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The nonrelativistic G0G formalism of BCS-BEC crossover at finite temperature is extended to
relativistic fermion systems. The uncondensed pairs contribute a pseudogap to the fermion excitations.
The theory recovers the BCS mean field approximation at zero temperature and the nonrelativistic results
in a proper limit. For massive fermions, when the coupling strength increases, there exist two crossovers
from the weak coupling BCS superfluid to the nonrelativistic BEC state and then to the relativistic BEC
state. For color superconductivity at moderate baryon density, the matter is in the BCS-BEC crossover
region, and the behavior of the pseudogap is quite similar to that found in high temperature
superconductors.
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I. INTRODUCTION

It is well known that, by adjusting the attractive coupling
strength among the constituents, a fermion system may
undergo a smooth crossover from the Bardeen-Cooper-
Shriffer (BCS) superfluidity/superconductivity in degener-
ate fermion gas to the Bose-Einstein condensation (BEC)
of composite molecules. Such a BCS-BEC crossover is
theoretically due to the fact that the wave functions of BCS
and BEC ground states are essentially the same [1,2]. The
BCS-BEC crossover is expected to be realized in high
temperature superconductor and atomic fermion gas [3–
8] via using an external magnetic field to change the
s-wave scattering length [9].

The superconductivity in quantum chromodynamics
(QCD), i.e., the color superconductivity [10], is naturally
considered as a system to study the relativistic BCS-BEC
crossover. Because of the asymptotic property of QCD,
there may exist a crossover from the BCS superconductiv-
ity with weakly bound quark pairs at high baryon density to
the BEC state of composite hadrons at low baryon density
[11]. Such a BCS-BEC crossover in QCD may also be
realized in chiral condensed matter [12,13] and in pion
superfluid [11]. At moderate baryon density, while a di-
quark BEC state may not be realized due to the chiral
symmetry restoration, the attractive coupling strength is
obviously not located in the weak coupling region. It is
shown in many effective QCD models that the quark
energy gap at moderate baryon density is about 100 MeV
[14] which is already of the order of the Fermi energy. The
strong coupling in this case may induce a so-called pseu-
dogap effect, which has been investigated in two-flavor
color superconductivity above the critical temperature
[15]. A natural question is how the pseudogap modifies
the critical temperature and thermodynamics of the color
superconductor. To answer this question, one needs to
construct a relativistic theory at finite temperature which
can describe the pseudogap and possible BCS-BEC
crossover.

The BCS-BEC crossover in relativistic fermion systems
was recently investigated in the Nozieres–Schmitt-Rink
(NSR) theory above the critical temperature [16,17], the
boson-fermion model [18], and the BCS-Leggett mean
field theory at zero temperature [19]. It is shown that, not
only the BCS superfluidity and the nonrelativistic BEC
(NBEC) of heavy molecules but also the NBEC and the
relativistic BEC (RBEC) of nearly massless molecules can
be smoothly connected. In the RBEC state, antifermion
pairs (antibosons) are excited and become nearly degener-
ate with fermion pairs (bosons). From the NSR theory at
T � Tc, where Tc is the critical temperature, the difference
between the NBEC [20] and RBEC [21,22] states is sig-
nificant [16,17].

It is widely known that, at zero temperature, the mean
field theory is a good approximation to describe the BCS-
BEC crossover [23], and the pair fluctuations can be safely
neglected even at strong coupling. Only around the unitary
limit, i.e., the infinite scattering length limit, are the pair
fluctuations somewhat important to obtain a proper value
of the universal constant [7]. In our previous paper [19], we
investigated the generalization from nonrelativistic to rela-
tivistic BCS-BEC crossover at zero temperature in the
BCS-Leggett mean field theory. At finite temperature,
however, the condensed pairs with zero momentum can
be thermally excited, and one should go beyond the mean
field approximation to treat properly the uncondensed pairs
[6].

There exist many methods to treat pair fluctuations at
finite temperature. In the NSR theory, which is also called
G0G0 theory, the pair fluctuations enter only the number
equation, and the fermion loops which appear in the pair
propagator are constructed by bare Green functionG0. As a
consequence, such a theory is, in principle, not self-
consistent and is valid only at T � Tc. For the study of
BCS-BEC crossover, one needs a theory which is valid not
only above the critical temperature but also in the symme-
try breaking phase. While such a strict theory has not been

PHYSICAL REVIEW D 76, 056003 (2007)

1550-7998=2007=76(5)=056003(13) 056003-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.056003


reached so far, some T matrix approaches were recently
developed; see, for instance, [6,23]. Among them, the
asymmetric pair approximation or the so-called G0G
scheme [6,24] is a competitive one. The effect of the pair
fluctuations in the G0G method is treated as a fermion
pseudogap which has been widely discussed in high tem-
perature superconductivity. In contrast to the NSR theory
(G0G0 scheme), the G0G scheme is self-consistent and
keeps the Ward identity [6].

In the study of color superconductivity at moderate
density, the color condensed phase is of great interest.
The NSR theory [16,17], which seems valid in the normal
phase, can only predict the transition temperature of color
superconductivity. A necessary task in this field of research
is to develop a relativistic BCS-BEC crossover theory in
the symmetry breaking phase. In this paper, we will gen-
eralize the G0G scheme to relativistic fermion systems. A
necessary requirement for such a generalization is to re-
cover the nonrelativistic limit [6] and mean field limit [4]
properly. With this theory, we can calculate the critical
temperature Tc for arbitrary coupling and describe the
BCS-NBEC-RBEC crossover at finite temperature. As an
application, it can be used to study the pseudogap effect on
color superconductivity.

