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If electroweak symmetry is broken by a new strongly interacting sector, new physics will probably
manifest itself in gauge boson scattering at the CERN LHC. The relevant dynamics is well described in
terms of an effective Lagrangian. We discuss the probable size of the coefficients of the relevant operators
under a combination of model-independent constraints and reasonable assumptions based on two models
of the strongly interacting sector. We compare these values with the LHC sensitivity and argue that they
will be too small to be seen. Therefore, the presence of vector and scalar resonances required by unitarity
will be the only characteristic signature. We analyze the most likely masses and widths of these
resonances.
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I. MOTIVATIONS

If the breaking of the electroweak (EW) symmetry is due
to a new and strongly interacting sector, it is quite possible
that the CERN LHC will not discover any new fundamen-
tal particle below the scale of 2 TeV. In this scenario, in
which there is no supersymmetry and no light (fundamen-
tal or composite) Higgs boson to be seen, it becomes
particularly relevant to analyze the physics of gauge boson
scattering—WW,WZ, and ZZ—because it is here that the
strongly interacting sector should manifest itself most
directly.

Gauge boson scattering in this regime looks similar in
many ways to �� scattering in QCD and similar tech-
niques can be used. The natural language is that of the
effective electroweak Lagrangian introduced in [1]. This
Lagrangian contains all dimension-four operators for the
propagation and interaction of the Goldstone bosons (GB)
of the breaking of the global SU�2� �U�1� symmetry. If
we knew the coefficients of these operators, we could
predict the physics of gauge boson scattering at the LHC.
Unfortunately, the crucial coefficients do not enter directly
in currently measured observables. We do not know their
values, and constraints on them can only be inferred by
their effect in small loop corrections to the EW observ-
ables. Accordingly they are rather weak. In addition, even
though the LHC will explore these terms directly, its
sensitivity is not as good as we would like it to be and an
important range of values will remain unexplored.

This lack of predictive power can be ameliorated if we
assume some model of the strong dynamics responsible for
the electroweak symmetry breaking. In this case, addi-
tional relations among the coefficients can be found and
used to relate them to known constraints. Our strategy is
therefore to use our prejudices—that is, model-dependent
relationships among the coefficients of the effective
Lagrangian—plus general constraints coming from cau-
sality and analyticity of the amplitudes to see what values
the relevant coefficients of the effective electroweak

Lagrangian can assume without violating any of the current
bounds.

We are aware that in many models the relations among
the coefficients we utilize can be made weaker and there-
fore our bounds will not apply. Nevertheless, we find it
useful to be as conservative as possible and explore—
given what we know from electroweak precision measure-
ments and taking the models at their face values—what
can be said about gauge boson scattering if electroweak
symmetry is broken by a strongly interacting sector. Within
this framework, we find that the crucial coefficients are
bound to be smaller than the expected sensitivity of the
LHC and therefore they will probably not be detected
directly.

This is not the end of the story though. The cutoff scale
of the effective theory is given by the energy at which
unitarity is lost. This is around 1.3 TeV in the case of the
electroweak theory as described by the effective
Lagrangian at tree level. Unitarity can be recovered intro-
ducing additional states. These are the Higgs boson in the
standard model or the resonant bound states in the strongly
interacting scenarios. On a more practical level, there exist
unitarization procedures that move the scale at which
unitarity is lost to higher values and we will consider one
of them. It is characteristic of these procedures to auto-
matically include the necessary resonances in the spec-
trum. The presence of resonances is particularly interesting
if the coefficients of the effective Lagrangian cannot be
measured. They may well be the only signatures of the
strongly interacting sector accessible at the LHC. We dis-
cuss in some detail the most likely masses and widths of
these resonances and their experimental signatures.

II. GAUGE BOSON SCATTERING

Consider the case in which the LHC will not find any
new particle propagating under an energy scale � around
2 TeV. By new we mean those particles, including the
scalar Higgs boson, not directly observed yet. In this
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case—since �� mW —the physics of gauge boson scat-
tering is well described by the standard model (SM) with
the addition of the effective Lagrangian containing all the
possible EW operators for the GB—�a, with a � 1, 2, 3—
associated to the SU�2�L �U�1�Y ! U�1�em symmetry
breaking. The GB are written as an SU�2� matrix

 U � exp�i�a�a=v�; (1)

where �a are the Pauli matrices and v � 246 GeV is the
electroweak vacuum. The GB couple to the EW gauge and

fermion fields in an SU�2�L �U�1�Y invariant way. As
usual, under a local SU�2�L �U�1�Y transformation U !
LURy, with L and R an SU�2�L and a U�1�Y transforma-
tion, respectively. The EW precision tests require an ap-
proximate SU�2�C custodial symmetry to be preserved and
therefore we assume R � SU�2�R.

