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We construct the integration measure over the moduli space of an arbitrary number of N kinds of dyons
of the pure SU�N� gauge theory at finite temperatures. The ensemble of dyons governed by the measure is
mathematically described by a (supersymmetric) quantum field theory that is exactly solvable and is
remarkable for a number of striking features: (i) The free energy has the minimum corresponding to the
zero average Polyakov line, as expected in the confining phase; (ii) the correlation function of two
Polyakov lines exhibits a linear potential between static quarks in anyN-ality nonzero representation, with
a calculable string tension roughly independent of temperature; (iii) the average spatial Wilson loop falls
off exponentially with its area and the same string tension; (iv) at a critical temperature, the ensemble of
dyons rearranges and deconfines; and (v) the estimated ratio of the critical temperature to the square root
of the string tension is in excellent agreement with the lattice data.
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I. INTRODUCTION

Isolated dyons in the pure Yang-Mills theory are
(anti)self-dual solutions of the equation of motion
D�F�� � 0, which in an appropriate gauge are Abelian
at large distances from the centers and carry unity electric
and magnetic charges with respect to the Cartan generators
Cm:

 �Em � Bm �
1

2

r
jrj3

Cm: (1)

For the SU�N� gauge group on which we focus in this
paper, there are N � 1 Cartan generators associated with
the simple roots of the group Cm �
diag�0; . . . ; 1;�1; 0; . . . ; 0�, where the 1 is on the mth
place, that are supplemented by the Nth generator CN �
diag��1; 0; . . . ; 1� to make the set of N dyons electric- and
magnetic-neutral. The first N � 1 dyons are also called the
Bogomolny-Prasad-Sommerfield (BPS) monopoles [1].
The last Nth dyon is sometimes called the Kaluza-Klein
monopole: In the gauge where the first N � 1 dyons are
described by a static field, the last has time-dependent
fields inside the core. However, by a periodic time-
dependent gauge transformation, one can make the last
one time-independent (at the cost of a time dependence
inside other dyons); therefore, the distinction of the last
dyon is illusory, and we shall treat all N of them on the
same footing. The cyclic symmetry of N dyons is evident
from the D-brane point of view [2,3].

In this paper, we explore the properties of a semiclassi-
cal vacuum built of a large number of dyons of N kinds.

To make the semiclassical calculation of the Yang-Mills
partition function well defined, one needs (i) to expand
about a true saddle point of the action and (ii) to be sure
that the quantum fluctuation determinant is infrared-finite.

For an isolated dyon, the first is true but the second is false.
For an arbitrary superposition of N different-kind dyons,
the second is true but the first is false. To satisfy both
requirements, one can consider N dyons as constituents
of the Kraan-van Baal-Lee-Lu (KvBLL) instantons with
nontrivial holonomy [4,5], which are saddle points of the
Yang-Mills partition function as they are exact self-dual
solutions of the equations of motion. At the same time, the
fluctuation determinant about the KvBLL instanton is
infrared-finite (and actually exactly calculable [6]) since
its total electric and magnetic charges are zero.

KvBLL instantons generalize the standard Belavin-
Polyakov-Schwartz-Tuypkin (BPST) instantons [7] having
trivial holonomy. The mere notion of dyons and of the
KvBLL instantons (also called calorons) alike imply that
the Yang-Mills field is periodic in the Euclidean time
direction, as it is in the case of nonzero temperature.
Therefore, we shall be considering the Yang-Mills partition
function at finite temperature. However, the circumference
of the compactified space can be gradually put to infinity,
corresponding to the zero-temperature limit. In that limit,
the temperature can be considered as an infrared regulator
of the theory needed to distinguish between the trivial and
the nontrivial holonomy. After all, the temperature of the
Universe is 2:7 K � 0.

In this context, the holonomy is defined as the set f�mg
of the gauge-invariant eigenvalues of the Polyakov loop L
winding in the compactified time direction, at spatial in-
finity:
 

L � P exp
�
i
Z 1=T

0
dtA4

�
j ~xj!1

� Vdiag�e2�i�1 ; e2�i�2 ; . . . ; e2�i�N �V�1;

XN
m�1

�m � 0:

(2)

By making a global gauge rotation, one can always order
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the eigenvalues such that

 �1 � �2 � � � � � �N � �N�1 	 �1 � 1; (3)

which we shall assume done. If all eigenvalues are equal up
to an integer, implying

 �triv
m �

� k
N � 1 when m � k;
k
N when m> k;

where k � 1; . . . ; N;

(4)

the Polyakov line belongs to the SU�N� group center, and
the holonomy is then said to be ‘‘trivial’’: Ltriv �
diag�exp�2�ik=N�; . . . ; exp�2�ik=N��, k � 1; . . . ; N.
Standard BPST instantons, as well as their genuine peri-
odic generalization to nonzero temperatures by Harrington
and Shepard [8], possess trivial holonomy, whereas for the
KvBLL instantons the gauge-invariant eigenvalues of the
Polyakov line assume, generally, nonequal values corre-
sponding to a ‘‘nontrivial’’ holonomy. Among these, there
is a special set of equidistant �m’s that can be named a
‘‘maximally nontrivial’’ holonomy,

 �conf
m � �

1

2
�

1

2N
�
m
N
; (5)

having a distinguished property that it leads to TrL � 0.
Since the average Polyakov line is zero in the confining
phase, the set (5) can be also called the ‘‘confining’’
holonomy.

Whatever the set of �’s is equal to, it is a global
characterization of the Yang-Mills system. Integrating
over all possible �’s is equivalent to requesting that the
total color charge of the system is zero [9]. Since �’s are
constants, the ultimate partition function has to be exten-
sive in these quantities, meaning Z � exp
�F�f�g; T�V�,
where F is the free energy and V is the 3-volume. If F�f�g�
has a minimum for a particular set f�g, integration over
�’s is done by the saddle point method justified in the
thermodynamic limit V ! 1; hence, the Yang-Mills sys-
tem settles at the minimum of the free energy as a function
of �’s. The big question is whether the pure Yang-Mills
theory has the minimum of the free energy at the confining
holonomy (5) or elsewhere.

It has been argued long ago [9] that the pure Yang-Mills
theory has N minima of the free energy at the trivial
holonomy (4). To that end, one refers to the perturbative
potential energy as a function of spatially constant A4

[9,10]:

 Ppert � V
�2��2T3

3

XN
m>n

��m ��n�
2
1� ��m ��n��

2;

(6)

which, indeed, has N minima (all with zero energy) at the
trivial holonomy (4), corresponding to N elements of the
center of SU�N�. The confining holonomy (5) corresponds,
on the contrary, to the nondegenerate maximum of (6),

equal to

 Ppert;max � V
�2��2T3

180

N4 � 1

N2 : (7)

The large volume factor in Eq. (6) seemingly prohibits any
configurations with nontrivial holonomy, dyons and
KvBLL instantons included.

A loophole in this dyon-killing argument has been no-
ticed in Ref. [11]: If one takes an ensemble of dyons, with
their number proportional to the volume, the nonperturba-
tive dyon-induced potential energy is also proportional to
the volume and may hence override the perturbative one,
possibly leading to another minimum of the full free
energy. This scenario was made probable in Ref. [6], where
it was shown that the nonperturbative potential energy
induced by a dilute gas of the KvBLL instantons prevailed
over the perturbative one at temperatures below some
critical Tc estimated through �, the Yang-Mills scale pa-
rameter, and that the trivial holonomy was not the mini-
mum of the full free energy anymore. Below that critical
temperature, the KvBLL instantons dissociate into individ-
ual dyons. The problem, therefore, is to build the partition
function for dissociated dyons and to check if the full free
energy has a minimum at the confining holonomy (5). We
get an affirmative answer to this question.

The moduli space of a single KvBLL instanton is char-
acterized by 4N parameters (of which the classical action is
independent); these can be conveniently chosen as 3d
coordinates of N dyons constituting the instanton and their
U�1� phases, 3N � N � 4N. In the part of the moduli
space where all dyons are well separated, the KvBLL
instanton becomes a sum of N types of BPS monopoles
with a time-independent action density. At small separa-
tions between dyons, the action density of the KvBLL
instanton is time-dependent and resembles that of the
standard BPST instanton. The KvBLL instanton reduces
to the standard BPST instanton in the two limiting cases:
(i) trivial holonomy (all �’s are equal up to an integer) and
any temperature and (ii) nontrivial holonomy but vanishing
temperature, provided the separations between dyons
shrink to zero as ��2T, where � is the standard instanton
size.

The quantum weight of the KvBLL instanton is deter-
mined by a product of two factors: (i) the determinant of
the moduli space metric and (ii) the small-oscillation de-
terminant over nonzero modes in the KvBLL background.
The latter has been computed exactly in Ref. [6] for the
SU�2� gauge group; recently, the result has been general-
ized to any SU�N� [12]. The former is also known exactly
(see the references and discussion in the next section).
These achievements, however, are limited to the case of a
single KvBLL instanton with unity topological charge. To
build the dyon vacuum, one needs multi-instanton solu-
tions, with the topological charge proportional to the vol-
ume, similar to the case of the instanton liquid model
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[11,13]. Although there has been serious progress recently
in constructing general multi-instanton solutions with non-
trivial holonomy and their moduli space metric [14], a
desirable explicit construction is still lacking.