The paper is organized as follows. In Sec. II we review
the BCS mean field theory for relativistic superfluidity/
superconductivity. In the framework of the G0G scheme,
we include in Sec. III the contribution from the uncon-
densed pairs and construct coupled equations for the su-
perfluid order parameter and pseudogap. In Sec. IV, we
apply the theory to massive fermions and study the BCS-
NBEC-RBEC crossover at finite temperature. In Sec. V, we
apply the theory to color superconducting quark matter. We
will calculate the transition temperature and the quark
pseudogap and show the significance of the fluctuations
at moderate baryon density. We summarize in Sec. VI.

II. BCS MEAN FIELD THEORY

We consider a model with only fermions as elementary
blocks. The Lagrangian density can be written as

 L � � �i��@� �m� �LI; (1)

where  , � denote the Dirac fermion fields with mass m,
and LI indicates the attractive interaction among fermions.
Since the dominant interaction is the JP � 0� scalar chan-
nel, the interaction for the pairing between different spins
can take the form [16,19]

 L I �
g
4
� � i�5C � T�� TCi�5 �; (2)

where g is the attractive coupling constant, and C � i�0�2

is the charge conjugation matrix. Generally, by adjusting
the coupling strength, the crossover from condensation of
spin-zero Cooper pairs with large size at weak coupling to
the Bose-Einstein condensation of deeply bound bosons at

strong coupling can be realized. In our model, only fermi-
ons are elementary particles. Another type of model which
is used to discuss the BCS-BEC crossover in high tem-
perature superconductors and atomic Fermi gases is the so-
called boson-fermion model where both fermions and
bosons are considered as elementary blocks. Such a model
was recently generalized to study the relativistic BCS-BEC
crossover [18].

In order to develop a finite temperature theory including
pair fluctuations in the symmetry breaking phase, we first
review in this section the BCS mean field theory in the
functional integral approach and G0G formalism.

A. Functional integral approach

In the functional integral approach, we start the calcu-
lation from the partition function in imaginary time formal-
ism,

 Z �
Z
D � D e

R
�

0
d�
R
d3x�L�� y � (3)

where � is the inverse temperature, � � 1=T, and � is
the chemical potential corresponding to the net charge
density  y and determined by the charge con-
servation. Performing a Hubbard-Stratonovich transforma-
tion which introduces an auxiliary pair field ��x� �
g T�x�Ci�5 �x�=2, and then integrating out the fermions,
we derive the partition function

 Z �
Z
D�D��e�Seff ��;��	 (4)

with the effective boson action

 Seff �
Z �

0
d�

Z
d3x

�
j��x�j2

g
�

1

2�
Tr ln��G�1	

�
(5)

in terms of the inverse Nambu-Gorkov propagator

 G�1 � i��@� �m���0�3 � i�5��� � i�5����;

(6)

where �
 � ��1 
 i�2�=2 are defined in the Nambu-
Gorkov space with �i�i � 1; 2; 3� being the Pauli matrices.

The mean field theory is a good approximation to de-
scribe the BCS-BEC crossover at low enough temperature,
namely T � Tc, since the dominant contribution of fluc-
tuations to the effective potential is from the Goldstone
mode and is proportional to T4 [5]. In the mean field
approximation, we consider a uniform static saddle point
��x� � �sc which satisfies the stationary condition
�Seff��sc	=��sc � 0. The thermodynamic potential
�mf � Seff��sc	=��V� at the saddle point can be evaluated
as
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�mf �
�2

sc

g
�
Z d3k
�2��3

�
�E�k � E

�
k � �

�
k � �

�
k �

�
1

�
�ln�1� e��E

�
k � � ln�1� e��E

�
k ��

�
; (7)

where we have defined the quasiparticle energies E
k ��������������������������
��
k �

2 � �2
sc

q
with �
k � 	k 
� and 	k �

������������������
k2 �m2
p

.
Minimizing �mf , we get the gap equation to determine
the order parameter �sc in the symmetry breaking phase,

 

1

g
�
Z d3k
�2��3

�
1� 2f�E�k �

2E�k
�

1� 2f�E�k �
2E�k

�
; (8)

where f�x� � 1=�e�x � 1� is the Fermi-Dirac distribution
function. In the study of BCS-BEC crossover, people often
consider the thermodynamics in canonical ensemble with
fixed fermion density n by fixing the Fermi momentum kf
through the relation n � k3

f=�3�
2� at zero temperature. At

finite temperature, the density can be obtained from the
first order derivative of the thermodynamic potential with
respect to the chemical potential,
 

n �
Z d3k
�2��3

��
1�

��k
E�k
�1� 2f�E�k ��

�

�

�
1�

��k
E�k
�1� 2f�E�k ��

��
: (9)

The first and second terms in the square brackets on the
right-hand side of Eqs. (8) and (9) correspond, respectively,
to fermion and antifermion degrees of freedom.

B. G0G formalism

Now we reexpress the BCS mean field theory in theG0G
formalism [6,7,25]. Such a formalism is convenient for us
to go beyond the BCS and include uncondensed pairs at
finite temperature. Let us start from the fermion propagator
S in the symmetry breaking phase. The inverse propagator
reads

 S �1�k� �
G�1

0 �k;�� i�5�sc

i�5�sc G�1
0 �k;���

� �
(10)

with the inverse free propagator

 G �1
0 �k;�� � �i!n ����0 � � � k�m; (11)

where k � �i!n;k� is the fermion four-momentum at finite
temperature with !n being the fermion frequency !n �
�2n� 1��T (n � 0;
1;
2; . . . ). The propagator can be
formally expressed as

 S �k� �
G�k;�� F �k;��
F �k;��� G�k;���

� �
(12)

with the diagonal and off-diagonal elements

 G �k;�� � �G�1
0 �k;�� � �sc�k�	

�1;

F �k;�� � �G�k;��i�5�scG0�k;���;
(13)

where the fermion self-energy �sc is defined as

 �sc�k� � i�5�scG0�k;���i�5�sc � ��2
scG0��k;��:

(14)