The most general Lagrangian respecting the above sym-
metries, together with C and P invariance, and up to
dimension-four operators, is given in [1], of which we
mostly follow the notation:

 L �
v2

4
Tr��D�U�y�D�U�� 	

1

4
a0g2v2�Tr�TV���2 	

1

2
a1gg0B�� Tr�TW��� 	

1

2
ia2g0B�� Tr�T�V�; V���

	 ia3gTr�W���V
�; V��� 	 a4�Tr�V�V���

2 	 a5�Tr�V�V
���2 	 a6 Tr�V�V��Tr�TV��Tr�TV��

	 a7 Tr�V�V
��Tr�TV��Tr�TV�� 	

1

4
a8g

2�Tr�TW����
2 	

1

2
ia9 Tr�TW���Tr�T�V�; V���

	
1

2
a10�Tr�TV��Tr�TV���

2 	 a11g�
���� Tr�TV��Tr�V�W���: (2)

In (2), V� � �D�U�Uy, T � U�3Uy, and

 D�U � @�U	 i
�k

2
Wk
�U
 ig0U

�3

2
B�; (3)

with W�� � �kWk
��=2 � @�W� 
 @�W� 	 ig�W�;W��

expressed in matrix notation.
This Lagrangian, as any other effective theory, contains

arbitrary coefficients, in this case called ai, which have to
be fixed by experiments or by matching the theory with a
UV completion. The coefficients a2, a3, a9, a11 and a4, a5,
a6, a7, a10 contribute at tree level to the gauge boson
scattering and represent anomalous triple and quartic
gauge couplings, respectively. They are not directly
bounded by experiments. On the other hand, the coeffi-
cients a0, a1, and a8 in (2) are related to the electroweak
precision measurement parameters S, T, and U [2] and
therefore directly constrained by CERN LEP precision
measurements.1

1. Precision tests, custodial symmetry, and the effective
Lagrangian.—The EW precision measurements test pro-
cesses in which oblique corrections play a dominant role
with respect to the vertex corrections. This is why we can
safely neglect the fermion sector (in our approximate treat-
ment) and why the parameters S, T, U, W, and Y represent
such a stringent phenomenological set of constraints for
any new sector to be a candidate for EW symmetry break-
ing (EWSB). The good agreement between experiments
and a single fundamental Higgs boson is encoded in the
very small size of the above EW precision test parameters.

The idea of a fundamental Higgs boson is perhaps the most
appealing because of its extreme economy, but it is not the
only possibility and what we do here is to consider some
strongly interacting new physics whose role is providing
masses for the gauge bosons in place of the Higgs boson.

To express the precision test constraints in terms of
bounds for the coefficients of the low-energy Lagrangian
in Eq. (2), we have to take into account that the parameters
S, T, and U are defined as deviations from the SM pre-
dictions evaluated at a reference value for the Higgs and
top quark masses. Since we are interested in substituting
the SM Higgs sector, we extract the contribution of the
Higgs boson and write

 SH 	 S � SEWSB; (4)

and analog equations for T and U. The contributions
coming from the SM particles, including the GB, are not
relevant because they appear on both sides of the equation.
SH is given by diagrams containing at least one SM Higgs
boson propagator, while SEWSB represents the contribution
of the new symmetry breaking sector, except for contribu-
tions with GB loops only. We thus find that, in the chiral
Lagrangian (2) notation,

 SEWSB � 
16�a1; �emTEWSB � 2g2a0;

UEWSB � 
16�a8:
(5)

The coefficients a0, a1, and a8 typically have a scale
dependence (and the same is true for SH, TH, and UH)
because they renormalize the UV divergences of the GB
loops, which yields a renormalization-scale-independent S,
T, and U. One expects by dimensional analysis that
U� �m2

Z=�2�T � T and therefore U is typically ignored.
The relationships (5) have been used in [4] to study the

1The authors of [3] defined the complete set of EW parameters
which includes—in addition to S, T and U—W and Y. The last
two come from O�p6� terms and can be neglected in the present
discussion.
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possible values of the effective Lagrangian coefficients in
the presence of a SM Higgs boson with a mass larger than
the EW precision measurement limits.

Using the results of the analysis presented in [3], taking
as reference values mH � 115 GeV, mt � 178 GeV and
summing the one-loop Higgs contributions, we obtain

 SEWSB � 
0:05 0:15; �emTEWSB � 0:1 0:9

(6)

at the scale � � mZ. We shall use these results to set
constraints on the coefficients of the effective Lagrangian
(2).

The smallness of the parameter T can be understood as a
consequence of the approximate SU�2�C custodial symme-
try. Because of this approximate symmetry we expect the
couplings a0;2;6;7;8;9;10;11 to be subdominant with respect to
the custodial preserving ones. Gauge boson scattering is
then dominated by only two coefficients: a4 and a5.

2. Scattering amplitude.—Being interested in the EW
symmetry breaking sector, we will mostly deal with lon-
gitudinally polarized vector bosons scattering because it is
in these processes that the new physics plays a dominant
role. We can therefore make use of the equivalence theo-
rem (ET) wherein the longitudinal W bosons are replaced
by the Goldstone bosons [5]. This approximation is valid
up to orders m2

W=s, where s is the center-of-mass (CM)
energy, and therefore—by also including the assumptions
underlying the effective Lagrangian approach—we re-
quire our scattering amplitudes to exist in a range of
energies such as m2

W � s� �2.
Assuming exact SU�2�C, the elastic scattering of gauge

bosons is described by a single amplitude A�s; t; u�. Up to
O�p4�, and by means of the Lagrangian (2), we obtain [6]
 

A�s; t; u� �
s

v2 	
4

v4

�
2a5���s2 	 a4����t2 	 u2�

	
1

�4��2
10s2 	 13�t2 	 u2�

72

�



1

96�2v4

�
t�s	 2t� log

�

t

�2

�

	 u�s	 2u� log
�

u

�2

�
	 3s2 log

�

s

�2

��
(7)

where s, t, u are the usual Mandelstam variables satisfying
s	 t	 u � 0 which in the CM frame and for any 1	 2!
10 	 20 process can be expressed as a function of s and the
scattering angle 	 as t � 
s�1
 cos	�=2 and u �

s�1	 cos	�=2.