Nevertheless, the moduli space metric can be con-
structed by combining the metric known for N different-
kind dyons of the SU�N� group with another known metric
for same-kind dyons and by taking into due account the
permutational symmetry between identical dyons. One of
the two ingredients, the metric for different-kind dyons, is
known exactly for all separations and involves only
Coulomb-like interactions. The other ingredient related
to the same-kind dyons is more complex. The metric for
any separations between same-kind dyons allows for
charge exchange between dyons and involves elliptic func-
tions of separation. For two dyons of the same charge, the
exact metric was found by Atiyah and Hitchin [15] from
the requirement that the Riemann tensor constructed from
the metric must be self-dual. When the separation between
same-kind dyons exceeds their core sizes, charge exchange
dies out exponentially with the separation, and the metric
becomes simple and can be written for any number of
same-kind dyons with the exponential precision [16,17].
It involves only the Coulomb-like interactions and is in fact
very similar to that for different-kind dyons but with
opposite signs in the Coulomb bonds. It is this marriage
of the asymptotic form of the metric for same-kind dyons,
valid with exponential precision, with the metric for
different-kind dyons, valid for any separations, that we
shall explore in this paper.

In fact, it may prove to be sufficient for an accurate
description of the ensemble of dyons in the thermodynamic
limit (V ! 1), as dyons of the same kind repulse each
other, whereas dyons of different kinds attract each other.
Therefore, small separations between same-kind dyons,
where our measure is only approximate, may be statisti-
cally unimportant. [Unfortunately, taking the large N limit
does not help, since only nearest neighbors in color inter-
act; hence, at any N > 2, there are only twice more
different-kind bonds than same kind.] Indeed, we find
that, despite an approximate integration measure, the
Lorentz symmetry is, in a sense, restored at T ! 0: The
‘‘electric’’ string tension as determined from the correla-
tion of Polyakov lines turns out to be independent of
temperature and equal to the ‘‘magnetic’’ string tension
determined from the area law for spatial Wilson loops, for
all representations considered. The free energy itself also
has a reasonable limit at T ! 0. However, to remain on the
safe side, we claim the results only for sufficiently high
temperatures (but below the deconfinement phase transi-
tion) where dyons do not overlap on the average, and the
metric used is justified.

This study is exploratory as we ignore many essential
ingredients of the full Yang-Mills theory. In particular, we
consider only the ensemble of dyons of one duality,

whereas CP invariance of the vacuum requires that there
must be an equal number of self-dual and anti-self-dual
configurations, up to the thermodynamic fluctuations�

����
V
p

[13]. We basically ignore the determinant over nonzero
modes, taking from it only certain known salient features,
such as the renormalization of the coupling constant and
the perturbative potential energy (6). Our aim is to dem-
onstrate that the integration measure over dyons has a
drastic, probably decisive, effect on the ensemble of dyons,
that the ensemble can be mathematically described by an
exactly solvable field theory in three dimensions, and that
the resulting vacuum built of dyons has certain features
expected for the confining pure Yang-Mills theory.

A more phenomenological and lattice-oriented attempt
to describe the ensemble of the KvBLL instantons has been
proposed recently in Ref. [18].

II. INTEGRATION MEASURE OVER DYONS

A. Different-kind dyons

The metric of the moduli space of a single SU�N�
KvBLL instanton, written in terms of N different-kind
dyons’ coordinates and U�1� phases, was first conjectured
by Lee, Weinberg, and Yi [19], generalizing the previous
work by Gibbons and Manton [17], and then confirmed by
Kraan [20] by an explicit calculation of the zero-mode
Jacobian from the Atiyah-Drinfeld-Hitchin-Manin-Nahm
construction [21,22] for the SU�N� caloron [23]. It was
later checked independently in Ref. [24], also by an ex-
plicit calculation of the Jacobian.

There are several equivalent ways to present the metric
of a single SU�N� KvBLL instanton; we use here the form
suggested originally by Gibbons and Manton [17]
(although these authors considered another case—that of
same-kind dyons; see the next subsection):
 

ds2 � Gmndxm � dxn � �d m �Wmm0 � dxm0 �

G�1
mn�d n �Wnn0 � dxn0 �;

m; n � 1 . . .N: (8)

Here xm, m � 1 . . .N, are the 3d centers of dyons, and  m
are theirU�1� phases.Gmn is a symmetric matrix composed
of the Coulomb interactions between dyons that are nearest
‘‘neighbors in color’’:

 Gmn � �mn

�
4��m �

1

jxm � xm�1j
�

1

jxm � xm�1j

�

�
�m;n�1

jxm � xm�1j
�

�m;n�1

jxm � xm�1j
; (9)

where �m � �m�1 ��m;�1 � � � � � �N � 1 (see Sec. I).
Periodicity in color indices is implied throughout the pa-
per: m � N � 1 is equivalent to m � 1, and m � 0 is
equivalent to m � N. Wmn are three N  N symmetric
matrices composed of the electric charge-magnetic charge
interaction potential w�x�:
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Wmn � �mn�w�xm � xm�1� � w�xm � xm�1��

� �m;n�1w�xm � xm�1�

� �m;n�1w�xm � xm�1�; (10)

where w�x� satisfies the equation �abc@bwc � �xa=jxj3;
to solve it, one has to introduce a Dirac string singularity.
Choosing the string, e.g., along the third axis and parame-
trizing the separation vector between two dyons in spheri-
cal coordinates x � jxj�sin� cos�; sin� sin�; cos��, one
finds w�x� � �� cot� sin�; cot� cos�; 0�=jxj, such that
the factor �d � w � dx� written for relative coordinates
combines into

 d�3 � d � cos�d�; (11)

which is a familiar 1-form encountered, e.g., in the theory
of rigid-body rotations, being the third projection of the
angular velocity. The fact that this quantity arises in the
context of electric charge-magnetic charge interaction was
known for quite a while [25]. A more general, basis-
independent way to present the interaction is via the
Wess-Zumino term [26].

The temperature factors T have been dropped in
Eqs. (8)–(10) but can be restored any time from dimen-
sions. We stress that the metric (8) is exact and valid for
any 3d separations between dyons inside the KvBLL in-
stanton, including the case when they strongly overlap. For
more details on this metric, see Refs. [20,24].

The integration measure for the KvBLL instanton is

 

YN
m�1

d3xmd m
���������
detg

p
;

���������
detg

p
� detG; (12)

where g is the full 4N  4N metric tensor given by Eq. (8).
In computing detg, one can shift d m ! d 0m � d m �
Wmk � dxk; therefore, detg � �detG�3 detG�1 � �detG�2,
and hence

���������
detg
p

� detG, where G is given by Eqs. (9)
[24]. In that reference, it was also shown that, in the limit of
trivial holonomy or small temperatures, the integration
measure (12) reduces to the well-known one for the stan-
dard BPST instanton [27].

B. Same-kind dyons

For multi-KvBLL instantons, a new element appears;
namely, two or more same-kind dyons are present. For two
dyons of the same kind, the metric splits into a flat 4d space
for center-of-mass coordinates and a nonflat 4d space M2

for relative coordinates r and  . Self-duality implies that
M2 is a self-dual Einstein manifold. Gibbons and Pope [28]
proposed the following form for the metric:

 ds2 � f2dr2 � a2d�2
1 � b

2d�2
2 � c

2d�2
3;���

g
p
� jfabcj sin�;

(13)

where

 d�1 � � sin d�� cos sin�d�;

d�2 � cos d�� sin sin�d�;

and d�3 is the third ‘‘angular velocity’’ (11); a, b, c, and f
are functions of the dyon separation r. Self-duality requires
that the Riemann tensor built from the metric (13) satisfies
R	
�� �

1
2

���
g
p
����R

�
	
, which leads to the system of first-

order equations

 

1

f
da
dr
�
b2 � c2 � a2

2bc
� 

and cyclic permutations of a; b; c;

(14)

where  � 0 or 1. The value  � 1 is chosen from sym-
metry considerations [29]. Equations (14) have a simple
solution [16]

 f � �


���������������
1�

2	
r

s
; a � b � 
r

���������������
1�

2	
r

s
;

c �
2	
��������������
1� 2	

r

q (15)

with any 	, 
. We fix 	, 
 from the asymptotics of the
metric of two dyons of the same kind m at r! 1: 
 ��������������

2��m
p

, 	 � �1=�2��m� [30]. To get the full 8 8 met-
ric tensor in terms of the two dyons’ coordinates

 x 1 � X� 1
2r; d 1 � d�� 1

2d ;

x2 � X� 1
2r; d 2 � d�� 1

2d ;

we add to Eq. (13) the flat metric for center-of-mass
coordinates 8���dX � dX� d�d�� and obtain the metric
which is very similar to Eq. (8):
 

ds2 � ~Gijdxi � dxj � �d i � ~Wii0 � dxi0 �

 ~G�1
ij �d j � ~Wjj0 � dxj0 �;

i; j � 1; 2; (16)

 

~G ij �
4��m �

2
jx1�x2j

2
jx1�x2j

2
jx1�x2j

4��m �
2

jx1�x2j

 !
; (17)

 

~W ij �
�w�x1 � x2� w�x1 � x2�
w�x1 � x2� �w�x1 � x2�

� �
;

w�x� �
1

jxj
�� cot� sin�; cot� cos�; 0�:

(18)

Note the opposite sign of Coulomb interactions in Eq. (17)
as compared to Eq. (9).

It is easy to generalize Eqs. (16)–(18) to any number of
dyons, all of the mth kind. One extends the summation in
Eq. (16) from i; j � 2 to i; j � K, where K is the number
of same-kind dyons, and modifies Eqs. (17) and (18) as
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~G ij �

8<:
4��m �

P
k�i

2
jxi�xkj

; i � j;

2
jxi�xjj

; i � j;

~Wij �

8<:�2
P
k�i

w�xi � xk�; i � j;

2w�xi � xj�; i � j:

(19)

Equations (16) and (19) were derived by Gibbons and
Manton [17] (with other coefficients related to another
scale convention) from considering the classical equations
of motion for K identical monopoles at large separations.