With the help of the energy projectors

 �
�k� �
1

2

�
1


�0� ~� � k�m�
	k

�
; (15)

the propagator elements can be explicitly evaluated as

 G �k;�� �
�i!n � �

�
k ����0

�i!n�
2 � �E�k �

2 �
�i!n � �

�
k ����0

�i!n�
2 � �E�k �

2 ;

F �k;�� �
i�sc���5

�i!n�
2 � �E�k �

2 �
i�sc���5

�i!n�
2 � �E�k �

2 :

(16)

The gap equation for the order parameter �sc is related to
the off-diagonal element,

 �sc � �i
g
2

X
k

Tr�i�5F �k;��	

� �i
g
2

�sc

X
k

Tr�G�k;��G0��k;��	; (17)

and the fermion number is controlled by the diagonal
element,

 n � �i
X
k

Tr��0G�k;��	 (18)

with the four-momentum integration
P
k �

iT
P
n

R
d3k=�2��3 at finite temperature. Completing the

Matsubara frequency summation, we can reobtain the gap
equation (8) and number equation (9).

In the BCS mean field theory, fermion-fermion pairs and
antifermion-antifermion pairs explicitly enter the system
below Tc only through the condensate �sc. In the G0G
formalism, the fermion self-energy can equivalently be
expressed as

 �sc�k� �
X
q

tsc�q�G0�q� k;�� (19)

associated with a condensed-pair propagator given by

 tsc�q� � i
�2

sc

T
��q�; (20)

where q � �i
n;q� is the boson four-momentum with bo-
son frequency 
n � 2n�T.

The BCS theory can be related to a specific pair suscep-
tibility � defined by

 �BCS�q� � �
i
2

X
k

Tr�G�k;��G0�q� k;��	; (21)

with which the gap equation for the condensate �sc can be
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written as

 1� g�BCS�0� � 0: (22)

This implies that the uncondensed-pair propagator should
be of the form

 t�q� �
ig

1� g�BCS�q�
; (23)

and t�1�q � 0� is proportional to the pair chemical poten-
tial �pair. Therefore, the fact that in the symmetry breaking
phase the pair chemical potential is zero leads to the BEC-
like condition

 t�1�q � 0� � 0: (24)

While the uncondensed pairs do not play any real role in
the BCS mean field theory, such a specific choice of the
pair susceptibility and the BEC-like condition tells us how
to go beyond the BCS mean field theory and include the
effect of uncondensed pairs.

III. BEYOND MEAN FIELD THEORY

While the uncondensed pairs can be safely neglected at
weak coupling, they should be included for a self-
consistent theory at arbitrary coupling and at finite tem-
perature. We now go beyond the BCS mean field approxi-
mation and include the uncondensed pairs in the G0G
formalism. It is clear that, in the BCS mean field approxi-
mation, the fermion self-energy �sc includes contributions
only from the condensed pairs. At finite temperature, the
condensed pairs with zero total momentum can be ther-
mally excited, and the total propagator should contain both
the condensed (sc) and uncondensed or ‘‘pseudogap’’-
associated (pg) contributions,

 t�q� � tsc�q� � tpg�q�; tsc�q� � i
�2

sc

T
��q�;

tpg�q� �
ig

1� g��q�
; q � 0:

(25)

Now the total fermion self-energy becomes

 ��k� �
X
q

t�q�G0�q� k;�� � �sc�k� � �pg�k�; (26)

with the mean field part

 �sc�k� �
X
q

tsc�q�G0�q� k;�� (27)

and the pseudogap related part

 �pg�k� �
X
q

tpg�q�G0�q� k;��: (28)

With the full propagator

 G �k;�� � �G�1
0 �k;�� � ��k�	�1 (29)

in terms of the total self-energy, the pair susceptibility is

still given by

 ��q� � �
i
2

X
k

TrG�k;��G0�q� k;��: (30)

The G0G formalism used here is diagrammatically illus-
trated in Fig. 1.

Note that the feedback of the pair fluctuations on the
order parameter �sc is included, and it and the chemical
potential � are, in principle, determined by the BEC
condition t�1

pg �0� � 0 and the number equation n �
�i
P
k Tr��0G�k;��	.

The above equations are hard to handle analytically. In
the symmetry breaking phase with T  Tc, the BEC con-
dition t�1

pg �0� � 0 implies that tpg�q� is peaked at q � 0.
This allows us to approximate

 ��k� ’ ��2G0��k;��; (31)

where �2 contains contributions from the condensed and
uncondensed pairs,

 �2 � �2
sc � �2

pg (32)

with the pseudogap �pg defined as

 �2
pg � �

X
q�0

tpg�q�: (33)

It is necessary to point out that, above the critical tempera-
ture Tc, such an approximation is no longer good, since the
BEC condition is not valid in the normal phase.

Since the pseudogap �pg looks similar to the condensate
�sc, a natural question is whether a finite �pg breaks the
symmetry of the system. If yes, �sc will no longer be
considered as the order parameter of the phase transition.
By omitting a term of the order ofO��2

sc=�2�, where � is a
momentum cutoff, the inverse fermion propagator includ-
ing the feedback of the pair fluctuations can be written as

 S �1�k� �
G�1

0 �k;����pg�k� i�5�sc

i�5�sc G�1
0 �k;�����0pg�k�

 !
(34)

