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A Bohr-Sommerfeld equation is derived for the highly damped quasinormal mode frequencies !�n�
1� of rotating black holes. It may be written as 2

R
C�pr � ip0�dr � �n� 1=2�h, where pr is the canonical

momentum conjugate to the radial coordinate r along a null geodesic of energy @! and angular
momentum @m, p0 � O�!0�, and the contour C connects two complex turning points of pr. The solutions
are !�n� � �m!̂� i��̂� n�̂�, where f!̂; �̂g> 0 are functions of the black-hole parameters alone. Some
physical implications are discussed.

DOI: 10.1103/PhysRevD.76.061501 PACS numbers: 04.70.Bw, 03.65.Pm, 04.30.�w, 04.70.Dy

Quantizing black holes may become an important step
towards quantum gravity, analogous to the role played by
atomic models in the development of quantum mechanics.
Thus, the ‘‘no-hair’’ conjecture [1] suggests that in a
quantum theory of gravity, a black hole may be described
by few quantum numbers related to its mass M, electric
charge Q, and angular momentum J. The existence of
classically reversible changes in the state of a nonextremal
black hole [2] suggests that its area A is an adiabatic
invariant, possibly corresponding to a quantum entity
with a discrete spectrum [3].

Classical black holes, like most systems with radiative
boundary conditions, are characterized by a discrete set of
complex ringing frequencies !�n� � !R � i!I known as
quasinormal modes (QNMs) [4]. In the spirit of Bohr’s
correspondence principle, the classical QNM spectrum of a
black hole should be reproduced as resonances in a quan-
tum theory of gravity. QNM spectroscopy may thus pro-
vide valuable clues towards such a theory. In particular, the
asymptotically damped frequency ~!R � !R�n! 1�,
which for a spherically symmetric black hole depends
only on the black-hole parameters [5], may have a simple
counterpart in quantum gravity [6]. Indeed, for a
Schwarzschild black hole ~!R � �8�M�

�1 ln3, such that
the change in black-hole entropy associated with �M �
@ ~!R, �S � ��4�M2=@� � ln3, admits a (triply) degener-
ate quantum-state interpretation [6,7]. We use geometrized
units where G � c � kB � 1.

Although ~! was analytically derived for spherically
symmetric black holes [5,7], little is known about the
generic and more complicated case of rotating black holes.
Contradicting results for ~! have appeared in the literature,
although numerical convergence has recently been re-
ported [8]. An analytical solution is essential in order to
test and physically interpret these results.

We analytically derive ~! for rotating black holes in a
method similar to the spherical black-hole analysis of [5],
by analytically continuing the relevant solution of
Teukolsky’s radial equation [9] to the complex plane, and
matching the monodromy of the wave function along two
different contours. Our analytical results confirm and gen-
eralize the numerical results of [8], as well as admit a
physical interpretation. In this Rapid Communication we
outline the derivation and present the main results, defer-
ring a more elaborate description of the analysis to a future,
detailed paper.

I. TEUKOLSKY’S EQUATION

Linear, massless field perturbations of a neutral, rotating
black hole are described by Teukolsky’s equation. For a
scalar field, this equation can be generalized to accommo-
date electrically charged black holes [10]; in what follows,
Q � 0 is understood to apply only to such fields. The wave
function is separated into two ordinary differential equa-
tions using  �x� � ei�m��!t�Slm�cos��Rlm�r�, where x �
�t; r; �; �� are Boyer-Lindquist coordinates. This yields
radial and angular equations coupled by a separation con-
stant Alm, where Alm�!I ! �1� � iA1a!� �A0 �
m2� �O�j!j�1�, with A1 2 R [8,11]. The radial equation
then becomes

 

�
@2

@r2 �
q0�r�!

