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Dispersion relations and subtractions in hard exclusive processes
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We study analytical properties of the hard exclusive process amplitudes. We found that QCD
factorization for deeply virtual Compton scattering and hard exclusive vector meson production results
in the subtracted dispersion relation with the subtraction constant determined by the Polyakov-Weiss
D-term. The relation of this constant to the fixed pole contribution found by Brodsky, Close, and Gunion
and defined by parton distributions is studied and proved for momentum transfers exceeding the typical
hadronic scale. The continuation to the real photon limit is considered, and the numerical correspondence
between lattice simulations of the D-term and low energy Thomson amplitude is found. For sufficiently
large ¢ the subtraction may be expressed in a form similar to that suggested earlier for real Compton

scattering.
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L. INTRODUCTION

Hard exclusive reactions described by the generalized
parton distributions (GPDs) [1-6] are the subject of exten-
sive theoretical and experimental studies. The analytical
properties of deeply virtual Compton scattering (DVCS)
and hard exclusive vector meson production (VMP) am-
plitudes [7-10] constitute an important aspect of these
studies. They also play a major role in hadronic processes
such as the nucleon-nucleon scattering at very high ener-
gies to be studied at CERN LHC and in nonaccelerator
experiments [11].

The crucial point in the application of the relevant
dispersion relations is a possible ambiguity due to the
subtraction constants which are the counterparts of the
normalization constants implied by the ultraviolet renor-
malization procedure. An attractive possibility is repre-
sented by cases where such constants are defined by the
imaginary part of the amplitudes. This situation was ex-
plored long ago in the case of the forward Compton
amplitude [12-14] and was recently reconsidered for
DVCS [10].

In this paper we address the problem of dispersion
relations and subtractions in the framework of the leading
order QCD factorization. We find that it leads to subtracted
dispersion relations with the subtraction constant defined
by the Polyakov-Weiss D-term [15]. At the same time, for ¢
exceeding the typical hadronic scale we relate the subtrac-
tion constant to the integrals of parton distribution at zero
skewness.

I1. DISPERSION RELATION IN THE SKEWNESS
PLANE

We restrict our study to the case of large s and Q” and
small + << 5, Q°, where QCD factorization is applicable.
At the leading order, this results in the following expres-
sions for DVCS and vector (p°) meson production ampli-
tudes:
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with the GPD part (which may be interpreted as a weighted
handbag diagram, i.e. the coupling of local quark currents
to two photons)
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In (3), H)(x, & 1) denotes the singlet (C = +1) combi-
nation of GPDs, summing the contributions of quarks and
antiquarks and of s and u channels:

H(f+)(x’ f) t) = Hf(x’ g’ t) - Hf(_x’ g’ t) (5)

For the sake of brevity, we will keep only the dependence
of GPDs on the skewness & = Q?/(2s + Q?). For £ — 0,
(3) may acquire divergencies at x = 0, which will be one of
the objects of our analysis.

Contrary to the forward case, expression (3) does not
have a form of the dispersion relation because of the
appearance of £ in the numerator. Nevertheless, the ampli-
tude (3) as a function of ¢ manifests the analyticity prop-
erties in the unphysical region |£] > 1 [9]. This region is
associated with the contribution of generalized distribution
amplitudes (GDAs) [16] related to GPDs by crossing [17].
To prove the analyticity of the amplitude for |£] > 1, one
represents the denominator of (3) as the geometric series:
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This series is convergent [9] thanks to the polynomiality
condition (see e.g. [5,6]):

i EFAL + 1= Eric.

k=0,2... 2
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One may now easily calculate the discontinuity across
the cut —1 < & <1 and write the fixed-¢ dispersion rela-
tion [9] for the leading order amplitude (3) in the skewness

plane:
Re A(¢) = 3 fl deSCA(x)
2

R G

or, using (3),

P f H”)(x H(x, €)

where A(£) is a possible subtraction. This expression
represents the holographic property of GPD: the relevant
information about hard exclusive amplitudes in the con-
sidered leading approximation is contained in the one-
dimensional sections x = +¢ of the two-dimensional
space of x and £. These holographic as well as tomographic
[17] properties in momentum space are complementary to
the often-discussed holography and tomography in coor-
dinate space [6].