FIG. 1. Diagrammatic representation of the propagator tpg for
the uncondensed pairs and the fermion self-energy. The total
fermion self-energy contains contributions from condensed (�sc)
and uncondensed (�pg) pairs. The dashed, thin solid, and thick
solid lines in tpg represent, respectively, the coupling constant
g=2, bare propagator G0, and full propagator G. This diagram is
taken from [29].
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where �0pg � �pg��! ���. It is now clear that the pseu-
dogap appears in the diagonal elements of the Nambu-
Gorkov propagator and does not break the symmetry of
the system. On the other hand, parallel to the discussion in
nonrelativistic theory [6,7,24], we can show that �2

pg is just
the fluctuation of the order parameter field ��x�,

 �2
pg � hj�j

2i � hj�ji2; (35)

and hence it does not break the symmetry.
Under the approximation (31), all the equations in

the mean field theory are still valid; the only change is

the replacement of E
k �
�������������������������
��
k �

2 � �2
sc

q
by E
k �������������������������

��
k �
2 � �2

q
. For instance, the diagonal element G of

the full propagator, the fermion number n, and the gap
equation for � take exactly their mean field forms (8), (9),
and (16). Equations (8), (9), and (33) determine self-
consistently the order parameter �sc, the pseudogap �pg,
and the chemical potential� as functions of temperature T.
Note that the pair fluctuation effect is self-consistently
included in the coupled equations through the pseudogap
�pg. It is necessary to point out that the G0G approach we
used is quite different from the NSR theory. In the NSR
theory, the pair fluctuations enter only the number equation
via adding a molecule number term [16,17].

However, solving such a coupled set of equations is still
rather complicated. Fortunately, the BEC condition allows
us to do further approximations for the pair propagator
tpg�q�. Using the BEC condition 1� g��0� � 0, the T
matrix can be written as

 tpg�q� �
�i

��q� � ��0�
: (36)

Since the pseudogap is dominated by the gapless pair
dispersion in the long-wavelength limit, we can expand
the susceptibility around q � 0 in this limit,

 tpg�q� ’
�i

Z1q0 � Z2q
2
0 � �

2q2 � i��q�
; (37)

where the coefficients Z1, Z2, and �2 are defined as

 Z1 �
@�
@q0

��������q�0
; Z2 �

1

2

@2�

@q2
0

��������q�0
;

�2 � �
1

2

@2�

@q2

��������q�0
;

(38)

and we have considered the fact that the susceptibility
depends only on q2. The explicit expressions for Z1, Z2,
and �2 are listed in the Appendix.

In the symmetry breaking phase where the temperature
is low, it is believed that the pairs are long-lived and we can
neglect their width �. With the expansion for the pair
propagator, Eq. (33) now takes a simple form,

 �2
pg �

1

Z2

Z d3q
�2��3

1� b�!q � 
� � b�!q � 
�

2!q
; (39)

where b�x� � 1=�e�x � 1� is the Bose-Einstein distribu-
tion function and !q and 
 are defined as

 !q �
���������������������

2 � c2q2

q
; 
 �

Z1

2Z2
; c2 �

�2

Z2
: (40)

The first term on the right-hand side of (39) suffers ultra-
violet divergence, but it can be dropped out via renormal-
ization [6,7].

Let us first discuss some conclusions from the above
equations without detailed numerical calculations.

(1) At zero temperature, the pseudogap �pg vanishes
automatically and the theory is reduced to the BCS
mean field approximation [19].

(2) If the coupling is not so strong that the molecule
binding energy Eb satisfies Eb � 2m, the theory is
reduced to its nonrelativistic version [6] for systems
with kf � m or n� m3.
If Z1 dominates the propagator tpg, the pair disper-
sion is quadratic in jqj, and the pseudogap �pg can
be analytically integrated out and is proportional to
T3=4 at low temperature. On the other hand, if Z2 is
the dominant term, the pair dispersion is linear in jqj
and �pg becomes proportional to T at low tempera-
ture. In the next section, we will show that the first
case happens in the NBEC region and the second
case occurs in the RBEC region.

(3) From the explicit expression of Z1 shown in the
Appendix,

 Z1 �
1

�2

�
n
2
�
Z d3k
�2��3

�f���k � � f��
�
k ��

�
; (41)

the quantity in the square brackets is just the total
number density nB of the bound pairs (bosons),

 nB � Z1�2: (42)

From the relation �2 � �2
sc � �2

pg, nB can be de-
composed into the condensed-pair number nsc and
the uncondensed-pair number npg,

 nsc � Z1�2
sc; npg � Z1�2

pg: (43)

The fraction of the condensed pairs can be defined
by

 Pc �
nsc

n=2
�

2Z1�2
sc

n
: (44)

(4) In the weak coupling BCS region, we expect the
fermion number density

 n ’ 2
Z d3k
�2��3

�f���k � � f��
�
k �� (45)
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which leads to nB � 0 in this region. In the deep
BEC region, however, almost all the fermions form
two-body bound states which results in nB ’ n=2.
At zero temperature, we have �pg � 0, nB � nsc,
and Pc � 1, while at the critical temperature Tc, the
order parameter �sc disappears, and the
uncondensed-pair number npg becomes dominant
and is approximately equal to n=2.

Numerically, the transition temperature Tc can be calcu-
lated from (39) and the generalized equations (8) and (9)
by setting �sc � 0. Usually, at and above Tc where the
order parameter �sc disappears, the pseudogap �pg does
not vanish. We can define a limit temperature T� where the
pseudogap starts to disappear. Between the two tempera-
tures Tc and T� is the so-called pseudogap phase. While the
presentG0G formalism is likely valid only in the symmetry
breaking phase with T  Tc, it can be generalized to the
region above Tc by introducing a nonvanishing pair chemi-
cal potential�pair [7]. We will do such a generalization, but
the numerical results in the following will be presented
mainly at T  Tc.

Above the critical temperature Tc, the order parameter
�sc vanishes, and the BEC condition is no longer valid, 1�
g��0� � 0. As a consequence, the propagator of the pair
takes the form

 tpg�q� �
�i

��q� � ��0� � Z0
(46)

with Z0 � 1=g� ��0�. As an estimation of �pg and T�, we
still perform the expansion for the susceptibility around
q � 0,

 tpg�q� ’
�i

Z1q0 � Z2q
2
0 � �

2jqj2 � Z0 � i��q�
: (47)

Now the pseudogap equation becomes

 �2
pg �

1

Z2

Z d3q
�2��3

b�!0q � 
� � b�!0q � 
�

2!0q
(48)

with the definition

 !0q �
���������������������������������

2 � �2 � c2q2

q
; �2 � Z0=Z2: (49)

Equation (48) together with the number equation (9) de-
termines the pseudogap �pg and chemical potential �
above Tc. Since the pair dispersion is now no longer
gapless in the long-wavelength limit, and Z0 will generally
increase with temperature, we expect that �pg will drop
down and approach zero at the dissociation temperature T�.