2 � q1�r�!� q2�r�

�2

�
~Rlm � 0; (1)

where ~Rlm � ��s�1�=2Rlm, � � r2 � 2Mr� a2 �Q2,
a � J=M, and we have defined

 q0 � �r2 � a2�2 � a2�; (2)

 

q1 � �2am�2Mr�Q2� � iaA1�

� 2is�r���Q2� �M�r2 � a2�	; (3)

and
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 q2 � �m
2��� a2� � ��s� A0� �M

2 � a2 �Q2

� s�M� r��2iam� s�M� r�	: (4)

The spin-weight parameter s specifies the equation to
gravitational (s � �2), electromagnetic (s � �1), scalar
(s � 0), or two-component neutrino (s � �1=2) fields.
For physical boundary conditions of purely outgoing
waves at both spatial infinity and the event horizon (i.e.
crossing the horizon into the black hole), Eq. (1) admits
solutions only for a discrete set of QNM frequencies !,
where !I < 0 (time decay) diverges as n! 1.

II. ANALYSIS

By defining z �
R
r V�r0�dr0, with V � ��1�q0 �

!�1q1�
1=2, Eq. (1) becomes

 

�
�
@2

@z2 � V1 �!2

�
R̂ � 0; (5)

where R̂ � V1=2 ~R and V1 � V00=�2V3� � 3�V0�2=�4V4� �
q2=�V��2. A nonconventional tortoise coordinate z was
defined such that the effective potential V1�O�j!j

0�.
The boundary conditions at the horizon become R̂�r!
r��
exp��i!z�/ �r�r��

�i!�� , where

 !�� � !Res
r!r�
�V� � ��!�m�� �

is
2
�O�j!j�1�: (6)

Here, � � a=�r2
� � a

2� is the angular velocity of the event
horizon, � � @=�4�T� � �r2

� � a
2�=�r� � r��, T is the

Bekenstein-Hawking temperature, r� � M� �M2 �

a2 �Q2�1=2 are the outer and inner horizon radii, and the
tilde in ~! is omitted unless necessary (henceforth). R̂�r ’
r�� is multivalued, such that a clockwise rotation around
r� multiplies R̂ by a factor �1 � exp��2�!���.

Let r1 and r2 � r�1 be the two complex conjugate roots
of q0�r�, lying in the fourth and in the first quadrants,
respectively. Denote t1 and t2 as the turning points of V
[defined by V�r � ti� � 0] which lie near (a factor
j!j�1

away from) r1 and r2, respectively (see Fig. 1). The mo-
nodromy �2 of R̂ along a clockwise contour C, which
passes through t1 and t2 and encloses r�, is used to
determine ! by demanding �1 � �2, as in [5]. A reader
uninterested in details of the derivation may skip directly to
the result, Eq. (8).

Near the turning points, �z� zi� / �r� ti�3=2, where
zi � z�ti�. Therefore three anti-Stokes lines, defined by
<�i!z� � 0, emanate from ti. Two anti-Stokes lines con-
nect t1 to t2; one (denoted l2) crosses the real axis between
r� and r�, while the other crosses it at r > r�. The third
anti-Stokes line (l1) emanating from t1 extends to P1,
where jP1j ! 1 and arg�P1� � ��=2. A similar line
(l3) runs from t2 to P2, with jP2j ! 1 and arg�P2� �
��=2. A Stokes line, defined by =�i!z� � 0, emanates
between every two anti-Stokes lines of ti. Let C be the
closed, clockwise contour running from P1 to P2 along the

anti-Stokes lines l1, l2, and l3, and closing back on P1

through the large semicircle l1, where jrj ! 1 and
��=2< arg�r�<�=2. The turning points t1 and t2 are
excluded fromC by partially rotating around them counter-
clockwise. Figure 1 illustrates these features in the r-plane.

Along anti-Stokes lines, the WKB approximation
R̂�z; z0� ’ c� exp��i!�z� z0�	 � c� exp��i!�z� z0�	
holds. Off the lines, this may also be written as cdfd �
csfs, where fd is exponentially large (dominant) and fs is
exponentially small (subdominant). For !R < 0, the
boundary conditions at spatial infinity can be analytically
continued to P1 [5] such that R̂�P1� 
 exp��i!z�, i.e.
fc�; c�; z0g � f1; 0; z1g up to a multiplicative factor. This
remains invariant along l1 till the vicinity of t1, so we
denote R̂�l1� � f1; 0; z1g. When an anti-Stokes line is
crossed, the dominant and subdominant parts exchange
roles. When a Stokes line is crossed while circling a regular
turning point, cdfd � csfs becomes cdfd � �cs � icd�fd,
where the positive (negative) sign corresponds to a coun-
terclockwise (clockwise) rotation. This so-called Stokes
phenomenon [12] implies that after rotating around t1
from l1 to l2, thus crossing two Stokes lines and the anti-
Stokes line between them, R̂�l2� � f0; i; z1g �
f0; i exp��i!��; z2g, where

