inh� �
X6

A�1

fA�t��
�A�
k ; (5.53)

where ~h0k�inh� is a solution of the inhomogeneous equation

(5.3) and fA�t� are arbitrary functions of time; ��A�k are 6
Killing vectors of S3 describing rotations and quasitrans-
lations (see Appendix C). Owing to our integral gauge
conditions, Eq. (5.2) admits a unique solution; P �
rk ~h0k is not affected by the Killing vectors in (5.53),
and, hence, the Mach 1 gauge condition (5.1) determines
a unique ~h00. If we start from Eq. (5.4) to determine ~h00

directly in terms of � ~T0
0 and � ~Tnn, we also arrive at a unique

solution because the homogeneous equation corresponding
to Eq. (5.4) coincides precisely with Eq. (4.38). Therefore,
with � ~T0

0, � ~Tnn, and angular momenta � ~T0
k given, the

accelerations and rotations of local inertial frames in
closed universes are determined by formulas (2.20) and
(2.31) only up to the freedom exhibited in Eq. (5.53). This
freedom corresponds precisely to changing the coordinate
system by the infinitesimal transformation in which �0 �

0, �i �
P6
A�1 FA�t��

�A�i. Then 4~h00 � 4~hnn � 4~hkl � 0
because �i is a linear combination of the Killing vectors.
The six spacelike Killing vectors generate motions which
preserve the symmetries of the space. However,

 4 ~h0k � �a _�k � �a
X6

A�1

_FA�t��
�A�
k ; (5.54)

which is equal to the additional term in Eq. (5.53) provided
that fA�t� � �a�t� _FA�t�. The transformations

 x0i � xi �
X6

A�1

FA�t��
�A�i (5.55)

with arbitrary coefficients FA�t� lead to mutually acceler-
ated frames. The accelerations have special forms when
regarded as functions in space. Putting xi � constant in
(5.55) we get d2x0i=dt2 �

P6
A�1

	FA�t��
�A�i where ��A�i are

specific functions of xi (cf. Appendix C). An example of
accelerations and rotations generated by this type of trans-

formation with one translational and one rotational Killing
vector is given in Eqs. (4.53) and (4.54) above.

Consider now for simplicity just one rotational Killing
vector and again the case of toroidal perturbations. The
arbitrariness exhibited by the additional terms in Eq. (5.53)
can then be seen distinctly. The homogeneous equation
corresponding to Eq. (5.43) for l � 1 with the angular
momentum given as a source is solved by ~!�0� � ~!�0��t�,
where ~!�0� is an arbitrary function of t. This implies
[cf. Eq. (5.36)]

 

~h 0’ � ~!�0�a
2sin2�sin2� � ~!�0��

�’�
’ ; (5.56)

where ��’�i � �0; 0; 0; 1� is the rotational Killing vector,
which is a special case of Eq. (5.54). The transformation
’0 � ’�

R
~!�0��t�dt [a special case of (5.55)] would

make the term (5.56) vanish. Since, however, in closed
universes such an arbitrary ‘‘integration constant’’ ~!�0��t�
cannot be eliminated by boundary conditions, all frames
with different ~!�0��t� are admitted. In this sense, only
relative rotations of the local inertial frames can be deter-
mined if the angular momentum is considered as a source
of their dragging.

In the case of general perturbations of the spherical
universes with the distributions of energy � ~T0

0 and angular
momenta � ~T0

k given, the freedom described by FA�t� in
Eq. (5.55) which preserves the symmetries of the space
cannot be eliminated by boundary conditions. In this sense,
only relative rotations and accelerations of the local iner-
tial frames can be determined. The perturbations ~h00 and
~h0i, which imply these rotations and accelerations, are
determined by the field equations and the Mach 1 gauge
conditions instantaneously from appropriate averages over
the distributions of � ~T0

0 and � ~T0
k. An explicit example is

the expression (5.26) with the source term P� � ~T0
0 and the

Green’s function given in S3 by Eq. (5.22) determining ~hnn
and thus ~h00. Other examples are the functions ~!l�t; r� in
Eq. (5.44).