The couplings a4;5��� appearing in (7) are the effective
coefficients renormalized using the minimal subtraction
scheme and they differ by an additive finite constant
from those introduced in [6]. In the latter nonstandard
renormalization, the numerator of the one-loop term in
the first brackets of (7) is shifted from 10s2 	 13�t2 	
u2� to 4s2 	 7�t2 	 u2�.

The GB carry an isospin SU�2�C charge I � 1 and we
can express any process in terms of isospin amplitudes
AI�s; t; u� for I � 0, 1, 2:

 A0�s; t; u� � 3A�s; t; u� 	 A�t; s; u� 	 A�u; t; s�;

A1�s; t; u� � A�t; s; u� 
 A�u; t; s�;

A2�s; t; u� � A�t; s; u� 	 A�u; t; s�:

(8)

From the above results, we obtain the amplitudes for the
scattering of the physical longitudinally polarized gauge
bosons as follows:
 

A�W	W
 ! W	W
� � 1
3A0 	

1
2A1 	

1
6A2;

A�W	W
 ! ZZ� � 1
3A0 


1
3A2;

A�ZZ! ZZ� � 1
3A0 	

2
3A2;

A�WZ! WZ� � 1
2A1 	

1
2A2;

A�WW ! WW� � A2:

(9)

It is useful to reexpress the scattering amplitudes in
terms of partial waves of definite angular momentum J
and isospin I associated with the custodial SU�2�C group.
These partial waves are denoted tIJ and are defined, in
terms of the amplitude AI of (8), as

 tIJ �
1

64�

Z 1


1
d�cos	�PJ�cos	�AI�s; t; u�: (10)

Explicitly we find

 t�2�00 �
s

16�v2 ;

t�4�00 �
s2

64�v4

�
16�11a5 	 7a4�

3

	
101=9
 50 log�s=�2�=9	 4i�

16�2

�
;

t�2�11 �
s

96�v2 ;

t�4�11 �
s2

96�v4

�
4�a4 
 2a5� 	

1

16�2

�
1

9
	
i�
6

��
;

t�2�20 �

s

32�v2 ;

t�4�20 �
s2

64�v4

�
32�a5 	 2a4�

3

	
273=54
 20 log�s=�2�=9	 i�

16�2

�
;

(11)

where the superscript refers to the corresponding power of
momenta.

The contributions from J � 2 start at order p4 and turn
out to be irrelevant for our purpose. The I � 1 channel is
related to an odd spin field due to the Pauli exclusion
principle. The �I � 2; J � 0� channel has a dominant mi-
nus sign which, from a semiclassical perspective, indicates
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that this channel is repulsive and we do not expect any
resonance with these quantum numbers.

The amplitudes (7) [or, equivalently, (11)] show that, for
s� m2

W , the elastic scattering of two longitudinal polar-
ized gauge bosons is observed with a probability that
increases with the CM energy s. We expect that for suffi-
ciently large energies the quantum mechanical interpreta-
tion of the S matrix will be lost. We explicitly show the
unitarity bound thus obtained as a dashed line in the plots
presented below in Figs. 4 and 5 at the end of the paper.

The effective Lagrangian (2) and gauge boson scattering
were extensively discussed in [7].

A. Limits and constraints

If we knew all the coefficients of the Lagrangian (2), and
a4 and a5 in particular, we could fully predict gauge boson
scattering at the LHC. We therefore turn now to what is
known about them in order to review all current constraints
on their possible values and compare them with the limits
which are going to be explored given the expected LHC
sensitivity. As we shall see, these two crucial coefficients
are poorly known quantities which, furthermore, will not
be fully explored at the LHC.

1. LHC sensitivity

First of all, let us consider the capability of the LHC of
exploring the coefficients a4 and a5 of the effective
Lagrangian (2). This has been discussed most recently in
[8] by comparing cross sections with and without the
operator controlled by the corresponding coefficient.
They consider scattering of W	W
, WZ, and ZZ
(WW gives somewhat weaker bounds) and report limits
(at 99% C.L.) that we take here to be

 


7:7� 10
3 � a4 � 15� 10
3;


12� 10
3 � a5 � 10� 10
3:
(12)

The above limits are obtained considering as nonvanishing
only one coefficient at the time. It is also possible to
include both coefficients together and obtain a combined
(and slightly smaller) limit. We want to be conservative and
therefore use (12). Comparable limits were previously
found in Ref. [9].

To put these results in perspective, limits roughly 1 order
of magnitude better can be achieved by a linear collider
[10].

2. EW precision measurements: Indirect bounds

Bounds on the coefficients a4 and a5 can be obtained by
including their effect (at the one-loop level) into low-
energy and Z physics precision measurements. We call
them indirect bounds since they only come in at the loop
level.