Although Eq. (15), from where the metric (16) stems, is
an exact solution of the Einstein self-duality equation, it is
believed that Eq. (16) is valid only for large separations
r > 1=2��mT (we restore the explicit temperature factor
here). Note that a very similar metric (8) for different-kind
dyons is proven to be valid at any separations. A somewhat
superficial reason for the difference between same- and
different-kind dyons was noted in Ref. [19]: While the
metric (8) is positive-definite, the metric (16) goes to
zero at r � 1=2��mT. A deeper reason is that, while the
metric (8) describes a system with total electric and mag-
netic charges zero (the KvBLL instanton), the metric (16)
is applied to a system where neither is zero.

A nontrivial solution of the Einstein self-duality equa-
tion (14) was found by Atiyah and Hitchin (AH) [15] (for
more details, see [29]). In the AH solution, the a; b; c
functions are given by elliptic integrals, and a�r� � b�r�.
It follows then from Eq. (13) that the relative U�1� orien-
tation angle  enters the metric in an essential way; in
particular, a shift of  is not an isometry anymore. The
functions a, b, c of the AH solution differ from those of the
solution (15) by terms of the order of � exp��4��mTr�
which die out exponentially at large separations [16].
Therefore, at large r the AH solution takes the form of
Eq. (15) such that  enters the metric in a trivial way, as in
Eq. (16).

For the AH solution, the metric determinant goes to zero
at even larger r � 1=�4�mT� [15,16]. Physically, this point
corresponds to an axially symmetric two-monopole solu-
tion where two monopoles coincide. When dyons overlap,
what should be called ‘‘separation’’ becomes ambiguous; r
is defined only in the context of a concrete parametrization
of the field. In the ensemble, the zero of the metric deter-
minant means a vanishing contribution to the partition
function, actually imposing a very strong repulsion be-
tween same-kind dyons. The same is true for the approxi-
mate metric (16), which we shall use below. One can think
that the approximate metric (16), because of the strong
repulsion it imposes, strongly suppresses in the statistical
mechanics sense configurations with close same-kind
dyons, where the metric becomes inaccurate. In other
words, the approximate metric (16) may be accurate for
statistically important configurations. This hypothesis
needs a detailed study, of course. Its consequences, how-
ever, turn out to be reasonable.

C. Combining the metric for same-kind and different-
kind dyons

The explicit form of the metric tensor for K KvBLL
instantons made of N kinds of dyons is not known (for the
latest development, see Ref. [14]). Below, we suggest an
ansatz for this metric, satisfying the known requirements.
One has to combine the metric (8) for N different-kind
dyons with that for K same-kind ones. The solution of the
problem is almost obvious if one takes the approximate
metric (16) for same-kind dyons, as it has exactly the same
form as the metric (8) for different-kind dyons. Since the
metric cannot ‘‘know’’ to which instanton a particular dyon
belongs, it must be symmetric under permutations of any
pair of dyons of the same kind. Importantly, the metric of
the moduli space of self-dual solutions must be hyper-
Kähler [29].

Let indices m; n � 1 . . .N refer to the dyon kind (or
‘‘color’’) and indices i; j; k � 1 . . .K number the dyons
of the same kind. The coordinates of the ith dyon of the
mth kinds are �xmi;  mi� 	 y	mi 	 y	A , 	 � 1; 2; 3; 4. To
shorten notations, we introduce instead of the multi-index
�mi� a single index A � �mi� running from 1 to KN.

We write the full metric tensor as
 

ds2 � gA	;B
dy	Ady


B

� GABdxA � dxB � �d A �WAA0 � dxA0 �

G�1
AB�d B �WB;B0 � dxB0 �; (20)

where, explicitly,

 GAB � Gmi;nj

� �mn�ij

�
4��m �

X
k

1

jxmi � xm�1;kj

�
X
k

1

jxmi � xm�1;kj
� 2

X
k�i

1

jxmi � xmkj

�

�
�m;n�1

jxmi � xm�1;jj
�

�m;n�1

jxmi � xm�1;jj

� 2
�mn

jxmi � xmjj

��������i�j
; (21)

 

WAB �Wmi;nj

� �mn�ij

�X
k

w�xmi� xm�1;k� �
X
k

w�xmi� xm�1;k�

� 2
X
k�i

w�xmi� xmk�
�
� �m;n�1w�xmi� xm�1;j�

� �m;n�1w�xmi� xm�1;j� � 2�mnw�xmi� xmj�ji�j:

(22)

The inverse matrix G�1
AB in (20) is understood according to

the relation G�1
ACGCB � �AB � �mn�ij.
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Note that the Coulomb bonds in Eq. (21) for the same-
kind dyons have an opposite sign from those for the
neighbor kind and have a twice larger coefficient. The
coefficients �1, 2, �1 are actually the scalar products of
simple roots of the SU�N� group, supplemented by an
additional nonsimple root to make the matrix cyclic-
symmetric. This remark allows the generalization of
Eqs. (21) and (22) to any Lie group.

The constructed 4KN  4KN metric tensor gA	;B
 is
hyper-Kähler. It means that there exist three ‘‘complex
structures’’ I�a�, a � 1; 2; 3 (all three are 4KN  4KN
matrices) such that

 I�a�g � gI�a�T �“T” means transposed� (23)

and which satisfy the Pauli algebra

 I�a�I�b� � �abcI�c� � �ab1: (24)

Related to I�a�, there are 3 Kähler symplectic 2-forms

 !�a� � ��a�B
;C�dy


B ^ dy

�
C; ��a� � ���a�T;

(25)

where

 ��a� � I�a�g: (26)

The 2-forms !�a� are closed:

 d!�a� � 0 or
@
@y	A

��a�B
;C�dy
	
A ^ dy



B ^ dy

�
C � 0:

(27)

Explicitly, the 3 Kähler forms !�a� have the same form as
in Ref. [17] for same-kind dyons, only GAB and WAB
should be now taken from Eqs. (21) and (22):
 

!�a� � 2�d A �WAA0 � dxA0 � ^ dxaA
�GBC�abcdxbB ^ dx

c
C: (28)

With GAB and WAB given by Eqs. (21) and (22), the
3 Kähler forms !�a� [or ��a�B
;C�] are fixed from
Eq. (28), and the complex structures I�a� are found from
inverting Eq. (26). We have checked that the algebra (23)
and (24) is then satisfied for any choice of w�x� in Eq. (22).
It is the closure of the 2-forms, Eq. (27), that requests that
w�x� is the electric charge-magnetic charge interaction
potential satisfying the equation �abc@bwc � �xa=jxj3.

We note further properties of the constructed GAB and
WAB:

(i) Symmetry: GAB � GBA, WAB �WBA, meaning, of
course, Gmi;nj � Gnj;mi, Wmi;nj �Wnj;mi;

(ii) Overall ‘‘neutrality’’:
P
njGmi;nj � 4��m,P

miGmi;nj � 4��n,
P
njWmi;nj � 0,

P
miWmi;nj�0;

(iii) Identity loss: Dyons of the same kind are indistin-
guishable, meaning mathematically that detG is
symmetric under permutation of any pair of dyons
�i$ j� of the same kind m;

(iv) Factorization: In the geometry when dyons fall into

K well separated clusters of N dyons of all kinds in
each, detG factorizes into a product of exact integra-
tion measures for K KvBLL instantons, detG �
�detG1�

K, where G1 is given by Eq. (9).
The integration measure over the moduli space of K
KvBLL instantons of the SU�N� gauge group is

 

YK
i�1

YN
m�1

Z
dxmid mi

���������
detg

p
;

���������
detg

p
� detG: (29)

In deriving the last relation, we notice that, in the determi-
nant, d mi can be shifted by Wmi;m0i0 � dxm0i0 ; hence,
detg � �detG�3 detG�1 � �detG�2, and therefore

���������
detg
p

�
detG, where the KN  KN matrix G is given by Eq. (21).
We have also checked this result by an explicit calculation
of the determinant of the full 4KN  4KN metric tensor g.
Since G is independent of the U�1� angles  mi, integration
over  can be omitted.

D. Dyons’ fugacity

Fugacity is a term from statistical mechanics of grand
canonical ensembles (where the number of particles is not
fixed) denoting the weight with which a particle contrib-
utes to the grand partition function. Let there be Km dyons
of the mth kind, m � 1 . . .N. For a neutral system of K
KvBLL instantons, the number of dyons of every kind is
equal, K1 � � � � � KN � K; however, we shall consider
the general case of nonequal K’s for the time being: One
can always project to the neutrality condition. For an
arbitrary set of K’s, G is a �K1 � � � � � KN�  �K1 �
� � � � KN� matrix given by Eq. (21).

We write the partition function of the grand canonical
ensemble as a sum over all numbers of dyons of each kind:

 Z �
X

K1:::KN

1

K1! . . .KN!

YN
m�1

YKm
i�1

Z
�d3xmif� detG�x�;

(30)

where f is the x-independent factor—the fugacity—ac-
companying every integral over x. Since detG�x� is sym-
metric under permutation of same-kind dyons, the identity
factorials are needed to avoid counting the same configu-
ration more than once. If one likes to impose the overall
neutrality condition, viz. that only configurations with the
equal number of dyons of different kinds contribute to the
partition function (K1 � � � � � KN � K), one integrates
Eq. (30) over auxiliary angles:
 

Zneutr �
X

K1...KN

Z 2�

0

d�1

2�
. . .
d�N
2�

ei�1�K2�K1�

K1!
. . .
ei�N�K1�KN�

KN!


YN
m�1

YKm
i�1

Z
�d3xmif� detG�x�

�
X
K

1

�K!�N
YN
m�1

YK
i�1

Z
�d3xmif� detG�x�: (31)
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We shall see below, however, that the neutrality condition
will be taken care of dynamically; therefore, the additional
integration (31) is, in fact, unnecessary.