This instantaneous determination of the local inertial
frames by such averages, up to global rotations and accel-
erations given by the symmetries of the space, is the crucial
feature exhibiting the validity of Mach’s principle in rela-
tivistic cosmology, at least in the first-order perturbation
theory. The ability to describe the same physical situation
using these differently rotating and accelerating frames is a
consequence of the dynamics having a higher degree of
symmetry than the realization of the world in terms of the
positions of actual bodies. The frame in which we choose
to describe the motions is not of importance; what matters
is the relative motions of the bodies, not that of the frame
relative to the bodies.

Finally, consider now energy currents � ~Tk0 together with
� ~T0

0 as the sources. In case of the perfect-fluid perturba-
tions we thus take the fluid velocity ~Vk and �� as the
sources. When velocities and accelerations of ‘‘heavenly
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bodies’’ are given, the rotations and accelerations of the
local inertial frames are determined uniquely in spherical
universes. As we have shown below Eq. (4.38), the homo-
geneous equation corresponding to Eq. (5.10) for P �
rk ~hk0 admits only the trivial solution P � 0. Hence, the
inhomogeneous equation (5.10) determines P uniquely
when rk� ~Tk0 is given. The same is true for (5.4) for ~h00

because the homogeneous equation is the same. To deter-
mine perturbation ~h00 we need to know both �� and �p

(resp. � ~Tnn). The gauge condition (5.1) then implies _~h
n
n.

Alternatively, we can solve (5.2) for ~hnn and _~h
n
n by giving

�� and � _�, and extract ~h00 from the gauge condition.

Solutions for ~hnn, _~h
n
n are unique due to our integral gauge

conditions, so a unique ~h00 can also be found. Finally, the
homogeneous part of (5.11) for k � 1 with sources � ~Tk0
and P given reads

 r2 ~hk0 � 2
�

1� 2a2

�
_a
a

�
�
�

~hk0 � 0: (5.57)

This admits only ~hk0 � 0: multiply by ~hk0 and integrate by
parts over closed space,

 �
Z
D
fijfklri ~hk0rj ~hl0d�3�V � 2A�t�

Z
D
fkl ~hk0

~hl0d�3�V;

(5.58)

where A�t� � 1� 2a2� _a=a�� � a2	12�� ��� �p� � _H
.
Since the integrands on both sides are spatial scalars, we
can calculate them at each point by using fij �
diag�1; 1; 1�. In this way we find that both are non-negative
so that the only way to satisfy (5.58) for A�t�> 0 is by
putting ~hk0 � 0. For standard models _H < 0 and indeed
A�t�> 0. In the example of toroidal perturbations, the
uniqueness of the solutions is reflected by the fact that
Eq. (5.43) has unique solutions for given angular velocity
~�l of matter. A purely time-dependent ~!�0�l�t� does not
solve (5.43) when just ~�l is prescribed and not the whole
r.h.s. ~�l � ~!l.

We thus arrive at another important aspect of Mach’s
principle in relativistic cosmology: if the velocities, density
and pressure perturbations of cosmic fluid are given, the
(linearized) field equations in a closed universe provide a
unique determination of the rotations and accelerations of
the local inertial frames.

VI. CONCLUDING REMARKS

Although this paper also includes items which have a
review character, primarily it contains new developments:
the analysis of accelerations and rotations of local inertial
frames and of gyroscopes in perturbed FRW universes; the
general forms of the perturbed Einstein field equations and
Bianchi identities are formulated without gauge condi-
tions, harmonics, or splittings; the motivation for and the
analysis of the instantaneous, Machian-based gauges, in-

cluding the integral gauge conditions and their relation to
Traschen’s integral constraints; and the manifestation of
Mach’s ideas in the framework of general linear cosmo-
logical perturbations of FRW universes. In particular, those
who wish to study cosmological perturbation problems in
position space, as advocated recently in Ref. [36], may find
here useful relations not given before. Various specific
perturbation problems can be attacked by applying the
results presented here. We already used the formalism to
investigate rotational and toroidal vector perturbations of
FRW universes [40,41], as mentioned and applied in
Sec. V; there, we also discussed vector perturbations of
potential type.