As expected, these bounds turn out to be rather weak [8]:
 


320� 10
3 � a4 � 85� 10
3;


810� 10
3 � a5 � 210� 10
3
(13)

at 99% C.L. and for � � 2 TeV. Comparable bounds were
previously found in the papers in Ref. [11]. As before,
slightly stronger bounds can be found by a combined
analysis.

Notice that the SU�2�C preserving triple gauge coupling
a3 has not been considered in the computations leading to
the previous limits. Once its contribution is taken into
account, the LHC sensitivity and the indirect bounds pre-
sented here are slightly modified, although the ranges
shown are not changed drastically.

3. Unitarity, analyticity, and causality

The requirement of unitary of the theory forces the
cutoff of the Lagrangian (2) to be � � 1:3 TeV but does
not impose any constraint on the coefficients ai. Other
fundamental assumptions like causality and analyticity of
the S matrix do give rise to interesting constraints.

In particular, the causal and analytic structure of the
amplitudes leads to bounds on the possible values the
two coefficients a4 and a5 can assume. This is well known
in the context of chiral Lagrangians for the strong inter-
actions [12] and can be extended with some caution to the
weak interactions. It can be shown in fact that the second
derivative with respect to the center-of-mass energy of the
forward elastic scattering amplitude of two GB is bounded
from below by a positive integral of the total cross section
for the transition 2�! everything. The coefficients a4 and
a5 enter this amplitude and one can use the mentioned
result to bound them.

The most stringent bounds come from the requirement
that the underlying theory respects causality. For a discus-
sion on this point and the different result found in Ref. [13],
see [14]. The causality bound can be understood by notic-
ing that, given a classical solution of the equations of
motion, one can study the classical oscillations around
this background, interpreting the motion of the quanta as
a scattering process on a macroscopic object [15]. If the
background has a constant gradient, the presence of super-
luminal propagations sum up and can, in principle, become
manifest in the low-energy regime.

Following the argument in [15], by means of solutions of
the type �0 � �iC�x

�, we obtain the free equations of
motion for the oscillations around this background. All
three of them can be written as

 p2�1	O�a�� 	
a

v4 �C � p�
2 � 0; (14)

with a � a4 or a � a4 	 a5. In this derivation we made
use of the assumption C2 � �4 which is necessary to
ensure a perturbative expansion in the framework of the
effective theory. The above relations represent a sublumi-
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nal group velocity only in the case a � 0. These classical
results can be implemented in a quantum framework,
provided we take into account that all of the coefficients
ai are formally evaluated at a scale �<� through a
matching procedure between the UV theory and the
Lagrangian (2).

In conclusion, the causality constraints can be taken to
be [14]

 

a4��� �
1

12

1

�4��2
log

�2

�2 ;

a4��� 	 a5��� �
1

8

1

�4��2
log

�2

�2 :
(15)

Notice that the constraints in Eq. (15) remove a quite
sizable region (most of the negative values, in fact) of
values of the parameters a4 and a5 allowed by the indirect
bounds alone. Figure 1 summarizes the allowed values in
the a4-a5 plane and compares it with LHC sensitivity.

B. EW precision measurements:
Direct (model-dependent) bounds

Given the results in Fig. 1, we can ask ourselves how
likely are the different values for the two coefficients a4

and a5 among those within the allowed region. Without
further assumptions, they are all equally possible and no
definite prediction is possible about what we are going to
see at the LHC.

In order to gain further information, we would like to
find relationships between these two coefficients and be-
tween them and those of which the experimental bounds
are known. To accomplish this, we have to introduce some
more specific assumptions about the ultraviolet (UV) phys-
ics beyond the cutoff of the effective Lagrangian. We do it
in the spirit of using as much as we know in order to guess
what is most likely to be found.

A step in this direction consists in assuming a specific
UV completion beyond the cutoff of the effective
Lagrangian in Eq. (2). The two most likely scenarios which
can be studied with the effective Lagrangian approach are a
confining theory (essentially the gauge sector of a strongly
interacting model of a rescaled QCD) and the strongly
coupled regime of a model like the SM Higgs sector in
which the Higgs boson is heavier than the cutoff. For each
of these two scenarios, it is possible to derive more re-
strictive relationships among the coefficients of the EW
Lagrangian and, in particular, we can relate parameters like
a0 and a1 to a4 and a5. These new relationships make it
possible to use EW precision measurements to constrain
the possible values of the coefficients a4 and a5.

1. Large-N scenario

This scenario is based on a new SU�N� gauge theory
coupled to new fermions charged under the fundamental
representation. By analogy with QCD these particles are
invariant under a flavor chiral symmetry containing the
gauged SU�2�L �U�1�Y as a subgroup. Let us consider
the case in which no other GB except the three unphysical
ones are present and therefore the chiral group has to be
SU�2�L � SU�2�R, with U�1�Y � SU�2�R. The new strong
dynamics leads directly to EWSB through the breaking of
the axial current conservation under the confining scale
around 4�v and to the appearance of an unbroken
SU�2�L	R � SU�2�C custodial symmetry. Following these
assumptions, there are no bounds on the new sector from
the parameter T and the relevant constraints come from the
S parameter only.2

At energies under the confining scale, the strong dynam-
ics can be described in terms of the hadronic states. Their
behavior can be simplified by making use of the large-N
approximation. The main result is that the resonances
appearing as low-energy degrees of freedom have negli-
gible self-interactions with respect to the couplings to the
GB. This limit turns out to be a good approximation of low-
energy QCD even if N is not large.