 � � z2 � z1 �
Z
l2
Vdr: (7)

Similarly, after rotating from l2 to l3, R̂�l3� �
f� exp��2i!��; 0; z1g. Finally, along l1 the coefficient
of the dominant part of the solution c� remains invariant
till P1. In addition to the above changes in c�, it accumu-
lates a phase e�2�!�� due to the (only) singularity at r�
enclosed by C. Thus, the total phase accumulated by R̂
along C is �2 � � exp��2i!�� 2�!���. For !R > 0,

FIG. 1 (color online). Illustration of anti-Stokes (solid) lines
and Stokes (dashed) lines emanating from the turning points t1
and t2 (circles) in the complex r-plane, for a � 0:3, Q � 0 in the
highly damped limit. The inner and outer horizon radii (dia-
monds) and components of the contour C are also shown.
Arrows along anti-Stokes lines denote the direction of increasing
=z.
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the boundary conditions at spatial infinity are continued to
P2 and the two contours are chosen counterclockwise, such
that the resulting equation �1 � �2 is unchanged.

The constraint �1 � �2 finally yields the highly
damped QNM equation [13]

 e�2�!�� � �e�2i!��2�!�� : (8)

Explicitly, to order O�j!j�1� this may be written as

 4���!�m�� � 2�is � 2i!
Z
Ct;i
Vdr� �i�2n� 1�;

(9)

or in a more compact form as

 2!
Z
Ct;o
Vdr � 2�

�
n�

1

2

�
; (10)

where n 2 Z. Here, Ct;i (Ct;o) is a complex-plane contour
running from t1 to t2, crossing the real axis in (out) of the
event horizon, at some point r� < r< r� (r > r�).

Before solving for ~!, note that in the highly damped
limit the real and the imaginary contributions to the inte-
grals of Eqs. (7)–(10) are easily separated. For example,
the real part of Eq. (9) may be written in the form [14]

 4���!R �m�� � <
�

2i
Z
Ct;i
!VRdr

�
; (11)

where the complex potential VR is given by

 �!VR�2 �
q0!

2 � 2am�2Mr�Q2�!�m2��� a2�

�2 :

(12)

The last term ( / !0, taken from q2) was added to VR for
future use and has no effect in the highly damped limit. An
equation analogous to Eq. (11) is found for the imaginary
part 4��!I � 2�s.

III. QNM FREQUENCIES

In order to obtain a closed-form expression for !, ex-
pand 2i�� 4��� � �0 � �m�m � is�s � iA1�A�!�1 �
O�j!j�2�, where

 �j � 2i
Z
Cr;o

Vjdr; (13)

with V0 � q1=2
0 ��1, Vm � �a�2Mr�Q

2���1q�1=2
0 ,

Vs � �r���Q
2� �M�r2 � a2�	��1q�1=2

0 , and VA �
�q�1=2

0 a=2. The integration contour Cr;o runs from r1 to
r2, crossing the real axis outside the event horizon. Since
r2 � r�1, f�0; �s; �A; �mg are all real. Analytic expressions
for these �j functions are readily found in terms of elliptic
integrals.

With the above definitions we finally obtain

 ! � �m!̂� i��̂� n�̂�; (14)

where !̂ � �m=�0, �̂ � 2�=�0, and �̂ � �s�s � A1�A �
��=�0. As shown in Figs. 2 and 3, these analytic results
agree with the numerical calculations of [8].

Equation (14) yields one branch of solutions !m�n� in
the asymptotic limit. Interestingly, in the low-n regime
(and in spherically symmetric black holes) two branches
of solutions are identified, for given field and black-hole
parameters [15].