In the end of this section, we discuss the thermodynam-
ics of the system. The naive BCS mean field theory does
not include the contribution from the uncondensed bosons
which, however, dominate the thermodynamics at strong
coupling. In the present theory, considering the uncon-
densed pairs, the total thermodynamic potential � contains
both the fermion and boson contributions,

 � � �cond ��fermion ��boson; (50)

where �cond is from the condensed pairs,

 �cond �
�2

sc

g
; (51)

�fermion from the fermion excitations,
 

�fermion �
Z d3k
�2��3

�
���k � �

�
k � E

�
k � E

�
k �

�
1

�
�ln�1� e��E

�
k � � ln�1� e��E

�
k ��

�
; (52)

and �boson from the uncondensed pairs,

 �boson �
X
q

ln�1� g��q�	: (53)

Under the approximation (37) for the pair propagator, the
boson part in the symmetry breaking phase can be eval-
uated as

 �boson �
1

�

Z d3q
�2��3

�ln�1� e��!
�
q � � ln�1� e��!

�
q �	

(54)

with !
q � !q 
 
.
There exist two limiting cases for the boson contribu-

tion. If Z1 dominates the pair propagator, the pair disper-
sion is quadratic in q, and �boson recovers the
thermodynamic potential of a nonrelativistic boson gas,

 �NR
boson �

1

�

Z d3q
�2��3

ln�1� e��q2=�2mB��: (55)

On the other hand, if Z2 dominates the pair properties, the
pair dispersion is linear in jqj and we obtain the thermody-
namic potential for an ultrarelativistic boson gas

 �UR
boson �

2

�

Z d3q
�2��3

ln�1� e��cjqj�: (56)

As we will show below, the former and the latter corre-
spond to the NBEC and RBEC regions, respectively. The
bosons and fermions behave very differently in thermody-
namics. As is well known, the specific heat C of an ideal
boson gas is proportional to T with  � 3=2 and 3
corresponding to nonrelativistic and ultrarelativistic sys-
tems, but the naive BCS mean field theory predicts an
exponential law C / e��0=T , where �0 is the gap at zero
temperature, �0 � ��T � 0�.

IV. BCS-NBEC-RBEC CROSSOVER WITH
MASSIVE FERMIONS

In this section, we study the BCS-BEC crossover when
the coupling constant g increases. Since our model is
nonrenormalizable, a proper regularization is needed. In
the case with massive fermions, we employ the often used
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nonrelativistic regularization, namely, to replace the bare
coupling g by a renormalized coupling U [17,19],

 �
1

U
�

1

g
�

1

2

Z
jkj�

d3k
�2��3

�
1

	k �m
�

1

	k �m

�
: (57)

The effective s-wave scattering length as can be related to
U byU � 4�as=m. While this is a natural extension of the
nonrelativistic regularization to relativistic systems, the
ultraviolet divergence cannot be completely removed,
and a cutoff � still exists in the theory. In this regulariza-
tion, the solution of the coupled equations depends on three
dimensionless parameters: the effective coupling constant
� � 1=�kfas�, the quantity � � kf=m which reflects the
fermion number density, and the cutoff �=m.

We assume in this section that the fermion density n is
not very high and satisfies the relation n <m3 or � < 1. In
this case the system is not ultrarelativistic and can even be
treated nonrelativistically in some parameter region. From
the study in NSR theory above Tc and in the BCS-Leggett
theory at T � 0, if the dimensionless coupling � varies
from �1 to �1, the system will undergo two crossovers
[16–19], the crossover from the BCS state to the NBEC
state around �� 0 and the crossover from the NBEC state
to the RBEC state around �� ��1. The NBEC state and
the RBEC state are characterized by the molecule binding
energy Eb. We have Eb � 2m in the NBEC state and Eb �
2m in the RBEC state.

(1) BCS region.—In the weak coupling BCS region,
there exist no bound pairs in the system. In this
case, Z1 is sufficiently small and Z2 dominates the
pair dispersion [7], and we have �2

pg / 1=�Z2c
3�

after a simple algebra. Since � should be small in
the weak coupling region and c can be proven to be
approximately equal to the Fermi velocity [7], the
pseudogap �pg is very small and can be safely
neglected in this region, as we expected.
Therefore, the BCS mean field approximation is
good enough at any temperature, and the critical
temperature satisfies the well-known relation Tc ’
0:57�0. For example, in the nonrelativistic limit
with kf � m, the antifermion degrees of freedom
can be ignored and the pair susceptibility recovers
its nonrelativistic version [6]; see the result in the
Appendix. The critical temperature can be ex-
pressed as [6]

 Tc �
8e��2

�
	fe2�=�; (58)

where � is the Euler constant and 	f � k2
f=�2m� is

the Fermi kinetic energy. In this region, even though
Z2 dominates the pair dispersion, we can show that
c / � is vanishingly small due to the weak cou-
pling. Since the boson contribution to thermody-
namics can be neglected, the specific heat at low
temperature takes the well-known form C / e��0=T .