The large-N approximation allows us to readily estimate
the coefficients of the effective Lagrangian. The coeffi-
cients ai are scale independent at the leading order in the
1=N expansion. At this order, we find that a4 and a5 are
finite and (by transforming the result of [16] for QCD)

 a4 � 
2a5 � 

1
2a1; (16)

which provide us with the link between gauge boson
scattering and EW precision measurements—the coeffi-
cient a1 being directly related to the parameter S as in-
dicated in Eq. (5).

FIG. 1. The region of allowed values in the a4-a5 plane (in
gray) as provided by combining indirect bounds and causality
constraints. Also depicted is the region below which the LHC
will not be able to resolve the coefficients (black box).

2We are not concerned here with the fermion masses and
therefore we can bypass most of the problems plaguing techni-
color models.
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In a more refined approach, the nonperturbative effects
have been integrated out giving rise to a constituent fer-
mion mass and a gauge condensate. The chiral Lagrangian
is a consequence of the integration of these massive states.
The result becomes [17]

 a4 �
N

12�4��2
; a5 � 


�
1

2
	

6

5
hG2i

�
a4; (17)

where hG2i is an average over gauge field fluctuations. The
latter is a positive and order-1 free parameter that encodes
the dominant soft gauge condensate contribution which
there is no reason to consider as a negligible quantity.
Without these corrections the result is equivalent to those
obtained considering the effect of a heavier fourth family.
Causality requires 6

5 hG
2i � 1

2 and therefore we will con-
sider values of hG2i ranging between 0< hG2i< 0:5.

The coefficients ai are scale independent at the leading
order in the 1=N expansion.

The S parameter gives stringent constraints on N:

 SEWSB �
N
6�

�
1	

6

5
hG2i

�
(18)

which is slightly increased by the strong dynamics with
respect to the perturbative estimate, in good agreement
with the nonperturbative analysis given in [2]. From the
bounds on SEWSB, we have N < 4 �2�� and N < 7 �3��,
respectively.

The relevant bounds on a4 are then obtained via a1 and
yield

 0< a4 <
SEWSB

32�
: (19)

We are going to use the bounds given in Eqs. (17) and (19).
Taking a1 at the central value of SEWSB gives a4 < 0,

which is outside the causality bounds. This is just a refor-
mulation in the language of effective Lagrangians of the
known disagreement with EW precision measurements
of most models of strongly interacting EW symmetry
breaking.

We expect vector and scalar resonances to be the lightest
states. The high spin or high SU�2�C representations con-
sidered earlier are typically bound states of more than two
fermions and are therefore more energetic. Their large
masses make their contribution to the ai coefficients
subdominant.

The relations (15) and (17) satisfied by the model imply
that 
a4 < a5 <
a4=2, an indication that scalar reso-
nances give contributions comparable with the vectorial
ones in the large-N limit. If vectors had been the only
relevant states, the relation would have been a4 � 
a5.

It is useful to pause and compare this result with that in
low-energy QCD.

Whereas in the EW case we find that the large-N result
indicates the importance of having low-mass scalar states,
the chiral Lagrangian of low-energy QCD has the corre-

sponding parameters L1 and L2 saturated by the vector
states alone. This vector meson dominance is supported by
the experimental data and in agreement with the large-N
analysis, which in the case of the group SU�3� is different
from that of the EW group SU�2� �U�1�.

Even though the scalars have little impact on the effec-
tive Lagrangian parameters of low-energy QCD, they turn
out to be relevant to fit the data at energies larger than the �
mass where the very wide � resonance appearing in the
amplitudes is necessary [18]. One may ask if something
similar applies to the EWSB sector, it being described by a
similar low-energy action. This can be seen by looking at
the contribution of a single vector to the tree-level funda-
mental amplitude:

 A�s; t; u� �
s

v2 

3M2

Vs

ĝ2v4 	
M4
V

ĝ2v4

�
u
 s

t
M2
V

	
t
 s

u
M2
V

�

(20)

with ĝ (not to be interpreted as a gauge coupling) and M2
V

representing the only two parameters entering up to order
p4. The limit s� M2

V corresponds to integrating the vector
out and gives the low-energy theorem with the previously
mentioned a4 � 
a5 � 1=�4ĝ2�, while the opposite limit
s� M2

V is not well defined. The condition M2
V � ĝ2v2=3

erases the linear term but cannot modify the divergent
behavior of the forward and backward scattering channels.
In fact, we still find the asymptotic form t00�s� ’
ĝ2=�36�� log�s=M2

V� which has to be roughly less than
one-half to preserve unitarity. This shows why models
with only vector resonances cannot move the UV cutoff

FIG. 2. Model-dependent bounds for the coefficients for the
large-N scenario. All points within the gray background are
allowed by the causality bounds. The two upper horizontal lines
mark the bounds from EW precision tests. The bigger dark
triangle contains the allowed values when neglecting the running
of the coefficients. The smaller includes the first cutoff-
dependent subleading correction in the large-N expansion. See
the text for a discussion of this point. Two representative points
are indicated: P1 and P2. Notice that the range of this figure is all
within the black box of Fig. 1.
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too far from the vector masses, as opposed to what happens
in the case of scalar particles.