As fugacity is x-independent, it can be established from
the limit when all dyons are grouped into N-plets of
different-kind dyons, forming infinitely dilute neutral
KvBLL instantons, such that the measure factorizes into
a product of individual instanton measures. The latter is
known to be [24]

 

YN
m�1

Z
d3xm detG1�x�22N�3N; (32)

where G1�x� is the N  N matrix (9) for one KvBLL
instanton; see Eq. (12). This must be multiplied by the

factor 
��4=T�=
�����������
2�g24

p
�N coming from 4N zero modes of

the instanton. Here � is the ultraviolet cutoff, and g is the
bare coupling constant given at that cutoff [6,24].
Multiplication by this factor makes Eq. (32) dimensionless,
as it should be. In addition, Eq. (32) is multiplied by the
exponent of minus the classical action of the instanton,
equal to ��=���11=3�N , where � is the Yang-Mills scale
parametrizing the coupling constant in the Pauli-Villars
regularization scheme, and by the dimensionless factor

det��D2���1, where D2 is the Laplace operator in the
instanton background. The last factor arises from integra-
tion over nonzero modes; it is understood that the small-
oscillation determinant is normalized to the free (zero
field) determinant and UV regularized by the Pauli-
Villars method. It is known that the normalized and regu-
larized 
det��D2���1 is proportional to ���N=3�, times the
exponent of minus the perturbative potential energy (6),
times a slowly varying function of dyon separations [6,31].

Combining all factors, we observe that the Pauli-Villars
mass � cancels out (as it should in a renormalizable
theory), and we obtain the dyon fugacity

 f �
�4

T
4�

g4 c; (33)

where c is proportional to ���1=3�; it is made dimensionless
by a combination of temperature and dyon separations. The
relative (un)importance of c in the dynamics of the en-
semble, as compared to the measure factor (30), is illus-
trated by the powers of �: Their ratio is
��1=3�:4 � �1=12. For the time being, we shall set c �
1 and recall it in the discussion in Sec. IV. The coupling g2

in (33) starts to ‘‘run’’ at the two-loop level not included
here. Ultimately, its precise argument is determined self-
consistently from the action density of the ensemble [32].
In the study of the large-N behavior, it will be important
that c � O�1� whereas 1=g4 � O�N2�; hence, the fugacity
f � O�N2�.

III. DYON PARTITION FUNCTION AS A
QUANTUM FIELD THEORY

We now face an interesting problem of finding the
correlation functions in the ensemble of dyons whose
grand partition function is given by Eq. (30). The renor-
malized Yang-Mills scale parameter � creeps in via the
fugacity (33); therefore, all physical quantities will be
henceforth expressed through �. The temperature also
enters explicitly via Eq. (33); the temperature factors are
understood in all Coulomb bonds in the matrix G (21) as
well, to make them dimensionless. Thus, the partition
function and the ensuing correlation functions depend,
generally, on both � and T.

The ensemble defined by the partition function (30) is a
very unusual one, as it is governed by the determinant of a
matrix G whose dimension is equal to the number of
particles and not by the exponent of the interaction energy,
as is common in statistical mechanics. Of course, one can
always write detG � expTr logG 	 exp�Uint�; however,
then the interaction potential Uint will contain not only 2-
body, but also 3-, 4-, 5-, . . .-body forces that are increas-
ingly important. At the same time, the statistical mechanics
of an ensemble governed by the determinant-induced in-
teractions can be transformed into an equivalent quantum
field theory which considerably simplifies its handling.

To that end, we first notice that a matrix determinant can
be presented as a result of the integration over a finite
number of anticommuting Grassmann variables [33]

 detG �
Z Y

A

d yAd A exp� yAGAB B�; (34)

where the usual convention [33] for anticommuting inte-
gration variables is understood:

  A B �  B A � 0;  yA 
y
B �  

y
B 
y
A � 0;

 yA B �  B 
y
A � 0 for anyA;B;Z

d yAd A � 0;
Z
d yAd A 

y
A A � 1:

(35)

In our case, A � �mi� is a multi-index, where m � 1 . . .N
is the dyon kind, and i � 1 . . .Km is the number of a dyon
of the mth kind. We rewrite identically the partition func-
tion (30) as

 Z �
X

K1...KN

fK1 . . . fKN

K1! . . .KN!

YN
m�1

YKm
i�1

Z
d3xmi


Z
d ymid mi exp� ymiGmi;nj nj�;

(36)

where Gmi;nj is a matrix made of Coulomb interactions
[Eq. (21)], and f is the fugacity (33) where we put c � 1.
Having obtained G in the exponent, it is now possible to
express its Coulomb matrix elements from path integrals,
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extending the Polyakov trick [34] to anticommuting
variables.

A. Off-diagonal elements: Ghost fields

We first present the off-diagonal (i � j) elements of
 yG by means of a functional integration over anticom-
muting (or ghost) fields. In the next subsection, we present
the diagonal (i � j) elements with the help of a functional
integration over commuting (boson) fields.

Let us consider the Gaussian path integral over N anti-
commuting fields �m�x� coupled to the anticommuting
source

P
i
 mi��x� xmi� �  m�1;i��x� xm�1;i��:

 Y �
YN
m�1

Z
D�ymD�m exp

Z
dx
X
m

�
T

4�
@�ym � @�m

� i
X
i


� ymi�m�x� � �
y
m�x� mi���x� xmi�

� � ym�1;i�m�x� � �
y
m�x� m�1;i���x� xm�1;i��

�
:

(37)

Although we do not write it explicitly to save space, we
assume that Y is normalized to the same path integral with
the kinetic term but without the source term. The subscript
m is periodic:m � N � 1 is equivalent tom � 1, andm �
0 means m � N.

The path integration of an action that is quadratic in
anticommuting variables is performed in the same way as
the Gaussian path integral over bosonic variables, with the
result

 Y � exp
�

1

T

X
m;i;j

�  ymi mj
jxmi � xmjj

�
 ymi m�1;j

jxmi � xm�1;jj

�
 ym�1;i mj
jxm�1;i � xmjj

�
 ym�1;i m�1;j

jxm�1;i � xm�1;jj

��
: (38)

Owing to the cyclic summation over m, the last term
doubles the first one, and we correctly reproduce the off-
diagonal (i � j) part of  ymiGmi;nj nj in Eq. (36) [cf. the
last two lines in Eq. (21)]. However, the sum in Eq. (38)
contains an extra diagonal divergent term 2 ymi mi=jxmi �
xmij which is absent in Eq. (36) and, hence, should be
canceled.

B. Diagonal elements: Boson fields

Next, we present the diagonal (i � j) part of  yG by
means of a Gaussian integration over bosonic fields vm,
wm.

Let us consider
 

X �
YN
m�1

Z
DvmDwm exp

Z
dx
X
m

�
T

4�
@vm � @wm

�
X
i


� ymi mi��x� xmi� �  
y
m�1;i m�1;i

 ��x� xm�1;i��vm�x� � ���x� xmi�

� ��x� xm�1;i��wm�x��
�
: (39)

To make this path integral formally convergent, one as-
sumes that the integration over either vm or wm goes along
the imaginary axis. As in the case of ghost fields in the
previous subsection, we do not write it explicitly but
assume that X is normalized to the same path integral
with the kinetic term but without the source term.

Integrating (39) over wm, we obtain a functional �
function:

 �
�
�
T

4�
@2vm �

X
i


��x� xmi� � ��x� xm�1;i��

�
;

whose solution is

 vm�x� � �
1

T

X
i

�
1

jx� xmij
�

1

jx� xm�1;ij

�
;

X
m

vm�x� � 0:
(40)

The Jacobian following from the � function
det���T=4��@2� cancels with the same Jacobian from
the normalization integral. Substituting vm�x� from
Eq. (40) back into Eq. (39) and using the cyclic symmetry
of the summation over m, we obtain

 

X � exp
�
�

1

T

X
m;i;j

�
2

 ymi mj
jxmi � xmjj

�
 ymi mi

jxmi � xm�1;jj

�
 ymi mi

jxmi � xm�1;jj

��
: (41)

The divergent term at i � j, namely, �2 ymi mi=jxmi �
xmij, cancels exactly the unwanted extra term in Eq. (38),
and we reproduce precisely the diagonal term in
 ymiGmi;nj nj of Eq. (36) [cf. the first two lines in Eq. (21)].

Thus, we have fully reproduced the factor exp� yG � in
the partition function (36) with the help of the integration
over anticommuting ghost (�ym, �m) and ordinary boson
(vm, wm) variables. The Coulomb interactions have been
traded for kinetic energy terms of those fields. Apparently,
vm are U�1�N�1 Abelian electric potentials, and wm are
their dual fields.
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C. Synthesis: The equivalent quantum field theory

We now use Eqs. (37) and (39) to rewrite identically the partition function (36). We have

 

Z �
YN
m�1

Z
D�ymD�mDvmDwm exp

Z
dx
X
m

�
T

4�
�@�ym � @�m � @vm � @wm�

�


X1
K1�0

fK1

K1!

�Z
dx1

Z
d y1d 1 exp
4��1 

y
1 1 � i 

y
1 ��1�x1� � �2�x1�� � i��

y
1 �x1� � �

y
2 �x1�� 1 � �v1�x1�

� v2�x1�� 
y
1 1 � �w1�x1� � w2�x1����

K1  . . .
X1
KN�0

fKN

KN!

�Z
dxN

Z
d yNd N exp
4��N 

y
N N � i 

y
N��N�xN�

� �1�xN�� � i��
y
N�xN� � �

y
1 �xN�� N � �vN�xN� � v1�xN�� 

y
N N � �wN�xN� � w1�xN���

�
KN
: (42)

In writing (42), we have used the fact that Km identical
integrals over dxmid 

y
mid mi appear in the partition func-

tion, where i � 1 . . .Km is a ‘‘dumb’’ index labeling inte-
gration variables. Therefore, one representative of such an
integral for every dyon kind m is taken to the power Km.