For given distributions of energy-momentum and angu-
lar momentum of matter sources, the rotations and accel-
erations of local inertial frames are uniquely given in the
Machian gauges in open universes under suitable boundary
conditions, whereas in closed universes they are deter-
mined up to motions generated by the Killing vectors,
i.e., by symmetries of the background. They are deter-
mined uniquely also in closed universes if velocities, den-
sity, and pressure perturbations of cosmic fluid are given.
As a consequence of the constraint equations and the
choice of gauges which imply suitable slicing of perturbed
universes, these inertial properties are determined instanta-
neously. In this sense Mach’s principle is embodied in the
cosmological linear perturbation theory.

The dragging of inertial frames is an essentially global
effect which, at least in linear perturbation theory, has to be
seen as an instantaneous phenomenon. This was first dem-
onstrated by Lindblom and Brill [60], who investigated
rotational dragging by a slowly rotating, massive spherical
shell freely falling under its own gravity. We reconsidered
the problem and explored its electromagnetic analogue
[32]. The need to introduce a suitable coordinate frame
(the ‘‘gauge’’) to describe the dragging is well illustrated
inside the shell. Spacetime is flat there; no local geomet-
rical (gauge invariant) perturbations occur. The time-
dependent rotation of inertial frames is exhibited by con-
sidering the congruence of static observers, i.e. those who
are at rest with respect to static observers at infinity. They
play the role analogous to that of the cosmological observ-
ers in the present paper. They experience acceleration, and
the congruence of their worldlines twists. Both quantities,
characterizing their congruence, can be expressed in a
covariant manner as in formulas (2.7) and (2.8) for cosmo-
logical observers. Also, massive, slowly rotating shells
immersed in FRW universes were analyzed [61,62], in-
cluding their observational consequences on the appear-
ance of sources behind the shells [11,62]. Slowly rotating
heavy shells, as well as the perturbations of FRW uni-
verses, involve linear perturbations of fully relativistic
(nonlinear) backgrounds. In [33] we considered strong
rectilinear dragging using exact conformastatic solutions
of the Einstein-Maxwell equations with charged dust.
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A thorough nonlinear study of Mach’s ideas within the
framework of general relativity lies in the future. Quoting
from the same source by which we started (see [1], p. 546),
‘‘Much must still be done to spell out the physics behind
these equations [the initial-value equations] and to see this
physics in action.’’
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APPENDIX A: PERTURBED FIELD EQUATIONS
WITH COSMIC TIME t

We write the perturbed FRW metric in the form (1.1)

 ds2 � � �g�� � h���dx�dx�

� dt2 � a2�t�fkldx
kdxl � h��dx

�dx�: (A1)

The background Christoffel symbols are

 

�� m
0l � H�ml ;

��0
kl � �H �gkl;

��mkl � fmn�@
�kfl�n �

1
2@nfkl�;

(A2)

hereafter the symmetrization brackets ( ) include the factor
1
2 , as do the antisymmetrization ones [ ]; H � _a=a is the
Hubble ‘‘constant.’’ The nonvanishing components of the
background Einstein equations, �G�

� � �R�� �
1
2�

�
�

�R �
� �T�� �����, read

 

�G 0
0 � 3

�
k

a2 �H
2

�
� � ����;

�Gl
k � �lk

�
k

a2 � 3H2 � 2 _H
�
� ��� �p����lk;

(A3)

with � � 8�G=c4, k � 0;�1 denoting the curvature in-
dex, and � the cosmological constant; the background
energy-momentum tensor �T�� of perfect fluid is given by
(2.32). The indices of h�� are raised or lowered with �g��

and �g��; thus h0
0 � h00, hk0 � �gklh0l � �

1
a2 fklh0l, etc. No

spatial index is ever displaced with fkl alone. We introduce
the covariant derivative,

 rkhm0 � @khm0 �
��mklh

l
0: (A4)

The background curvature tensor of spatial sections t �
constant is �Rr

ksl � k��rsfkl � �rlfks� and the Ricci 3-

tensor �Rkl � 2kfkl. Useful identities are (rkl � rkrl,
rk � fklrl, r2 � fklrkrl):

 �rkl �rlk�Vl � �2kfklVl �
2k

a2
�gklVl �

2k

a2 Vk; (A5)

 rkr
2Vk � r2�rkVk� � 2k�rkVk�; (A6)