The larger dark triangle in Fig. 2 shows the allowed
values for the coefficients a4 and a5 as given by Eqs. (17)
and (19). The gray background is drawn according to the
causality constraint which is assumed scale independent to
be consistent with the leading large-N result.

As an estimate of the first subleading corrections, we can
include the running of the coefficients and obtain rescaled
causality bounds and a shrinkage of the region defined by
Eq. (19) due to the different anomalous dimensions of the
chiral coefficients. This is represented in Fig. 2 by the
second and smaller dark triangle, where a cutoff � �
1:3 TeV has been chosen. The two dark triangles thus
obtained give an idea of the uncertainty of the scenario,
and all values of the coefficients a4 and a5 in and between
these two regions are equally acceptable.

2. Heavy-Higgs scenario

This scenario is a bit more contrived than the previous
one, and a few preliminary words are in order.

A scalar Higgs-like particle violates unitarity for masses
of the order of 1200 GeV [19]. Moreover, the mass of the
Higgs is proportional to its self-coupling and from a naive
estimate we expect the perturbation theory to break down
at �� 4�, that is, mH � 1300 GeV. What actually hap-
pens in the case of a nonperturbative coupling is not
known. Problems connected with triviality are not rigorous
in nonperturbative theories and therefore the hypothesis of
a heavy Higgs cannot be ruled out by this argument.

As long as we intend such a heavy-Higgs boson only as a
modeling of the UV completion of the EW effective
Lagrangian, we can study this scenario by assuming a
Higgs mass between 2 and 2.5 TeV. Even though we cannot
expect the perturbative calculations to be reliable at these
scales, they may still provide some insight into the strongly
interacting behavior.

The effective Lagrangian parameters in the case of a
heavy Higgs can be computed by retaining only the leading
logarithmic terms to yield

 a4 � 
a1 and a4 � 2a5; (21)

which contains the link between gauge boson scattering
and the coefficient a1 we need. A more complete compu-
tation [20] gives

 a4�mZ� � 

1

12

1

�4��2

�
17

6

 log

m2
H

m2
Z

�
;

a5�mZ� �
v2

8m2
H



1

24

1

�4��2

�
79

3



27�

2
���
3
p 
 log

m2
H

m2
Z

� (22)

and

 SEWSB �
1

12�

�
log
m2

H

m2
Z



5

6

�
: (23)

The causality constraint (15) applied to the above equa-
tions implies a bound on the possible values of the cutoff �
compared tomH. An effective Lagrangian cutoff consistent
with LHC physics yields a Higgs mass at least of the order
of 2 TeV.

Putting these equations together, we obtain

 a4 �
1

16�

�
SEWSB 


1

6�

�
;

a4 � 2a5 

v2

4m2
H

	
1

12

1

�4��2

�
141

6



27�

2
���
3
p

�
:

(24)

As before in the large-N scenario, the central value of
SEWSB yields a value of a4 outside the causality bounds.

In this scenario there appears a very small nonvanishing
T parameter from loop effects, which, however, gives no
relevant bounds to the a4 and a5 couplings because

 �emTEWSB � 
g02
9

16�
SEWSB � SEWSB: (25)

At this point we can collect these results with those of
the previous section and conclude that, in both scenarios
under study, the limits on the coefficients a4 and a5 are well
below LHC sensitivity (compare Figs. 1–3). If this is the
case, the LHC will probably not be able to resolve the value
of these coefficients because they are too small to be seen.
It goes without saying that this can only be a provisional
conclusion in as much as in many models the relations
among the coefficients we utilize can be made weaker by a
variety of modifications which make the models more
sophisticated. Accordingly, our bounds will not apply
and the LHC may indeed measure a4 or a5 and we will
then know that the UV physics is not described by the
simple models we have considered.

FIG. 3. Model-dependent bounds for the coefficients in the
heavy-Higgs scenario. All points within the gray background
are allowed by the causality bounds. The upper horizontal line
marks the bound from EW precision tests. The two diagonal
lines correspond to the two values of the Higgs masses: 2 and
2.5 TeV. Two representative points are indicated: P3 and P4.
Notice that the range of this figure is all within the black box of
Fig. 1.
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3. A comment about Higgsless models

Higgsless models [21] have been proposed to solve the
hierarchy problem. They describe a gauge theory in a 5D
space-time that produces the usual tower of massive vec-
tors on the 4 dimensional brane (our world). The lightest
Kaluza-Klein modes are interpreted as the W and Z0,
while those starting at a mass scale � represent a new
weakly coupled sector.

The scale of unitarity violation is automatically raised to
energies larger than 1.3 TeV because the term in the
amplitude linearly increasing with the CM energy s is
not present in these models. Every 5D model, whatever
the curvature, has this property and fine-tuning is neither
required nor possible. For this reason, a saturation of the
unitarity bound of the term of the amplitude linear in swith
just a few vector states, as done in [22], cannot be consid-
ered a characteristic signature of the Higgsless models.

These 5D models fear no better than technicolor when
confronted by EW precision measurements. There exists
an order-1 mixing among the heavy vectors which contrib-
ute a tree-level W3

� 
 B� exchange and consequently a
SEWSB / 1=�gg0�. In 5D notation and for the simplest
case of a flat metric, SEWSB � O�1�=g2 ’ R=g2

�5�, in agree-
ment with [23]. This result can be ameliorated by the
introduction of a warped 5D geometry, or boundary terms,
or even by a delocalization of the matter fields [24]. In a
certain sense, these fine-tunings can be seen as a 5D analog
of the walking effect on a QCD-like technicolor.