(2) NBEC region.—In the nonrelativistic BEC region
with �> 1 but �� ��1 [19], the molecule binding
energy Eb is much less than 2m (namely, j��
mj � m), the boson mass is approximately 2m,
and the system can be regarded as a nonrelativistical
boson gas, if kf=m is small enough. Assuming kf �
m, the antifermion degrees of freedom can be ne-
glected, and we can recover the nonrelativistic result
[6]. In this region, the gap � becomes as large as the
Fermi kinetic energy 	f. From Z1 / 1=�2 and Z2 /

1=�4, Z1 is the dominant one and the pair dispersion
becomes quadratic in jqj. In this case, the propaga-
tor of the uncondensed pairs can be approximated by

 tpg�q� ’
�iZ�1

1

q0 � jqj2=�2mB�
; (59)

where the pair massmB is defined bymB � Z1=2�2,
and we have the simple relation

 Z1�2
pg �

Z d3q
�2��3

b
�
jqj2

2mB

�
�

�
mBT
2�

�
3=2
�
�
3

2

�
:

(60)

Since Z1�2
pg is equal to the total boson density nB at

T � Tc, we arrive at the standard critical tempera-
ture for Bose-Einstein condensation in nonrelativis-
tic boson gas [20],

 Tc �
2�
mB

�
nB

��32�

�
2=3
: (61)

The boson mass mB is generally expected to be
equal to the boson chemical potential �B � 2�.
In the nonrelativistic limit kf � m, we can show
mB ’ 2m and Z1�2

pg ’ n=2 at T � Tc; the critical
temperature becomes Tc � 0:218	f. Since Z1 domi-
nates the pair dispersion, the pseudogap is propor-
tional to T3=4 and the specific heat is proportional to
T3=2 at low temperature.

(3) RBEC region.—In this region we have the molecule
binding energy Eb ! 2m and chemical potential
�! 0. In this case, the nonrelativistic limit cannot
be reached even for kf � m [19]. Since the bosons
with mass mB � 2� become nearly massless in this
region, the antibosons and antifermions can be
easily excited, and the system contains both bosons
and antibosons. From the relation

 nB � nb � n�b � Z1�2
pg (62)

at T � Tc, where nb and n�b are the boson and
antiboson numbers, while nb and n�b are both very
large, their difference produces a small, pure boson
density nB ’ n=2. On the other hand, for �! 0 we
can expand Z1 in powers of the chemical potential
�,
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 Z1 ’ R��O��3� �
R
2
mB �O��3�; (63)

and hence Z2 dominates the pair dispersion, which
means that the pseudogap is proportional to T at low
temperature. In this case, the propagator of the un-
condensed pairs can be approximated by

 tpg�q� ’
�iZ�1

2

q2
0 � c

2jqj2
; (64)

which leads to the relation

 Z2�2
pg ’

Z d3q
�2��3

b�cjqj�
cjqj

�
T2

12c3 : (65)

Combining the above equations, we find

 Tc �
�
24c3Z2

R
nB

mB

�
1=2
: (66)

In the RBEC limit �! 0, we can approach the
standard critical temperature for ultrarelativistic
Bose-Einstein condensation [21,22],

 Tc �
�
3nB

mB

�
1=2
: (67)

Since nB is almost fixed and mB ! 0, Tc would
approach infinity in the RBEC limit. In the ultra-

relativistic boson gas, the specific heat at low tem-
perature is proportional to T3.

We now turn to numerical calculations. From the
coupled equations (8), (9), and (39), we can solve the
critical temperature Tc, chemical potential ��Tc�, and
pseudogap �pg�Tc� at Tc as functions of the coupling �
at fixed kf=m. In Fig. 2 we show the numerical results with
the parameters �=m � 10 and kf=m � 0:5. The BCS-
NBEC-RBEC crossover can be seen directly from the
behavior of the chemical potential �. In the BCS region
with�1<�< 0:5,� is larger than the fermion mass and
approaches the Fermi energy Ef in the weak coupling limit
�! �1. The NBEC region is located around �0:5<
�< 4 and the RBEC region is at about �> 4. The critical
coupling � ’ 4 for the RBEC state is consistent with our
analytical result

 �c �
2

�

�kf
m

�
�1

ln��=m�
�������������������������
��=m�2 � 1

q
� (68)

derived in [19]. The difference between NBEC and RBEC
states is that the chemical potential� is of the order ofm in
the NBEC region but approaches zero in the RBEC region.

The critical temperature, plotted as the solid line in
Fig. 2(a), shows significant change from the weak to strong
coupling. To compare it with the standard critical tempera-
ture for the ideal boson gas, we solve the equation [21]

−2 0 2 4 6 8
10

−2

10
−1

10
0

η

T
c/E

f

(a)

NBEC RBECBCS

−2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

η

µ(
T

c)/
E

f

(b)

µ=m

−2 0 2 4 6 8
10

−2

10
−1

10
0

η

∆ pg
(T

c)/
E

f

(c)

FIG. 2. The critical temperature Tc (a), chemical potential ��Tc� (b), and pseudogap �pg�Tc� (c) as functions of coupling � at
�=m � 10 and kf=m � 0:5. Tc;� and �pg are all scaled by the Fermi energy Ef. The dashed line is the standard critical temperature
for the ideal boson gas in (a) and stands for the position � � m in (b); the dotted line in (a) is the limit temperature T� where the
pseudogap starts to disappear.
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Z d3q
�2��3

�b�	B
q ��B� � b�	

B
q ��B�	j�B�mB

� nB (69)

with 	B
q �

������������������
q2 �m2

B

q
, boson mass mB � 2�, and boson

number nB � n=2, and show the obtained critical tempera-
ture as a dashed line in Fig. 2(a). In the weak coupling
region Tc is very small and agrees with the BCS theory. In
the NBEC region Tc changes smoothly and there is no
remarkable difference between the solid and dashed lines.
Around the coupling �c � 4, Tc increases rapidly and then
varies smoothly again. In the RBEC region, the critical
temperature from our calculation deviates significantly
from the standard critical temperature for ideal boson
gas. Note that Tc is of the order of the Fermi kinetic energy
	f ’ k

2
f=�2m� in the NBEC region but becomes as large as

the Fermi energy Ef in the RBEC region. The pseudogap
�pg at T � Tc, shown in Fig. 2(c), behaves similarly as the
critical temperature. To see clearly the pseudogap region,
we present in Fig. 2(a) the limit temperature T� as a dotted
line. The pseudogap exists between the solid and dotted
lines and begins to vanish on the dotted line.