 �rkl �rlk�h
l
0 � 2

k

a2 hk0; (A7)

 �rkl �rlk�hnm � hrm �Rn
rkl � h

n
r

�Rr
mkl

� 2k��n
	kh

r
l
 � h

n
	k�

r
l
�frm: (A8)

The perturbed Einstein equations, �G�
� � ��T��, are ex-

pressed in terms of h0
0, h0

k, and hlk. In this ‘‘mixed’’ form �
does not appear. The left-hand sides, �G�

�, read as follows:
 

�G0
0 � �

1

2
rrs� �g

rnhsn � �grshnn� �
k

a2 h
n
n

� 2H
�
3

2
Hh0

0 �
1

2
_hnn �rnh

n
0

�
; (A9)

 �G0
k �

1

2
rl� _hlk � �

l
k

_hnn� � �grs�rkrh
0
s �rr�kh

0
s��

�Hrkh0
0; (A10)

 �Gk
0 � �gkl

�
�G0

l � 2
�
k

a2 �
_H
�
h0
l

�
; (A11)

 

�Gm
k � �

1

2
� 	hmk � �

m
k

	hnn� �
3

2
H� _hmk � �

m
k

_hnn� �
k

a2 h
m
k

�
1

2
rkl� �glnhmn � �glmhnn� �

1

2
�grsrrs�hmk � �

m
k h

n
n�

�
1

2
rrs� �g

mrhsk � �
m
k h

rs� � �gml�r�k _h0
l� �Hr�kh

0
l��

� �mk �grs�rr _h0
s �Hrrh0

s� �
1

2
� �gmlrlkh

0
0

� �mk �grsrrsh
0
0� � �

m
k 	H _h0

0 � �2 _H� 3H2�h0
0
:

(A12)

If �T�� is a perfect-fluid perturbation then the right-hand
side is given by [see Eqs. (2.35)]
 

�T0
0 � ��;

�T0
k � � ��� �p��Vk � h

0
k� �

2

�

�
k

a2 �
_H
�
�Vk � h

0
k�;

�Tk0 � � ��� �p�Vk �
2

�

�
k

a2 �
_H
�
Vk;

�Tlk � ��
l
k�p:

(A13)

In the last equations we used the relation
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 � ��� �p� �
2

�

�
k

a2 �
_H
�
; (A14)

which follows from the background Einstein equations
(A3) for all ��, �p, k, �.

The relations between various h��’s and ~h��’s used in
the main text are

 h00 � ~h00; h0l � a~h0l; hkl � a2 ~hkl;

h0
0 �

~h00; hl0 � �a
�1 ~hl0; h0

l � a~h0l;

hlk � �~hlk; h00 � ~h00;

h0l � �a�1 ~hl0; hkl � a�2 ~hkl:

(A15)

Equations (A4) and (A6) hold also for ~hm0 and ~Vk, but
Eqs. (A5) and (A7) take the form

 �rkl �rlk� ~V
l � �2kfkl ~Vl � �2k ~Vk; (A16)

 �rkl �rlk�~h
l
0 � �2kfkl ~h

l
0 � �2k~h0k; (A17)

and Eq. (A8) becomes

 �rkl �rlk�~h
n
m � 2k��n

	k
~hl
m � ~hn	kfl
m�: (A18)

APPENDIX B: GAUGE TRANSFORMATIONS OF
PERTURBATIONS

As a consequence of infinitesimal transformations

 x0 ! x00 � x0 � �0�x�; (B1)

 xi ! xi
0
� xi � �i�x�; (B2)

we find the following changes of various metric compo-
nents under the change of gauge (notice that �Q � Q�
Q0 for any Q):

 �h00 � 2 _�0 � �~h00; (B3)

 �h0l � @l�
0 � a2 _�l � a�~h0l; ��l � flk�

k�; (B4)

 �hkl � �2a2

�
r�k�l� �

_a
a
fkl�

0

�
� a2�~hkl; (B5)

 �hnn � 2a2

�
rn�n � 3

_a
a
�0

�
� ��~hnn: (B6)

Similarly, the perturbations of the energy-momentum ten-
sor components change under the transformations (B1) and
(B2) as follows:

 ��T0
0 � _���0 � �� ~T0

0; (B7)

 ��T0
k � � ��� �p�@k�0 � a�� ~T0

k; (B8)

 ��Tk0 � �� ��� �p� _�k � a�1�� ~Tk0; (B9)

 ��Tlk � � _�p�0�lk � �� ~Tlk; (B10)

where we substituted from Eq. (2.32) for the background
values of �T��. In particular, in the fluid case

 ��� � _���0; ��p � _�p�0; (B11)

 ��U0 � � _�0 � ���U0; ��Um � � _�m;

��Um � @m�
0;

(B12)

 �Vm � � _�m � a�1� ~Vm; �Vm � a2 _�m � �a� ~Vm:

(B13)

Let us emphasize that the above results for the changes of
both h��’s and ~h��’s are expressed in x� � �t; xi� coordi-
nates. In ~x� � �	; xi� coordinates we find, for example,
 

~h000 �
~h00 � �~h00 � ~h00 � 2 _�0 � ~h00 � 2

d�a~�0�

d	
a�1

� ~h00 � 2H ~�0 � 2
d~�0

d	
: (B14)

APPENDIX C: KILLING AND CONFORMAL
KILLING VECTORS ON THE FRW

BACKGROUNDS

Killing vectors are also conformal Killing vectors but
here we call ‘‘conformal Killing vectors’’—sometimes
more explicitly ‘‘proper’’ conformal Killing vectors—
those which are not Killing vectors. All these vectors on
the FRW backgrounds are well known. Since, however, we
did not find all of them listed in a transparent manner in one
place, we give them here. Their relation to the scalar and
vector harmonics will also be elucidated. The 3-
dimensional spatial vectors are frequently used in the
main text. There exists extensive literature on the harmon-
ics in S3 and H3; see, e.g., [57,63].

1. Killing and conformal Killing 3-vectors inE3�k � 0�,
S3�k � 1�, and H3�k � �1�

The standard Killing equation

 rk�i �ri�k � 0 (C1)

in the FRW 3-backgrounds with curvature tensor (A8) can
be written in an equivalent form,

 r2�i � 2k�i � 0: (C2)

The Killing vectors have their simplest form in the
coordinates xm in which the metric is (see e.g. [3], Ch. 13),

 ds2 � dt2 � a2�t�
�
�kl �

kxkxl

1� kr2

�
dxkdxl; (C3)

where
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 r2 � �x1�2 � �x2�2 � �x3�2: (C4)

The 3 (quasi)translational Killing vectors are given by

 ��J�i �
����������������
1� kr2

p
�iJ; J � 1; 2; 3; (C5)

and the 3 rotational Killing vectors by

 ��J�i � "iJlx
l: (C6)

Here " is the usual permutation symbol, "123 � �1, with
indices moved by �ik, resp. �ik.

The 4 conformal Killing vectors are also simple in the xi

coordinates:

  i �
����������������
1� kr2

p
xi; (C7)

  �J�i � �iJ � kxixJ; k � �1; (C8)

  �J�i � 1
2�

iJr2 � xixJ; k � 0: (C9)

The same Killing and conformal Killing vectors in
hyperspherical coordinates are more complicated but are
directly connected with better known forms of (hyper)-
spherical harmonics. Here we denote r � sin� (k � �1),
r � � (k � 0), r � sinh� (k � �1), and, correspondingly,
r0 � cos�, 1, cosh�. As in the main text, we denote the six
Killing vectors by ��A�i, A � 1; . . . ; 6, and the four confor-
mal Killing vectors by  �A�i, A � 1; . . . ; 4. The 3 (quasi)-
translational Killing vectors read
 

��1�i � �sin� cos’; r0r�1 cos� cos’;�r0r�1 sin’= sin��;

��2�i � �sin� sin’; r0r�1 cos� sin’; r0r�1 cos’= sin��;

��3�i � �cos�;�r0r�1 sin�; 0�: (C10)

The 3 rotational Killing vectors (C6) turn into the same
forms independent of k:

 ��4�i � �0;� sin’;� cot� cos’�;

��5�i � �0; cos’;� cot� sin’�;

��6�i � �0; 0; 1�:

(C11)

The ‘‘dilatation’’ conformal Killing vector (C7) is, for all k,
simply given by

  �1�i � �r; 0; 0�; (C12)

whereas the other three conformal Killing vectors read, for
k � �1,
 

 �2�i � �r0 sin� cos’; r�1 cos� cos’;�r�1 sin’= sin��;

 �3�i � �r0 sin� sin’; r�1 cos� sin’; r�1 cos’= sin��;

 �4�i � �r0 sin�;�r�1 sin�; 0�; (C13)

and for k � 0,

 

 �2�i � 1
2 r

2�� sin� cos’; r�1 cos� cos’;�r�1 sin’= sin��;

 �3�i � 1
2 r

2�� sin� sin’; r�1 cos� sin’; r�1 cos’= sin��;

 �4�i � 1
2 r

2�� cos�;�r�1 sin�; 0�: (C14)

2. Scalar harmonics in S3 and H3

In S3, the scalar harmonics QLlm with L � l � 0, L, l
integers, m � �l; . . . ;�l, satisfy

 r2QLlm � L�L� 2�QLlm � 0: (C15)

In the normalized form they read

 QLlm �
��������
NLl

p 1����������
sin�
p P��l��1=2��

L��1=2� �cos��Ylm��;’�; (C16)

where NLl �
�L�1��L�l�1�!

�L�l�! , P��� are Legendre functions of
the first kind, and Ylm are the usual spherical harmonics. In
H3, the harmonics are Q�lm, where � � 0 is continuous
and must be real for square integrability; they satisfy

 r2Q�lm � ��2 � 1�Q�lm � 0: (C17)

The normalized form is

 Q�lm �
��������
N�l

p 1������������
sinh�
p P��l��1=2��

��1=2��i��cosh��Ylm��;’�;

N�l � �2��2 � 1���2 � 22� . . . ��2 � l2�:

(C18)

It can easily be seen that, for L � 1, l � 0,m � 0 and L �
1, l � 1,m � �1, 0,�1, the expression (C16) leads, up to
multiplicative constants, to the four functions given in
Eq. (4.26), whereas nonintegrable harmonics (C18) for
� � 2i, l � 0, m � 0 and � � 2i, l � 1, m � �1, 0, �1
imply Eq. (4.27). Their gradients (4.25) yield the covariant
components of the conformal Killing vectors (C12) and
(C13).

Let us remark that for k � �1 the translational Killing
vectors are not gradients of scalars (as they are for k � 0).
They are proportional to the vector spherical harmonics
with even parity and L � 1, l � 1 (for k � �1) and � �
2i, l � 1 (for k � �1). The rotational Killing vectors are
proportional to vector harmonics with odd parity and L �
1, l � 1, respectively, � � 2i, l � 1.

APPENDIX D: FIELD EQUATIONS AND
SOLUTIONS IN OTHER GAUGES

1. Mach 2 gauge

The gauge conditions T k � rl ~h
l
Tk � 0 and r2 ~hnn �

3k~hnn � 0 [cf. (4.3) and (4.9)] simplify the field equation
(3.10) into the relation

 � 2HK � a2�� ~T0
0; (D1)

from which K can be expressed andr2K which is needed
in the following step can easily be calculated. Applyingrk

to Eq. (3.11) we obtain the equation for P � rl ~h
l
0,
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 r2P � 3kP �
3

2
a2�

�
rk� ~T0

k �
1

3H
r2� ~T0

0

�
: (D2)

Solving for P and substituting back into Eq. (3.10) we get
the elliptic equation for ~h0k:

 r2 ~h0k � 2k~h0k � 2a2�
�
� ~T0

k �
1

3H
rk� ~T0

0

�
�

1

3
rkP :

(D3)

From Eq. (3.12) ~h00 can be determined. K can be ex-
pressed in terms of � ~T0

0 from relation (D1), and the last
term on the r.h.s. involving the time derivative
�a2H�1� ~T0

0�
0 can be calculated by employing the per-

turbed Bianchi identities, Eq. (3.22). Equation (3.12) be-
comes

 r2 ~h00 � 3k~h00 �
a2�

H

�
rk� ~T0

k �
k

H
� ~T0

0

�
: (D4)

From the elliptic equations (D2)–(D4) the metric pertur-
bations ~h00, ~h0k follow instantaneously if the sources � ~T0

0
and � ~T0

k (resp. � ~Tk0) are given.