We are now going to prove that A(£) is finite and
independent of £, i.e. A(§¢) = const. To do this, one con-
siders the following representation:

1 HF)(x, x)
:Pf a4 A,

-1

A(9)=P f_l ax 0 ‘;2 : ?H)(x’ i
:—?/ Y ,ag HOWo)| (=0
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Because of the polynomiality condition the only surviving
highest power term in this series is equal to a finite sub-
traction constant. This can also be derived with the use of
the double distributions (DDs) formalism. Namely,
H™)(x, &) is expressed through the corresponding DDs as

ﬁwmmm+&wm]

wwg= o]

X[o(x —a = §&B) = 8(—x —a = £B)].
(10)
Substituting this expression into (9), one gets that the

f(a, B)-terms which depend on ¢ are canceled and
Eq. (9) becomes ¢ independent (cf. [9]):
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Notice that the cancellation of f(«, 8) and the validity of
(11) are not spoiled (provided ¢ # 0), even if the singu-
larity corresponding to f(a, 8) ~ a ™ is present.

In (11), one can choose

g(a, B) = 6(a)D(B), (12)

where the function D(R) is the D-term [15]. The assump-
tion (12) is a result of the corresponding “gauge’ [17] as
discussed also in [6]. With (12), the A term takes the
following form:

DB
A=2 dpg— 13
[ Byt (13)

It should be emphasized that both integrals in (8) are
divergent at £ =t =0, and these divergencies do not
cancel for £ — 0. This means that A is not defined for £ =
t = 0 [18]. On the other hand, for an arbitrarily small ¢ the
integrals in (8) are finite and, therefore, A is well defined.
Note that there is some similarity between (3) and (13) so
that A may also be interpreted as the contribution of a local
two-photon coupling to the quark currents which is inde-
pendent on £.

Taking into account the parametrization [15]

mm=u—ﬁ%§dmﬂmm, (14)
n=0

and keeping only the lowest term, one gets
A = —4d,,. (15)

This lowest term d, was estimated within the framework of
different models. We focus on the results of the chiral

quark-soliton model [19]: dy®"'(Ny) = di = df = =30,

where Nf is the number of active flavors, and lattice
simulations [20]: di = d% ~ dd = —0.5. The subtraction
constant varies as

AéQM(2) = AEQM(Z) ~ 4.4, AP

latt

~ Al‘l

latt

~ 1.1
(16)

for the DVCS on both the proton and neutron targets.

II1. DISPERSION RELATION IN THE » PLANE

We have seen that the D-term determines the finite
subtraction in the dispersion relation in the skewness plane.
Let us now compare the dispersion relation (8) with the
dispersion relation written in the » plane [8] where v =
(s — u)/4my. In terms of the new variables v/, v related to
x, & as
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the fixed-¢ dispersion relation becomes the subtracted one:
o dv? Im A (v, Q?)

v Vl2 (Vl2 — V2)

P [oo 1 1
= ; ﬁo dV/2 Imﬂ(v’, Q2)|:7y/2 ) - ﬁi|

14

V2
ReA(V, Q2) = ?T +A

+ A. (18)

Here, v, = Q?/4my (the Q* dependence here is shown
explicitly) and the nucleon pole term residing in this point
may be considered separately [8].

This subtracted (in the symmetric unphysical point v =
0) dispersion relation is the principal result of our paper. It
is applicable for both DVCS (cf. [7,8]) and VMP (cf. [21])
amplitudes.