In each line in Eq. (42), integration over d ymd m can be
trivially performed, given the rules (35): It reduces to
expanding the exponents in Eq. (42) to the terms bilinear
in  ym,  m. For example, for m � 1, we get
 X1
K1�0

1

K1!

�
f
Z
dx
4��1 � ��

y
1 � �

y
2 ���1 � �2��x�

� �v1 � v2��x��e�w1�w2��x�
�
K1

� exp
�
f
Z
dx
4��1 � ��

y
1 � �

y
2 ���1 � �2�

� �v1 � v2��ew1�w2

�
(43)

and similarly for other values of m. We obtain
 

Z�
YN
m�1

Z
D�ymD�mDvmDwmexp

Z
dx
X
m

�
T

4�
�@�ym �@�m

�@vm �@wm��f
4��m��vm�vm�1�

���ym��
y
m�1���m��m�1��ewm�wm�1

�
: (44)

Given the cyclic symmetry in the summation over m, the
terms without derivatives can be rewritten in a nicer way.
We introduce the function

 F �w� 	
XN
m�1

ewm�wm�1 (45)

and recall that �m � �m�1 ��m, where �m are the ei-
genvalues of the Polyakov line; see the introduction. The
terms without derivatives in Eq. (44) can be written as

 f
�
��4��m � vm�

@F
@wm

� �ym
@2F

@wm@wn
�n

�

(summation over repeated indices is understood), where
 

@F
@wm

� ewm�wm�1 � ewm�1�wm;

@2F

@wm@wn
� �mn�ewm�wm�1 � ewm�1�wm� � �m;n�1ewm�wm�1

� �m;n�1ewm�1�wm:

The final result for the dyon partition function is

 Z �
Z
D�yD�DvDw exp

Z
d3x

�
T

4�
�@i�

y
m@i�m

� @ivm@iwm� � f
�
��4��m � vm�

@F
@wm

� �ym
@2F

@wm@wn
�n

��
: (46)

Equation (46) should be divided by the normalization
integral being the same expression but with zero fugacity
f. In fact, the normalization integral is unity and can be
omitted. Indeed, integrating over vm gives
����T=4��@2wm�, whose only solution is wm � const,
whereas the Jacobian is det�1���T=4��@2�. This
Jacobian, however, is immediately canceled by the integral
over the ghost fields �m. Therefore, the quantum field
theory defined by Eq. (46) is the full result for the dyon
partition function.

IV. GROUND STATE: ‘‘CONFINING’’ HOLONOMY
PREFERRED

The fields vm enter the partition function (46) only
linearly. Therefore, they can be integrated out right away,
giving rise to a � function

 

Z
Dvm ! �

�
�
T

4�
@2wm � f

@F
@wm

�
: (47)

This � function restricts possible fields wm over which one
still has to integrate in Eq. (46). Let �wm be a solution to the
argument of the � function. Integrating over small fluctua-
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tions about �w gives the Jacobian

 Jac � det�1

�
�
T

4�
@2�mn � f

@2F

@wm@wn

��������w� �w

�
: (48)

Remarkably, exactly the same functional determinant (but
in the numerator) arises from integrating over the ghost
fields, in the same background �w:
 Z
D�yD� exp

Z
d3x

�
T

4�
@i�

y
m@i�m � f�

y
m

@2F

@wm@wn
�n

�

� det
�
�
T

4�
@2�mn � f

@2F

@wm@wn

�
: (49)

Therefore, all quantum corrections cancel exactly between
the boson and ghost fields (a characteristic feature of
supersymmetry), and the ensemble of dyons is basically
governed by a classical-field theory [35].

To find the ground state, we examine the fields’ potential
energy being�4�f�m@F =@wm, which we prefer to write
restoring �m � �m�1 ��m and F as

 P � 4�f
X
m

�me
wm�wm�1 : (50)

For constant fields wm, this is multiplied by the volume;
therefore, one has to find the stationary point for any given
set of �m’s. It leads to the equations

 

@P
@w1

� 4�f��1e
w1�w2 � �Ne

wN�w1� � 0;

@P
@w2

� 4�f��2ew2�w3 � �1ew1�w2� � 0; . . .

(51)

whose solution is

 ew1�w2 �
��1�2�3 . . .�N��1=N�

�1
;

ew2�w3 �
��1�2�3 . . .�N�

�1=N�

�2
; etc:

(52)

The solution corresponds to all terms in Eq. (50) being
equal, despite a priori nonequal �m’s. Putting it back into
Eq. (50), we obtain

 P � 4�fN��1�2 . . .�N��1=N�; �1��2������N � 1:

(53)

The maximum is achieved when all �’s are equal:

 �1 � �2 � � � � � �N �
1

N
; Pmax � 4�f: (54)

Equal �’s correspond to the ‘‘maximal nontrivial’’ or con-
fining holonomy; see Eq. (5). Since there are no quantum
corrections, the free energy of the dyons ensemble is
simply proportional to the classical potential energy F �
�PV. Therefore, the maximum of P corresponds to the
minimum of the free energy. Thus, the free energy of the
grand canonical ensemble has the minimum at the confin-

ing values of the holonomy (see the introduction). In the
minimum, the free energy is
 

Fmin � �4�fV � �
16�2

g4 �4 V
T
� �

N2

4�2

�4

2

V
T
;

 	
	sN
2�
�
g2N

8�2 ;

(55)

and there are no corrections to this result. In the last
equation, we have introduced the N-independent ’t Hooft
coupling .

Let us make a few comments. First, the free energy (55)
has the correct behavior at large N. Second, V=T � V�4� is
in fact the 4d volume of the R3  S1 space. Although we
do not expect our theory to be valid at small temperatures
(where the measure we use for same-kind dyons is proba-
bly incomplete), Eq. (55) can be formally extended to the
zero-temperature limit, as it correctly reproduces the ex-
tensive dependence on the 4d volume. Third, Eq. (55)
gives, in fact, the density of dyons. One can introduce
separate fugacities fm for dyons of the mth kind into the
partition function (36); then the average number of dyons
is found from the obvious relation

 hKmi �
@ logZ

@ logfm

��������fm�f
:

With separate fugacities, the result (55) is modified by
replacing f ! �f1f2 . . . fN�1=N; hence,

 hKmi��fm
@Fmin

@fm

��������fm�f
�

1

N
4�fV�

N

4�2

�4

2 V
�4�; (56)

i.e., a finite (and equal) density of each kind of dyons in the
4-volume, meaning also the finite density of the KvBLL
instantons. From the three-dimensional point of view, the
3d density of dyons (and KvBLL instantons) is increasing
as the temperature goes down: There are more and more
instantons sitting on top of each other in 3d but spread over
the compactified time direction.

Let us add a few comments of speculative nature as they
extend what is actually done here. We attempt to make
contact with the phenomenology of the pure glue SU�N�
Yang-Mills theory. In the real world, there must be as many
anti-self-dual dyons in the vacuum as there are dual ones,
up to thermodynamic fluctuations �

����
V
p

. For a crude esti-
mate, we make the simplest assumption that adding anti-
self-dual dyons just doubles the free energy. If the topo-
logical angle � is introduced, one has to change dyon
fugacities f ! fei�=N and antidyon fugacities f !
fe�i�=N, such that the KvBLL instanton whose fugacity
is fN acquires a phase ei� and the anti-instanton acquires a
phase e�i� [37]. After minimization in wm and �m which
goes as before, the free energy (55) becomes

 F � �4�f2 cos
�
N
V � �

16�2

g4 �42 cos
�
N
V
T
; (57)
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leading to the topological susceptibility
 

hQ2
Ti �

Z
d4x

	
TrF ~F�x�

16�2

TrF ~F�0�

16�2



�

1

V�4�
@2F

@�2

����������0

�
32�2

N2g4 �4 �
1

2�2

�4

2 : (58)

We see that the topological susceptibility is stable at large
N as it is expected from the N-counting rules.

The free energy is related, via the trace anomaly, to the
so-called gluon condensate [11,32]

 F ’ �
11N
12

hTrF2
��i

16�2 V�4�;

from which we find

 

hTrF2
��i

16�2
’ N

12

11

1

2�2

�4

2 � N
12

11
hQ2

Ti: (59)

It is the expected N dependence of the condensate.
As the temperature increases, the perturbative potential

energy (6) becomes increasingly important since its con-
tribution grows as T4 with respect to the nonperturbative
one. The perturbative energy arises from the small-
oscillation determinant 
det��D2���1 denoted as c in
Eq. (33). If we naively add up the dyon-induced free
energy (55) and the perturbative energy (7) both computed
at the maximally nontrivial holonomy (54), we obtain the
full free energy

 

�
�

32�2

g4

�4

T
� T3 �2��

2

180

N4 � 1

N2

�
V:

It becomes positive and hence less favorable than the zero
energy of the trivial holonomy at the temperature

 T4
c �

45

2�4

N4

N4 � 1

�4

2 : (60)

At this temperature, the deconfinement phase transition is
expected. We see that Tc is stable in N as it should be on
general grounds. For a numerical estimate at N � 3, we
take  � 1=4 compatible with the commonly assumed
freezing of 	s at the value of 0.5 and � � 200 MeV in
the Pauli-Villars scheme. We then obtain from Eqs. (58)–
(60) the topological susceptibility, the gluon condensate,
and the critical temperature �189 MeV�4, �255 MeV�4, and
278 MeV, respectively, being in reasonable agreement with
the phenomenological and lattice values. More robust
quantities (from both the theoretical and the lattice view-
points) are those measured in units of the string tension;
such a comparison will be made in the next section.