As it will become clear in the next section, our general
analysis of the resonant spectrum relies on the presence of
the linear term in s and therefore any 5D Higgsless model
is a priori excluded. Nevertheless, since we already know
what the spectrum is, we can give some indicative result of
what a Higgsless model implies for the coefficients a4 and
a5.

These models present the relation a4 � 
a5 which is
characteristic of all models with vector resonances only.
This line in the a4-a5 plane of Fig. 2 lies on the causality
bound and coincides with the large-N scenario in which the
strong dynamical effect hG2i is maximal or, equivalently,
in the case in which the scalar resonances are excluded. If
we content ourselves with an estimate in the 5D flat space
approximation, we can write some explicit result [25]. For
example, the asymptotic behavior of t00 in the case of a flat
5D geometry is found to be

 t00 �
M2

1

�3v2 log
�
s

M2
1

�
(26)

and represents an upper bound on the mass M1 of the
lightest massive excitation of W, Z0.

The coefficient a4 is related to a1. We find that

 a4 � 

1

10
a1; (27)

and therefore

 a4 � 
a5 �
�2

120

v2

M2
1

�
SEWSB

160�
: (28)

The constraints on S of Eq. (6) lead to M1 > 2:5 TeV
which implies a violation of unitarity and, consequently,
the need of a UV completion for the 5D theory, at the scale
�M2

1.
The parameters a4 and a5 are—as in the other scenarios

considered—too small to be directly detected at the LHC.
The large massM1 of the first vector state makes it hard for
the LHC to find it.

In case of a warped fifth dimension these relations are
slightly changed but the tension existing between the uni-
tarity bound (26) (which requires a small M2

1 to raise the
cutoff above 1.3 TeV) and the S parameter (which requires
a large M2

1) remains a characteristic feature of these
models.

III. EXPERIMENTAL SIGNATURES:
RESONANCES

Even though the values of the coefficients may be too
small for the LHC, the unitarity of the amplitudes is going
to be violated at a scale around 1.3 TeV unless higher order
contributions are included. Following the well-established
tradition of unitarization in the strong interactions, we
consider the Padé approximation, also known as the in-
verse amplitude method (IAM) [26]. Other unitarization
procedures have been used in the literature but we find
them less compelling than IAM because they introduce
further (unknown) parameters.

This procedure is carried out in the language of the
partial waves introduced in (11). In fact, using analytical
arguments we find that

 tIJ�s� �
t�2�IJ

1
 t�4�IJ =t
�2�
IJ

	O�s3�: (29)

Equation (29) is the IAM, which has given remarkable
results describing meson interactions, having a symmetry
breaking pattern almost identical to our present case. Note
that this amplitude respects strict elastic unitarity, while
keeping the correct low-energy expansion. Furthermore,
the extension of (29) to the complex plane can be justified
using dispersion theory. In particular, it has the proper
analytical structure and, eventually, poles in the second
Riemann sheet for certain a4 and a5 values, that can be
interpreted as resonances. Thus, IAM formalism can de-
scribe resonances without increasing the number of pa-
rameters and respecting chiral symmetry and unitarity.

By inspection of Eq. (29), the IAM yields the following
masses and widths of the first resonances:
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m2
S �

4v2

16
3 �11a5��� 	 7a4���� 	

1
16�2 �

101
50 log�m2
S=�

2�

9 �
;

�S �
m3
S

16�v2 ; (30)

for scalar resonances, and

 m2
V �

v2

4�a4��� 
 2a5���� 	
1

16�2
1
9

; �V �
m3
V

96�v2 ;

(31)

for vector resonances.
A few words of caution about the IAM approach are in

order.
The resonances thus obtained represent the lightest mas-

sive states we encounter (above the Z pole) in each chan-
nel, which are necessary in order for the amplitude to
respect unitarity. These resonances are not the only mas-
sive states produced by the nonperturbative sector but those
with higher masses give a contribution that is subdominant
with respect to the IAM prediction and can safely be
ignored.

Since we neglect O�s3� terms, the regime s�m2
res is not

completely trustable. The larger the resonance peak, the
larger the error and therefore we expect the IAM prediction
to give good results only in the case of very sharp reso-
nances. This is the reason behind the success of the IAM
for the vector resonances in QCD as opposed to the more
problematic very broad scalar �.

Similarly, if we integrate a Higgs boson at tree level and
substitute the a4 and a5 parameters we find in the IAM
formula, we obtain a value for the scalar resonance mass
given by Eq. (30) which is smaller, that is, mS � 3mH=4.

Nevertheless, we consider the IAM result a remarkable
prediction, given the very small amount of information
needed.

One way to check the reliability of this method consists
in separating the a4;5 plane into three areas, depending on
the predicted lowest lying resonances being a vector, a
scalar, or even both of them. This partition follows the
coefficient patterns one expects by studying the tree-level
values for a4 and a5.