It can be considerably simplified provided Im.A(»)
decreases fast enough so that both terms in the square
brackets can be integrated separately:

Re A(v) = / dv 'zlmff(”) +Cp  (19)
where
Co=A— P fwd lzlmﬂl(v’)
v
—A+ P f (+)(x o (20)
Now, using (9) with & = 0, one gets
A= :Pf] i P0G ZHOw D ),
-1 X
B 27)[ H(x, 0) H(x, x)’ 22)

where the symmetry property arising from the 7 invari-
ance, H(x, —x) = H(x, x), is used. The relation (21) can
also be obtained from the ““‘sum rules’ [4]:

/ e H(x, f"’XZ) H(x, §)=i f dxx""'D(x)

for§ =0and z = 1.

Let us stress that for the valence (C = —1) contributions
to the amplitudes of the hard exclusive production of, say,
pions [4] and exotic hybrid mesons [22], A = 0 because of
the mentioned symmetry in x and the ¢ independence.

Substituting (21) into (20), one can see that the D-term is
canceled from the expression for the subtraction constant

Co(t) = 2?/' a0 0
—1

(23)
X

where we restored the dependence on ¢ which was omitted
for brevity. This constant is similar to the result obtained in
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the studies of the fixed pole contribution to the forward
Compton amplitude [12]. At the same time, at &, t = 0,
GPDs are expressed in terms of standard parton distribu-
tions H(x, 0) = g(x)6(x) — g(—x)6(—x). Formally one
has

Co(o)zzﬁdxwzzﬁdxw.

(24)

However, the integral defining C(0) diverges at low x in
both the valence and sea quark contributions. Therefore,
for + = 0 we should consider (18) as a correct general form
of the dispersion relation which includes infinite subtrac-
tion at the point ¥ = 0 and the subtraction constant asso-
ciated with the D-term.

For ¢ # 0, the integral in (23) converges for sufficiently
large ¢. In the case of the Regge inspired parametrization
[4] H(x,0, —t) ~ x~*©+a this condition reads as ¢ >
a(0)/a’, resulting in ¢ = 1(10) GeV? for the valence
(sea) quark distributions.

The divergence of (23) was originally discussed within
the framework of the parton model and its modifications
[12], while we address this problem in the framework of
the leading order QCD factorization. Therefore, our result
(18), although being formally ¢ independent, cannot, gen-
erally speaking, be continued to the forward limit & ~
0? — 0(s = const). The limit £ —0, s— 00, Q> =
const still corresponds to the highly nonforward kinematics
with the masses of initial and final photons being rather
different. At the same time, further exploration of the
possible manifestation of the D-term in forward
Compton scattering seems very interesting.

The formal continuation of (18) would result in the
following subtracted dispersion relation for the forward
Compton scattering amplitude:

o dv”> Im A (V')
TN

Re A (v) ——:P[ LA 25

Comparing this expression with the dispersion relation
for the forward Compton scattering amplitude [23], one
can observe an interesting numerical coincidence. For the
proton target, our subtraction combined with the lattice
simulations (16) is rather close to the low energy Thomson
term (note that Ayomen = 1 for our normalization of the
Compton amplitude). As a result, the mysterious occur-
rence of the Thomson term at large energies [23] can now
be supplemented with its possible appearance also at large
Q2. This does not hold in the case of the neutron target
where the DVCS subtraction term is the same, while the
Thomson term is zero. This may be because the sum of
squares of valence quark charges is equal to the square of
the proton charge, i.e. to the square of their sum (cf. [24]),
whereas for the neutron these quantities differ.
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IV. CONCLUSIONS

In this paper we show that the fixed-¢ dispersion rela-
tions for the DVCS and VMP amplitudes require infinite
subtractions at the unphysical point ¥ = 0 with the sub-
traction constants associated with the D-terms. However,
for the production of the mesons defined by valence (C =
—1) GPDs, the finite subtraction is absent.

We also show that the appearance of the subtraction
expressed in terms of (forward) parton distributions [12]
may be investigated in the framework of the leading order
QCD factorization. We consider the possibility of the
continuation of our results to the real photon limit. The
surprising similarity between the lattice simulations of the
D-term and the low energy Thomson amplitude in the
proton target case is found.
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Note added. —After this work was completed, the papers
[25,26] appeared, confirming our results and generalizing
them to the next-to-leading order.
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