From now on, we shall assume we are far enough below
the critical temperature that the minimum of the free
energy implies the confining holonomy [Eq. (54)]. From
Eq. (52), we learn that at the minimum all constant parts of
wm’s are equal (up to a possible difference in 2�ik, with
integer k, which does not change the exponents of w). Let
us note that had we imposed the overall neutrality condi-

tion of the dyon ensemble by an additional integration over
the � angles [see Eq. (31)], it would be equivalent to
shifting wm ! wm � i�m. Since in Eq. (46) one integrates
over all functions wm including their constant parts, an
additional integration over �’s is unnecessary, and the
neutrality condition is imposed automatically.

The triviality of the free energy (55) (which is due to the
cancellation between boson and ghost quantum determi-
nants) does not mean the triviality of the ensemble: Dyons
are, in fact, strongly correlated, as we shall see in the last
sections. To study correlations, one has to insert source
terms into the partition function (46). With the sources
switched on, the fields wm are allowed to be x-dependent.
Therefore, one has to retain the term �4�f�m@F =@wm,
which we rewrite using Eqs. (50) and (54) as

 action �
Z
d3x

4�f
N

F �w�; (61)

where F �w� is defined in Eq. (45).
Finally, we note that the equation of motion for the fields

wm, following from the � function (47), is known as the
periodic Toda lattice [38], which has plenty of soliton
solutions. In particular, there are many one-dimensional
domain-wall solutions interpolating between wm � wn �
2�ikmn and 2�ik0mn, where k, k0 are integers. Why do they
not contribute to the partition function? The answer is that
any soliton is x-dependent, and an overall shift of the
soliton is a zero mode of the operator (48) resulting in an
integration over the soliton position in space. However, it is
also a zero mode of the identical operator for ghosts (49),
leading to a vanishing ghost determinant. Therefore, any
soliton gives a zero contribution to the partition function.
However, solitons may and will generally contribute to the
correlation functions.

V. CORRELATION FUNCTION OF POLYAKOV
LINES

In the gauge where A4�x� is chosen to be time-
independent, the Polyakov line is TrL�z� �
Tr exp�iA4�z�=T�. The A4 field of K KvBLL instantons
away from their cores is Abelian [23] and can be gauge
chosen to be diagonal:

 A4�z�=T � �mn

�
2��m �

1

2T

X
i

�
1

jz� xmij

�
1

jz� xm�1;ij

��
:

Comparing it with Eq. (40), we observe that A4 can be
written as

 A4�z�=T � diag
�
2��m �

1

2
vm�z�

�
;

TrL�z� �
X
m

exp
�
2�i�m �

i
2
vm�z�

�
:

(62)
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Therefore, to compute the vacuum average of any number
of Polyakov lines, one has to add a source term to the
partition function (46):
 X
m1;m2...

exp
�
�m1

�
2�i�m1

�
i
2

Z
dxvm�x��mm1

��x� z1�

�

� �m2

�
2�i�m2

�
i
2

Z
dxvm�x��mm2

��x� z2�

�
� �� �

�
;

(63)

where z1;2... are the points in space where Polyakov lines
are placed and �m1;m2... � �1 depending on whether one
takes L � exp�iA4=T� or Ly � exp��iA4=T�.

The source term is linear in vm, which means that
integration over vm in the partition function with a source
produces a � function (47) as before whose argument is
now shifted by the source:
 Z
Dvm ! �

�
�
T

4�
@2wm � f

@F
@wm

� �m1

i
2
��x� z1��mm1

� �m2

i
2
��x� z2��mm2

� � � �

�
: (64)

The correlation function of any number of widely sepa-
rated Polyakov lines in the fundamental representation is
given by the path integral with � functions:
 

hTrL�z1�TrL�z2� . . .i�
X

m1;m2;...

e2�i��m1
��m2

�����
Z
Dwm

exp
�Z

dx
4�f
N

F �w�
�

�
Y
m

�
�
�
T

4�
@2wm�f

@F
@wm

�
i
2
��x�z1��mm1

�
i
2
��x�z2��mm2

����

�

det
�
�
T

4�
@2�mn�f

@2F

@wm@wn

�
:

(65)

It is understood that Eq. (65) is divided by the same
expression but without the source. The last factor comes
from integrating over the ghost fields.

The strategy is to find all possible solutions of the �
functions, substitute them into the action (61), and sum
over m1;2.... Note that, whatever functions wm solve the �
functions, the Jacobian arising from those � functions is
again canceled exactly by the ghost determinant.
Therefore, there will be no corrections to a classical
calculation.

A. Average of a single line

The average hTrLi is expected to be zero for the confin-
ing holonomy, but let us check how it follows from the

general equation (65). In this case, there is only one
�-function source in Eq. (65). One has to solve the equa-
tion

 �
T

4�
@2wm � f

@F
@wm

�
i
2
��x� z1��mm1

and plug the solution into the action (61). The solution is
wm�x� � �mm1

�i=2T�=jx� z1j near the source, where the
Laplacian is the leading term and @F =@wm can be ne-
glected. At large distances from the source, wm decays;
therefore, @F =@wm can be expanded to the linear order in
wm. The solution decreases exponentially with the dis-
tance. At intermediate distances, the nonlinearity is essen-
tial. However, whatever is the precise form of the solution
of this nonlinear equation, the action is finite and indepen-
dent of m1, as there is a perfect cyclic symmetry in m1.
Therefore, the action factors out from the summation over
m1, and we obtain

 hTrLi � const
X
m1

exp�2�i�m1
� � 0; (66)

as expected in the confining phase. We use here the ‘‘maxi-
mally nontrivial’’ holonomy (5), which has been shown in
Sec. IV to bring the free energy to the minimum.

B. Heavy-quark potential

The correlation function of two Polyakov lines in the
fundamental representation at spatial points z1 and z2 is
 

hTrL�z1�TrLy�z2�i�
X
m1;n1

e2�i��m1
��n1

�
Z
Dwm

exp
�Z

dx
4�f
N

F �w�
�

�
Y
m

�
�
�
T

4�
@2wm�f

@F
@wm

�
i
2
��x�z1��mm1

�
i
2
��x�z2��mn1

�

det
�
�
T

4�
@2�mn�f

@2F

@wm@wn

�
:

(67)

We are interested in the asymptotics of the correlator
(67) at large source separations jz1�z2j!1. We shall see
in a moment that wm’s solving the � functions fall off
exponentially from the sources w�exp��Mjz�z1;2j�=
jz�z1;2j; therefore, the generally nonlinear equations on
wm can be linearized far from the sources. The same
Yukawa (or, more precisely, Coulomb) functions are the
solutions close to the sources, as the leading term there is
the Laplacian, and the @F =@wm term can be neglected. In
the intermediate range, the nonlinearity is essential, but it
has no influence on the asymptotics of the potential be-
tween two infinitely heavy quarks—only on the residue of
the correlator. The action acquires the jz1�z2j-dependent
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contribution from the range of integration far away from
both sources where wm�x� is small. Therefore, to find the
asymptotics of the heavy-quark potential, one can take
@F =@wm to the linear order in wm and F �w� to the
quadratic order. We have for small wm

 F �w� �
X
m

ewm�wm�1 � N �
1

2
wmMmnwn;

@F
@wm

�Mmnwn;

(68)

where M is the matrix made of scalar products of the
simple roots of the gauge group, supplemented by a non-
simple root to make it periodic: Mmn � TrCmCn; see
Eq. (1). In our case of SU�N�,

 M �

2 �1 0 . . . 0 �1
�1 2 �1 . . . 0 0
0 �1 2 �1 . . . 0

. . . . . . . . . . . . . . . . . .
�1 0 0 . . . �1 2

0BBBBB@

1CCCCCA: (69)

The SU�2� group is a special case where this matrix is

 M �2� �
2 �2
�2 2

� �
: (70)

The orthonormalized eigenvectors are the pairs

 V�k;1�n �

����
2

N

s
cos

�
2�k
N

n
�

and V�k;2�n �

����
2

N

s
sin
�
2�k
N

n
�

(71)

corresponding to the twice-degenerate eigenvalues

 M �k� �

�
2 sin

�k
N

�
2
; k � 1 . . .

�
N � 1

2

�
: (72)

There is also an eigenvector V�0�n � cos�2� � 0=N �
n�=

����
N
p
� �1; 1; . . . ; 1�=

����
N
p

with a nondegenerate zero ei-
genvalue, and, in the case of even N, there is an additional
eigenvector V�N=2�

n � cos�2� � N=2=N � n�=
����
N
p
�

�1;�1; 1; . . . ;�1�=
����
N
p

with a nondegenerate eigenvalue
equal to 22. In other words, the eigenvalues are

 M �k� �

�
2 sin

�k
N

�
2
; k � 0; . . . ; N � 1; (73)

where the pairs of eigenvalues corresponding to k and N �
k are apparently degenerate.