To explain why the critical temperature in the RBEC
region deviates remarkably from the standard one for ideal
boson gas, we calculate the boson number fraction rB �
nB=�n=2� and the fermion number fraction rF � 1� rB

and show them as functions of the coupling � in Fig. 3.
While there are only bosons at Tc in the NBEC region, rB is
obviously less than 1 in the RBEC region. This conclusion
is consistent with the results from the NSR theory [16,17].
In the NBEC region, the binding energy of the molecules is
Eb ’ 1=ma2

s � 2�2	f, which is much larger than the criti-
cal temperature Tc ’ 0:2	f, and the molecules can be
safely regarded as point bosons at temperatures near Tc.
However, the critical temperature in the RBEC region is as
large as the Fermi energy Ef, which is of the order of the
molecule binding energy Eb ’ 2m. Because of the com-
petition between the condensation and dissociation of

composite bosons in a hot medium, the molecules cannot
be regarded as point bosons and the critical temperature
should deviate from the result for ideal boson gas. This
may be a general characteristic of a composite boson
system, when the condensation temperature Tc is of the
order of the molecule binding energy. The phenomenon
can be explained by the competition between free energy
and entropy [17]: In terms of entropy, a two-fermion state
is more favorable than a one-boson state, but in terms of
free energy it is less favorable. Since the condensation
temperature Tc in the RBEC region is of the order of
�nB=mB�

1=2 � �n=��1=2, we conclude that, only for a sys-
tem with a sufficiently small value of kf=m, the standard
RBEC critical temperature can be reached and is much
smaller than 2m.

V. APPLICATION TO MASSLESS FERMIONS:
COLOR SUPERCONDUCTIVITY

As a natural application of the relativistic G0G formal-
ism, we calculate in this section the transition temperature
and pseudogap in two-flavor color superconductivity at
moderate baryon density. The two-flavor color supercon-
ducting quark matter corresponds to the ultrarelativistic
case with n� m3, where m is the current quark mass.
At moderate baryon density, the quark energy gap due to
color superconductivity is of the order of 100 MeV, which
is not located in the weak coupling region. As a result, the
pseudogap effect is expected to be significantly important
near the critical temperature. To apply the present theory
directly, we employ the generalized Nambu–Jona-Lasinio
(NJL) model with the scalar diquark channel, which has
been widely used to study color superconductivity at mod-
erate baryon density. The Lagrangian density is defined as

 L � � �i��@� �m� �Gs�� �  �2 � � � i�5� �
2	

�Gd

X
a�2;5;7

� � i�5�2�aC � T�� TCi�5�2�a �; (70)

where  and � denote the quark fields with two flavors
(Nf � 2) and three colors (Nc � 3), �i�i � 1; 2; 3� are the
Pauli matrices in flavor space, �a�a � 1; 2; . . . ; 8� are the
Gell-Mann matrices in color space, and Gs and Gd are
coupling constants in meson and diquark channels.

At moderate baryon density, the chiral symmetry has
already been restored and we need not consider the chiral
condensate h �  i. Since the current quark mass m is about
5 MeV, the quarks are nearly massless. The order parame-
ter field for color superconductivity is defined as

 �a � �2Gd 
TCi�5�2�a : (71)

To simplify the calculation, one usually considers a spon-
taneous color breaking from the SU(3) symmetry to
an SU(2) subgroup. Because of the residual color
SU(2) symmetry, the effective potential in the mean field
approximation should depend only on the combination

0 2 4 6 8
0
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0.8

1

η

rB

rF

FIG. 3. The boson number fraction rB and the fermion number
fraction rF at the critical temperature Tc as functions of the
coupling � at �=m � 10 and kf=m � 0:5.
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�2
2 � �2

5 � �2
7 with �a � h�ai, and we can choose a

specific gauge �sc � �2 � 0, �5 � �7 � 0 without loss
of generality. In this gauge, the red and green quarks
participate in the condensation, but the blue one does not.

The detailed formalism of the G0G theory in the NJL
model is similar to what we show in Secs. II and III but
becomes somewhat complicated due to the presence of
color and flavor degrees of freedom. Comparing the quark
propagator in the NJL model with the one shown in the
above sections, the relativistic G0G scheme can be directly
applied to the study of color superconductivity, provided
that we consider carefully the difference between the pair-
ing including a blue quark and the pairing with only red
and green quarks. The dispersion for red and green quarks
is identical to the one obtained in the toy model; their
excitation gap is � � ��2

sc � �2
pg�

1=2, and the pair suscep-
tibility ��q� should be multiplied by a factor Nf�Nc � 1�
where Nf and Nc are flavor and color numbers of quarks.
The new feature is that a gapless blue quark in the naive
BCS mean field theory obtains a gap �pg in the G0G
scheme. This can be understood by the fact that the color
symmetry is controlled only by the order parameters them-
selves, and fluctuations of any order parameter field �a do
not change it. At and above the critical temperature, �sc �
0, the color symmetry is restored, all colors become degen-
erate, and their gaps are just the pseudogap.

The two-flavor quark matter may exist in the region of
� � 350–500 MeV, where the strange quarks are not yet
excited. Unlike the study in the above sections in the
canonical ensemble with fixed fermion number, people
usually investigate color superconductivity in the grand
canonical ensemble with a fixed quark chemical potential.
In this case, the quark number is not directly coupled to the
calculation of the order parameter �sc and pseudogap �pg.
For numerical calculations, we take the current quark mass
m � 5 MeV, the often used quark momentum cutoff � �
650 MeV, and a fixed quark chemical potential � �
400 MeV. We have checked that a reasonable change in
the value of � does not bring qualitative difference. As is
conventionally considered in the literature, we use the
pairing gap �0 at zero temperature to reflect the strength
of the diquark coupling constant Gd.