The asymptotic QNMs are not continuous at a � 0 [16].
For Q � 0, !̂�a! 0� / a1=3 ! 0, whereas !R�a � 0� �
�8�M��1 ln3. Such discontinuous behavior sometimes oc-
curs in the Schwarzschild limit, for example, in the inner
structure of the black hole [17]. Note that the level spacing
�̂ does continuously asymptote to the Schwarzschild result
�! � 2�T=@ [7] as fa;Qg ! 0.

IV. DISCUSSION

We have analytically studied the highly damped QNM
frequencies ! of a rotating black hole. A Bohr-
Sommerfeld-like equation for ! was derived [Eqs. (9)
and (10)], analytically solved [Eq. (14)], and shown to
agree and generalize previous numerical results [8]
(Figs. 2 and 3).
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FIG. 3. Level spacing j�!�a�j � �̂ for Q � 0 according to
Eq. (14) (line) and the numerical fit in [8] (circles).
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FIG. 2. The real part of the highly damped QNM frequency
!̂�a� � ~!R�a;m � �1� for Q � 0, according to Eq. (14) (line)
and according to the numerical results of [8] (circles).
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It is instructive to quantize the linear field perturbations
described by the QNM [18]. A quantum of complex energy
@!�n� and angular momentum @m may thus be associated
with the highly damped QNM frequency !m�n�.
Multiplying Eq. (10) by @ yields

 2
Z
Ct;o
pdr �

�
n�

1

2

�
h; (15)

where p � @!V. This equation strongly resembles the
Bohr-Sommerfeld quantization rule

H
pdq � �n� 1=2�h,

where p is the canonical momentum conjugate to some
coordinate q, and the integration is carried out along a
closed orbit. To elucidate the connection, recall that the
covariant radial momentum pr for geodesic motion of a
neutral, massless particle of energy E and angular momen-
tum p�, is given by
 

�pr��
2 � ��r2 � a2�2 � a2�	E2 � 2a�2Mr�Q2�Ep�

� ��� a2�p2
� �QC�; (16)

where QC is Carter’s (fourth) constant of motion [19].
Comparing this with Eq. (12) indicates that VR � pr,
provided that E � @!, p� � @m, and QC � O�E0�.
Hence, up to an O�!0� term which leads to an imaginary
offset in !�n�, the integrand in Eq. (15) truly is of the form
pdq for the above QNM quantization. The implied physi-
cal content of Eq. (15) suggests that the full QNM spec-
trum may be determined by a generalized Bohr-
Sommerfeld equation, which reduces to Eq. (15) as !I !
�1. The general form of p is not uniquely determined by
our highly damped analysis. Up to O�j!j�1� corrections,
we may write

 p � pr � i@sVs � i@A1VA: (17)

The preceding discussion implies that Eq. (15) can be
interpreted as a complex version of the Bohr-Sommerfeld
quantization rule. This rule was used in (the old) quantum
mechanics to determine the quantum-mechanically al-
lowed trajectories, as well as the quantized values of the
associated constants of motion. Realizing the full meaning
of Eq. (15) may well require a quantum theory of gravity.
Conversely, this equation can possibly be used to constrain
and shed light on the theory.

The quantum manifestation of a QNM may be compli-
cated. A simple example is motivated by the outgoing
boundary conditions of the QNMs and the symmetry of
their frequencies !�m � �!�m [15], evident in Eq. (14).
These suggest that a quantum pair of opposite angular
momentum may fundamentally correspond to a QNM; a
positive energy quantum escaping to infinity and a negative
energy quantum falling into the black hole, in resemblance
of Hawking’s semiclassical radiation. Under such circum-
stances, a quantum process corresponding to a QNM
changes the black-hole mass by �M � @!R and its angu-
lar momentum by �J � @m. For such small changes in the
black-hole parameters, the corresponding change in its
entropy, �S � T�1��M���J�, is given directly by
Eq. (11), which we may now write as

 @�S � �A=4 � <
�
2i
Z
Ct;i
prdr

�
: (18)

This is another indication of the adiabatic invariance of the
area/entropy [3].
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