In the linearized form, the � functions in Eq. (67) im-
pose the equations

 � @2wm �M
2Mmnwn �

2�i
T
��mm1

��x� z1�

� �mn1
��x� z2��; (74)

where we have introduced the ‘‘dual photon’’ mass

 M2 �
4�f
T
�

16�2�4

g4T2 � O�N2�: (75)

Equations (74) are best solved in the momentum space:

 wm�p� �
2�i
T

�
1

p2 �M2M

�
mn
En�p�;

where En � �nm1
eip�z1 � �nn1

eip�z2 :

(76)

This must be put into the action (61) where F �w� is to be
expanded to the quadratic order. We have

 

Z
d3x

4�f
N

1

2
wm�x�Mmnwn�x�

�
2�f
N

Z d3p
�2��3

wm�p�Mmnwn��p�

��
2�f
N
�2��2

T2

Z d3p
�2��3

Em�p�



�
1

p2�M2M

�
mp

Mpq

�
1

p2�M2M

�
qn
En��p�

��
�2��3f

NT2

Z d3p
�2��3

Em�p�


XN
l�1

V�l�m
1

p2�M2M�l�
M�l� 1

p2�M2M�l�
V�l�n En��p�;

(77)

where we have diagonalized the matrices by the orthogonal
transformation built of the eigenvectors V�l�m corresponding
to the eigenvalues M�l�. We now pick from Em�p�En��p�
the cross terms depending on z1 � z2 as only they are
relevant for the interaction. The inverse Fourier transform
is

 

Z d3p
�2��3

eip��z1�z2�

�p2 �M2M�l��2
�

1

8�
e�jz1�z2jM

��������
M�l�
p

M
�����������
M�l�
p :

Therefore, we continue the chain of Eqs. (77) and write

 �77� �
2�2f

NT2M
V�l�m1

�����������
M�l�

p
e�jz1�z2jM

��������
M�l�
p

V�l�n1 ; (78)

where summation over all eigenvalues labeled by l is
implied. The coefficient �2 arises because cross terms in
EmEn have a negative relative sign, and there are two such
terms. We obtain from Eq. (67)
 

hTrL�z1�TrLy�z2�i �
X
m1;n1

exp
�
2�i��m1

��n1
� �

2�2f

NT2M

 V�l�m1

�����������
M�l�

p
e�jz1�z2jM

��������
M�l�
p

V�l�n1

�
:

(79)

At large separations jz1 � z2j between the point sources,
the second term in Eq. (79) is exponentially small, and one
can Taylor expand it. The zero-order term is zero as it is the
product of two independent sums over m1 and n1; i.e., it is
the product of unconnected hTrL�z1�ihTrLy�z2�i � 0, as
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explained in the previous subsection. In the first nonzero
order, we get
 

hTrL�z1�TrLy�z2�i �
2�2f

NT2M

X
N=2�

l�1

�����������
M�l�

p
e�jz1�z2jM

��������
M�l�
p


XN

m1;n1�1

exp�2�i��m1
��n1

��

 V�l�m1
V�l�n1

: (80)

It is a sum of exponentially decaying contributions with the
exponents determined by the eigenvalues M�l�; see
Eq. (73). The weight of the lth contribution is determined
by the summation over m1, n1. For l � 1; . . . ; 
N�1

2 �, eigen-
values are twice-degenerate, and we use the eigenvectors
(71). At even N, the highest eigenvalue is nondegenerate,
the corresponding eigenvector being V�N=2�

n � cos�n=
����
N
p

.
Summation over m1, n1 in Eq. (80) gives

 XN
m1;n1�1

exp
�
2�i

m1 � n1

N

�
2

N

�
cos

2�lm1

N
cos

2�ln1

N
� sin

2�lm1

N
sin

2�ln1

N

�
� N�l;1 for all l � 1 . . .

�
N � 1

2

�
; any N;

XN
m1;n1�1

exp
�
2�i

m1 � n1

N

�
1

N
cos�m1 cos�n1 � N�N;2 for l �

N
2
; even N: (81)

We see that only the exponent with the lowest eigenvalue�����������
M�1�
p

� 2 sin�N contributes in Eq. (79) to the correlator of
Polyakov lines in the fundamental representation; higher
eigenvalues decouple through orthogonality. We thus ob-
tain
 

hTrL�z1�TrLy�z2�i �
2�2f

NT2M
2 sin

�
N
N

 exp
�
�jz1 � z2jM2 sin

�
N

�
(82)

plus exponentially small corrections from the expansion of
Eq. (79) to higher orders. This should be compared with the
standard definition of the heavy-quark potential

 hTrL�z1�TrLy�z2�i � C exp
�
�
V�z1 � z2�

T

�
;

from which we deduce the linear heavy-quark potential at
large separations:
 

V�z1 � z2� � jz1 � z2jMT2 sin
�
N
� �jz1 � z2j;

C � O�N0�; (83)

with the ‘‘string tension’’

 � � MT2 sin
�
N
� T

���������
4�f
T

s
2 sin

�
N
� 8�

�2

g2 sin
�
N

�
�2


N
�

sin
�
N
: (84)

In the last equation in the chain, the N-independent
’t Hooft coupling  has been used. We see that the string
tension turns out to be (i) independent of the temperature
[39] and (ii) independent of N at large N, as expected. In
reality, we expect that anti-self-dual dyons not accounted
for here double M2, and, hence, the dyon-induced string
tension is actually

���
2
p

times bigger. A more robust quantity

(from both the theoretical and the lattice viewpoints) is the
ratio Tc

����
�
p

since in this ratio the poorly known parameters
� and  cancel out; see Eq. (60):

 

Tc����
�
p �

�
45

4�4

�2N2

�N4 � 1�sin2 �
N

�
�1=4�

���!N!1 1

�

�
45

4

�
�1=4�
�O

�
1

N2

�
:

(85)

The values are compared to those measured in lattice
simulations of the pure SU�N� gauge theories [40] in
Table I demonstrating good agreement. The relatively large
4% deviation for the SU�2� group may be related to the fact
that we have determined Tc in Sec. IV by comparing the
free energy for confining and trivial holonomy, that is,
assuming a first-order transition, whereas for N � 2 it is
actually a second-order one.

In Table II, we add the comparison of the topological
susceptibility (58) measured in units of the string tension,
with the lattice data [41]. The agreement is also remarkably
good, given the approximate nature of the model.

C. N-ality and k strings

All irreducible representations of the SU�N� group fall
into N classes: those that appear in the direct product of
any number of adjoint representations and those that ap-
pear in the direct product of any number of adjoint repre-
sentations with the irreducible representation being the
rank-k antisymmetric tensor, k � 1; . . . ; N � 1.
‘‘N-ality’’ is said to be zero in the first case and equal to
k in the second. N-ality-zero representations transform
trivially under the center of the group ZN; the rest acquire
a phase 2�k=N.

One expects that there is no asymptotic linear potential
between static color sources in the adjoint representation as
such sources are screened by gluons. If a representation is
found in a direct product of some number of adjoint
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representations and a rank-k antisymmetric representation,
the adjoint ones ‘‘cancel out’’ as they can be all screened
by an appropriate number of gluons. Therefore, from the
confinement viewpoint, all N-ality � k representations are
equivalent, and there are only N � 1 string tensions,
��k; N� being the coefficients in the asymptotic linear
potential for sources in the antisymmetric rank-k represen-
tation. Its dimension is d�k;N� � N!

k!�N�k�! , and the eigen-
value of the quadratic Casimir operator is C�k;N��
N�1
2N k�N�k�.

The value k � 1 corresponds to the fundamental repre-
sentation, whereas k � N � 1 corresponds to the represen-
tation conjugate to the fundamental [quarks and
antiquarks]. In general, the rank-�N � k� antisymmetric
representation is conjugate to the rank-k one; it has the
same dimension and the same string tension ��k;N� �
��N � k;N�. Therefore, for odd N, all string tensions
appear in equal pairs; for even N, apart from pairs, there
is one privileged representation with k � N

2 which has no
pair and is real. The total number of different string ten-
sions is thus 
N2�.

The behavior of ��k;N� as function of k and N is an
important issue as it discriminates between various con-
finement mechanisms. On general N-counting grounds,
one can only infer that at large N and k� N,
��k; N�=��1; N� � �k=N��1�O�1=N2�� [42]. In this sub-
section, we show that the dyon ensemble leads to the sine
law for the k strings

 ��k; N� � const sin
�k
N

�plus temperature-dependent corrections�;
(86)

satisfying the above requirement on the asymptotics. The
sine behavior has been found in certain supersymmetric
theories [43]. Here it follows from a direct calculation of
the correlator of Polyakov lines in the rank-k antisymmet-
ric representation.

We first show that there is no asymptotic linear potential
between adjoint sources. If A4 is diagonal and given by
Eq. (62), the eigenvalues of the Polyakov loop in the
adjoint representation are exp��i�A4m � A4n�=T�, and
there are N � 1 unity eigenvalues. Therefore, the average
of the adjoint line is nonzero, and the correlator of two such
lines tends asymptotically to a nonzero constant.

Let the Polyakov line in the fundamental representation
be L�z� � exp�iA4�z�=T� � diag�z1; z2; . . . ; zN�, where
zm � exp�2�i�m �

i
2vm�z��; see Eq. (62). The Polyakov

lines in the antisymmetric rank-k representation are then

 

L�1;N��TrL�
XN
m�1

zm; k� 1;

L�2;N��
1

2
��TrL�2�TrL2��

XN
m<n

zmzn; k� 2;

L�3;N��
1

6
��TrL�3�3TrL2TrL�2TrL3��

XN
m<n<p

zmznzp;

k� 3;

L�k;N��
XN

m1<m2<���<mk

zm1
zm2

. . .zmk
: (87)

Therefore, any general L�k;N��z� placed at the 3d point z
serves as a source

 XN
m1<m2<���<mk

exp
�

2�i��m1
� � � � ��mk

�

�
i
2
�vm1
�z� � � � � � vmk

�z��
�

for the vm field, which should be put into the partition
function (46).

To get the correlation function of two lines in k repre-
sentation, we proceed as in Sec. V B and arrive at the
generalization of Eq. (80):

TABLE I. Deconfinement temperature Tc=
����
�
p

from Eq. (85) (upper row) and from lattice
simulations [40] (lower row).

N � 2 3 4 6 8 1

(0.7425) 0.6430 0.6150 0.5967 0.5906 0:5830� 0:4795
N2 �

0:5006
N4 � . . .

0.7091(36) 0.6462(30) 0.6344(81) 0.6101(51) 0.5928(107) 0:5970�38� � 0:449�29�
N2 (fit)

TABLE II. Topological susceptibility hQ2
Ti

1=4=
����
�
p

from Eq. (58) (upper row) and from lattice
simulations [41] (lower row).