Another check on the consistency of the method is
obtained by taking the unrealistic example in which a4 �
a5 � 0. In this case one finds a pole at an energy
s > �4�v�2—at which we already know unitarity is vio-
lated—thus indicating the unreliability of the input. More
generally, a naive estimate—based on integrating out
massive states like in the vector meson dominance of
QCD—shows that for resonance masses M between the
range of hundreds of GeV and a few TeV we should expect
a ’ v2=M2 from 10
2 to 10
3 which agrees with the IAM
formula.

Gauge boson scattering and the presence of resonances
have previously been discussed in a number of papers
[27,28].

Parton-level cross sections

Our plan is to choose two representative points for each
of the considered scenarios in the allowed a4-a5 region and
then find the first resonances appearing in the WLWL
elastic scattering using the IAM approximations. The
points are shown in Figs. 2 and 3. We take
 

P1:
�a4 � 3:5� 10
3;

a5 � 
2:5� 10
3;
and

P2:
�a4 � 4:5� 10
3;

a5 � 0:2� 10
3;

(32)

for the large-N scenario, and
 

P3:
� a4 � 6:5� 10
3;

a5 � 5:0� 10
3;
and

P4:
� a4 � 3:5� 10
3;

a5 � 3:5� 10
3;

(33)

for the heavy-Higgs scenario.
The first pair corresponds to having vector resonances at

 

�mV � 1340 GeV;

�V � 128 GeV;
and

�
mV � 1900 GeV;
�V � 370 GeV;

(34)

together with very broad scalar states, while the second
pair corresponds to scalar resonances at

 

�mS � 660 GeV;

�S � 92 GeV;
and

�
mS � 820 GeV;
�S � 175 GeV:

(35)

These points are representative of the possible values and
span the allowed region. The resonances become heavier,
and therefore less visible at the LHC, for smaller values of
the coefficients. Accordingly, whereas points P1 and P3

give what we may call an ideal scenario, the other two
show a situation that will be difficult to discriminate at the
LHC.

We can now consider the physical process pp!
WLWLjj	 X and plot its differential cross section in the
WW CM energy

���
s
p

for the values of the coefficients a4 and
a5 we have identified. To simplify, we will use the effective
W approximation [29].

Once the amplitude A�s; t; u� is given, the differential
cross section for the factorized WW process is

 

d�WW
d cos	

�
jA�s; t; u�j2

32�s
; (36)

while the differential cross section for the considered
physical transition pp! WLWLjj	 X reads
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d�
ds
�
X
i;j

Z 1

s=spp

Z 1

s=�x1spp�

dx1dx2

x1x2spp
fi�x1; s�fj�x2; s�

dLWW
d


�
Z 1


1

d�WW
d cos	

d cos	 (37)

where
p
spp is the CM energy which we take to be 14 TeV,

as appropriate for the LHC, and

 

dLWW
d


�

�
�

4�sin2	W

�
2 1



��1	 
� ln�1=
� 
 2�1
 
��

(38)

where 
 � s=�x1x2spp�. For the structure functions fj we
use those of Ref. [30].

The high-energy regime will be very much suppressed
by the partition functions so that the resonances found by
(30) and (31) turn out to be the only phenomenologically
interesting ones. Because of this, we can safely make use

of the approximation (29) in the whole range from
400 GeV to 2 TeV and thus we take A�s; t; u� to be given
by the IAM unitarization of (9).

Figures 4 and 5 give the cross section for the large-N and
heavy-Higgs scenarios, respectively. The scalar resonance
corresponding to P3 is particularly high and narrow and a
very good candidate for detection. For a LHC luminosity of
100 fb
1, it would yield 106 events after one year. If it
exists, it will appear as what we would have called the
Higgs boson even though it is not a fundamental state and
its mass is much heavier than that expected for the SM
Higgs boson.

The actual signal at the LHC requires that the parton-
level cross sections derived here be included in a Monte
Carlo simulation (of the bremsstrahlung of the initial par-
tons, QCD showers, as well as of the final hadronization)
and compared with the expected background and the phys-
ics of the detector. In Refs. [28,31] it has been argued that

FIG. 5. Parton-level cross sections for WW scattering. The continuous line is the result of the effective Lagrangian. The long-dashed
line is the limit after which unitarity is lost. The dashed line with a peak is the amplitude in the presence of a scalar resonance in the
heavy-Higgs scenario. The two figures correspond to the two representative points P3 and P4 discussed in the text.

FIG. 4. Parton-level cross sections for WW scattering. In both figures, the continuous line is the result of the effective Lagrangian.
The long-dashed line is the limit after which unitarity is lost. The dashed line with a peak is the amplitude in the presence of a vector
resonance in the large-N scenario. The two figures correspond to the two representative points P1 and P2 discussed in the text.
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resonances in the range considered here can be effectively
identified at the LHC.

IV. CONCLUSIONS

The scenario in which electroweak symmetry is broken
by a new strongly interacting sector instead of a perturba-
tive Higgs boson—if realized in nature—will probably
manifest itself in gauge boson scattering at the LHC. This
scattering amplitude is controlled by the coefficients of the
effective electroweak Lagrangian describing the strong
dynamics at low energies. Under a combination of

model-independent constraints and reasonable assump-
tions, we find that the probable size of these coefficients
is too small to be seen at the LHC. Instead, the presence of
vector and scalar resonances required by unitarity and
determined by the same coefficients is the main and char-
acteristic signature of the presence of these new
interactions.
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