In Fig. 4 we show the critical temperature Tc as a
function of �0 in the G0G theory and in the BCS mean
field theory. While the critical temperature is not strongly
modified by the diquark fluctuations in a wide range of �0,
the difference between the two is up to 20% in the strong
coupling region with �0 ’ 200 MeV. In Fig. 5, we show
the pseudogap �pg at the critical temperature Tc. In a wide
range of the coupling, the pseudogap is of the order of
100 MeV, which is as large as the diquark condensate �sc

at zero temperature. Such a behavior means that the two-
flavor color superconductivity at moderate density is in the
BCS-BEC crossover region and quite like the high tem-
perature superconductivity in cuprates [6,7]. Since �sc

vanishes at T � Tc, the large pseudogap will bring a
significant effect at and above Tc, such as the non-Fermi
liquid behavior. In Fig. 6, we show the temperature depen-
dence of the diquark condensate �sc and pseudogap �pg at
two values of �0. With increasing temperature, while the
diquark condensate decreases, the pseudogap increases
from zero. At low temperature, especially at zero tempera-
ture, we can safely neglect the pseudogap.

While the pseudogap is small at low temperature and
dominates the system only near and above Tc, the diquark
fluctuations bring a significant contribution to thermody-
namics at any temperature. In the low temperature region,
the temperature behavior of the pseudogap is significantly
important, since it can tell us whether the coefficient Z1 or
Z2 dominates the pair fluctuations. In Fig. 7 we show the
pseudogap at low temperature. In the region of T=Tc 
0:1, it obeys a perfect power law �pg / T3=4, which means
that Z1 is the dominant one for the pair susceptibility.

Considering the uncondensed diquarks, the total ther-
modynamic potential � can be expressed as

 � � �cond ��quark ��diquark; (72)
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FIG. 4. The phase transition temperature Tc for two-flavor
color superconductivity as a function of the diquark condensate
�0 at zero temperature in the BCS mean field theory (dashed
line) and in the G0G theory with diquark fluctuations (solid line).
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FIG. 5. The pseudogap �pg in two-flavor color superconduc-
tivity at the critical temperature Tc as a function of �0.
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where the condensate and quark contributions take the
same form as in the BCS theory, and the diquark contribu-
tion can be written as

 �diquark �
X
q

ln�1� 4Gd��q�	: (73)

Since the coefficient Z1 controls the pair fluctuations at low
temperature, the specific heat satisfies the power law C /
T3=2. As we mentioned above, the diquark contribution can
be neglected only at sufficiently weak coupling. While the
color superconductor at moderate baryon density may not
reach the BEC condition, the effect of diquark fluctuations
on the thermodynamics may be remarkable, and it may
bring significant astrophysical consequences, such as the
cooling process in compact stars.

VI. SUMMARY

We have generalized the nonrelativistic G0G formalism
of BCS-BEC crossover to relativistic fermion systems. The
theory can describe the superfluidity/superconductivity
with arbitrary strength of attractive interaction, both in
the symmetric phase and the symmetry breaking phase.
The beyond-BCS effect at strong coupling brings in ther-

mally excited bosons and contributes a pseudogap to fer-
mion excitations. In such a formalism, we confirmed that
there exists a BCS-NBEC-RBEC crossover in relativistic
fermion systems.

For color superconductivity at moderate baryon density,
while the BEC state cannot be reached, the effect of
diquark fluctuations is still remarkable and the naive
BCS mean field theory breaks down when the temperature
is close to the critical value. We investigate the two-flavor
color superconductivity at a quark chemical potential � �
350–500 MeV where the gap at zero temperature is of the
order of 100 MeV. We found that the beyond-BCS effect
strongly suppresses the transition temperature, and the
pseudogap is very large near the critical temperature.
This may strongly modify the thermodynamics of quark
matter and bring significant astrophysical consequences in
the study of compact stars.

Such a theory can be applied to not only the diquark
condensate (hqqi) at finite baryon density but also the
chiral condensate (hq �qi) at finite temperature and pion
superfluidity at finite isospin density. The observation of
q �q bound states in strongly coupled quark-gluon plasma
[26] and a large thermal quark mass above the chiral phase
transition temperature in lattice QCD [27] indicates
strongly the significance of the q �q Bose-Einstein conden-
sation and the quark pseudogap effect [12,13]. The study in
this direction is in progress [28].
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APPENDIX: PAIR SUSCEPTIBILITY AND ITS
EXPANSION COEFFICIENTS

In this appendix, we evaluate the explicit expression of
the pair susceptibility and its momentum expansion.
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FIG. 7. The temperature dependence of the pseudogap �pg
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Completing the trace in Dirac space and the Matsubara summation over the fermion frequencies, we obtain from Eqs. (11),
(16), and (30)
 

��q� �
Z d3k
�2��3
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Taking its first and second order derivatives with respect to q0, we have
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Using the relation �E
k �
2 � ��
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2 � �2, the coefficients can be rewritten as
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Taking the second order derivative of the susceptibility � with respect to q, we obtain another coefficient,
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with x � cos� and f0�x� being the first order derivative of the Fermi-Dirac distribution.
In the nonrelativistic limit with kf � m, j��mj, �� m, all the terms including antifermion dispersions can be safely

neglected, and the relativistic dispersions are reduced to �k � k2=�2m� � ���m� and Ek �
������������������
�2

k � �2
q

. Taking into
account jqj � m, we have
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which is just the same as the one given in [6,7], and the expansion coefficients Z1, Z2, and �2 are reduced to [6,7]
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In the RBEC limit with �! 0, we can expand Z1 in powers of �, Z1 ’ R��O��
3�, with the expansion coefficient R

given by
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where Ek �
������������������
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k � �2
q

is the dispersion at � � 0, and Z2 and �2 can be simplified as
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