2. Mach 3 gauge

Together with T k � rl ~h
l
Tk � 0 it is now assumed that

r2P � 3kP � 0, or simply P � rl ~h
l
0 � 0. Applying rk

to Eq. (3.11), one gets

 r2K � 3
2a

2�rk� ~T0
k: (D5)

With K known we obtain the elliptic equation for ~hnn from
Eq. (3.10):

 r2 ~hnn � 3k~hnn � 3a2�� ~T0
0 � 6HK: (D6)

Next, we make the time derivative of (D5) and substitute
forrk� ~T00

k from the perturbed Bianchi identities. Applying
then r2 to Eq. (3.12) we arrive at the elliptic equation for
~h00:

 

r2�r2 ~h00 � 3k~h00� � a2�	r2�� ~T0
0 � � ~Tnn� � 3Hrk� ~T0

k

� 3rkrm� ~Tmk 
: (D7)

There is another simple elliptic equation satisfied by the
quantity � � ~h00 �

1
3

~hnn. Taking r2 of Eq. (D6) and re-
garding Eq. (D5), we combine it with Eq. (D7) to obtain

 r2�r2�� 3k�� � 3a2��rkrl� ~Tlk �
1
3r

2� ~Tnn�: (D8)

The quantity � appears directly also in Eq. (3.13) for the
spatial components � ~Gl

Tk. Applyingrkrl on this equation,
one arrives again at Eq. (D8) above.

With P known (P � 0 in the simplest choice of the
Mach 3* gauge) and K determined from Eq. (D5), the

constraint equation (3.11) becomes a simple elliptic equa-
tion for ~hk0:

 r2 ~hk0 � 2k~hk0 � 2a2�� ~T0
k �

1
3rkP �

4
3rkK: (D9)

The equations for ~h00, ~h0k in both the Mach 2 and 3
gauges are elliptic. Their form is very similar to the equa-
tions in the Mach 1 gauge. We can solve them by the same
methods.

3. Generalized Lorenz-de Donder gauge

We start from the gauge conditions (4.15), expressed
explicitly in Eqs. (4.16) and (4.17). Now, in general, T k �

rl ~h
l
Tk � 0, and also P � rl ~h

l
0 and K are nonvanishing.

Nevertheless, the field equations (3.10), (3.11), (3.12), and
(3.13) can be rewritten into a quite telling form. Denoting
~h00 � ’, 1

3
~hnn �  , P � rl ~h

l
0, we arrive at the following

system:

 r2’� ’00 � 2Ha3

�
’

a3

�
0

� 6a
�
H

a

�
0

 � 4HP

� a2��� ~T0
0 � � ~Tnn�; (D10)

 

r2 �  00 � 4k � 2Ha3

�
 

a3

�
0

� 2a
�
H

a

�
0

’�
4

3
HP

� a2�
�
� ~T0

0 �
1

3
� ~Tnn

�
; (D11)

 

r2 ~h0k � ~h000k � 2k~h0k � 4�H ~h0k�
0 �Hrk�’� 3 �

� 2a2�� ~T0
k; (D12)

 r2P � P 00 � 4kP � 4�HP �0 �Hr2�’� 3 �

� 2a2�rk� ~T0
k; (D13)

 

�r2 ~hlTk � ~hl00Tk � 2k~hlTk � 2H ~hl0Tk

� 4H �flmr�m ~hk�0 �
1
3�

l
krn

~hn0� � 2a2��� ~Tlk �
1
3�

l
k� ~Tnn�:

(D14)

All equations now have the character of hyperbolic gener-
alized wave equations. The metric perturbations are not
determined instantaneously in terms of the sources � ~T�� .
Although the main parts of the equations are given by the
standard wave operators r2 � d2=d	2, there are terms
involving lower derivatives of the metric perturbations
which make the system coupled. These equations may
turn out to be useful in cosmology as the standard har-
monic gauge is in the post-Minkowskian approximations to
general relativity.
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