N � 2 3 4 5 1

0.5 0.439 0.420 0.412 0:399� 0:328
N2 �

0:243
N4 � . . .

0.4831(56) 0.434(10) 0.387(17) 0.387(21) 0:376�20� � 0:43�10�
N2 (fit)
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hL�k; N��z1�Ly�k;N��z2�i �
2�2f

NT2M

X
�N=2��

l�1

�����������
M�l�

p
e�jz1�z2jM

��������
M�l�
p

�
XN

m1<m2<���<mk

XN
n1<n2<���<nk

exp2�i��m1
� � � � ��mk

��n1
� � � � ��nk�
V

�l�
m1
� � � � � V�l�mk�
V

�l�
n1
� � � � � V�l�nk �: (88)

In deriving Eq. (88), it is important that the maximally nontrivial holonomy (5) is used, leading to hL�k;N�i � 0;

k � 1 . . .N � 1. Higher powers of exp��jz1 � z2jM
�����������
M�l�
p

� have been neglected.
Again, the correlation function of Polyakov lines is a sum of exponentially decaying contributions with the exponents

determined by the eigenvalues M�l�; see Eq. (73). The weight of the lth contribution is given by the sum over m1;2...k and
n1;2...k. We recall the eigenvectors V�l� (71) and observe the following important orthogonality relation:

 

XN
m1<m2<���<mk

XN
n1<n2<���<nk

exp
�

2�i
m1 � � � � �mk � n1 � � � � � nk

N

�

V�l�m1

� � � � � V�l�mk�
V
�l�
n1
� � � � � V�l�nk �

�

8><>:N�lk for all twice-degenerate eigenvalues l � 1 . . .
�
N�1

2

�
; any N � 2k;

N�N;2k for the highest, nondegenerate eigenvalue l � N
2 ; even N:

(89)

[The orthogonality relation (81) is a particular case of this
general one, corresponding to k � 1. The derivation of
these relations is elementary when one presents the eigen-
vectors in the exponential form.]

The above orthogonality relations imply that the corre-
lator of the lines in rank-k antisymmetric tensor represen-
tation couples only to the single exponent determined by
the kth eigenvalue

�����������
M�k�
p

� 2 sin�kN , N � 2k; all of the
rest of the eigenvalues decouple [44]. Therefore, the cor-
relation function (88) is
 

hL�k; N��z1�Ly�k;N��z2�i �
2�2f

NT2M
2 sin

�k
N
N

 exp��jz1 � z2jM
�����������
M�k�

p
�;

(90)

and, hence, the general-k string tension is

 ��k;N� � MT
�����������
M�k�

p
� MT2 sin

�k
N
�

�2


N
�

sin
�k
N
(91)

as announced. Lattice simulations [45] support this regime,
whereas another lattice study [46] gives somewhat smaller
values but within 2 standard deviations from the values
following from Eq. (91). For a general discussion of the
sine regime for k strings, which is favored from many
viewpoints, see [42].

VI. AREA LAW FOR SPATIAL WILSON LOOPS

The area behavior of the spatial Wilson loops is not
directly related to the linear confining potential; however, it
is believed that in a confining theory the spatial Wilson
loop must exhibit the area law. The reason is that (i) at T !
0, Lorentz symmetry is restored, and, therefore, the spatial
loop must behave in the same way as the timelike one

whose area law is related to the linear confining potential,
and (ii) at high T, the spatial loop eventually becomes a
timelike loop from the 2� 1 dimensions’ point of view,
which has to obey the area law to fulfill confinement in 3d.
Therefore, it is very plausible that the spatial Wilson loop
has the area behavior at any temperatures. It is expected
that the spatial string tension is roughly constant below the
deconfinement transition and eventually grows as �T2 at
very high temperatures where the theory is basically three-
dimensional.

In this section, we demonstrate that the dyon ensemble
induces the area law for spatial Wilson loops and that the
string tension coincides with that found in the previous
section from the correlators of the Polyakov lines. We think
that it is an interesting result since (a) the way we derive the
string tension for spatial loops is very different from that
for Polyakov lines and (b) in a sense, it demonstrates that
our ensemble restores Lorentz symmetry at low tempera-
tures, despite its three-dimensional formulation.

The condition that A4 is time-independent only partially
fixes the gauge: One can still perform time-independent
gauge transformations. This freedom can be used to make
A4 diagonal (i.e., Abelian). This necessarily implies Dirac
string singularities, which are pure gauge artifacts as they
do not carry any energy. Moreover, the Dirac strings’
directions are also subject to the freedom of the gauge
choice. In Refs. [4,23], the gauge choice in the explicit
construction of the KvBLL instanton was such that the
Dirac strings were connecting individual dyon constituents
of the instanton. This choice is, however, not convenient in
the ensemble of dyons as dyons have to lose their ‘‘mem-
ory’’ to which particular instanton they belong. The natural
gauge is where all Dirac strings of all dyons are directed to
infinity along some axis, e.g., along the z axis. The dyons’
field in this gauge is given explicitly in Ref. [47] [for the
SU�2� group].
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In this gauge, the magnetic field of dyons beyond their
cores is also Abelian and is a superposition of the Abelian
fields of individual dyons. For large Wilson loops in which
we are interested, the field of a large number of dyons
contribute as they have a slowly decreasing 1=jx� xij
asymptotics; hence, the use of the field outside the cores
is justified. Owing to self-duality,

 
Bi�x��mn � 
@iA4�x��mn � �
T
2
�mn@ivm�x�; (92)

cf. Eq. (40). Since Ai is Abelian beyond the cores, one can
use the Stokes theorem for the spatial Wilson loop:

 W 	 TrP expi
I
Aidxi � Tr expi

Z
Bid2�i

�
X
m

exp
�
�i

T
2

Z
d2�i@ivm

�
: (93)

Equation (93) may look contradictory as we first use Bi �
curlAi and then Bi � @iA4. Actually, there is no contra-
diction as the last equation is true up to Dirac string
singularities which carry away the magnetic flux. If the
Dirac string pierces the surface spanning the loop, it gives a
quantized contribution exp�2�i � integer� � 1; one can
also use the gauge freedom to direct Dirac strings parallel
to the loop surface, in which case there is no contribution
from the Dirac strings at all.

Let us take a flat Wilson loop lying in the �xy� plane at
z � 0. Then Eq. (93) is continued as

 W �
X
m

exp
�
�i

T
2

Z
x;y2area

d3x@zvm��z�
�

�
X
m

exp
�
i
T
2

Z
x;y2area

d3xvm@z��z�
�
: (94)

It means that the average of the Wilson loop in the dyons
ensemble is given by the partition function (46) with the
source

 

X
m

exp
�
i
T
2

Z
d3xvm

d��z�
dz

��x; y 2 area�
�
;

where ��x; y 2 area� is a step function equal to unity if x, y
belong to the area inside the loop and equal to zero other-
wise. Again, the source shifts the argument of the � func-
tion arising from the integration over the vm variables, and
the average Wilson loop in the fundamental representation
is given by the equation

 

hWi �
X
m1

Z
Dwm exp

�Z
dx

4�f
N

F �w�
�

�
Y
m

�
�
�
T

4�
@2wm � f

@F
@wm

�
iT
2
�mm1

d��z�
dz

��x; y area�
�

 det
�
�
T

4�
@2�mn � f

@2F

@wm@wn

�
: (95)

Therefore, one has to solve the nonlinear equations on
wm’s with a source along the surface of the loop

 

�@2wm �M2�ewm�wm�1 � ewm�1�wm�

� �2�i�mm1

d��z�
dz

��x; y 2 area�;

M2 �
4�f
T

; (96)

for all m1, plug it into the action �4�f=N�F �w�, and sum
overm1. In order to evaluate the average of the Wilson loop
in a general antisymmetric rank-k representation, one has
to take the source in Eq. (96) as �2�i�0�z���mm1

� � � � �

�mmk
� and sum over m1 < � � �<mk from 1 to N; see

Eq. (87). Again, the ghost determinant cancels exactly
the Jacobian from the fluctuations of wm about the solu-
tion; therefore, the classical-field calculation is exact.

Contrary to the case of the Polyakov lines, one cannot,
generally speaking, linearize Eq. (96) in wm but has to
solve the nonlinear equations as they are. With no source in
the right-hand side, Eq. (96) is known as the periodic Toda
lattice, and it is integrable for any N. It has an hierarchy of
soliton solutions constructed in Refs. [38,48]. Below, we
modify those solutions in such a way that they satisfy
Eq. (96) with a source in the right-hand side. We call
them ‘‘pinned solitons’’; their action determines the string
tensions. We obtain below for the ‘‘magnetic’’ k-string
tension

 ��k;N� � MT2 sin
�k
N
�

�2


N
�

sin
�k
N
; (97)

which coincides exactly with the ‘‘electric’’ string tension
(91) found from the correlators of the Polyakov lines.

A. Construction of string solitons

Let us find the pinned solitons corresponding to Wilson
loops in a general antisymmetric rank-k representation of
the SU�N� gauge group. First of all, we rewrite Eq. (96) for
the difference fields wm;m�1 � wm � wm�1 as only the
differences enter the action:
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�w0012 �M
2�2ew12 � ewN1 � ew23� � �2�i�0�z�
��1;m1

� � � � � �1;mk
� � ��2;m1

� � � � � �2;mk
��;

�w0023 �M
2�2ew23 � ew12 � ew34� � �2�i�0�z�
��2;m1

� � � � � �2;mk
� � ��3;m1

� � � � � �3;mk
��; � � �

�w00N�1;N �M
2�2ewN�1;N � ewN�2;N�1 � ewN;1� � �2�i�0�z�
��N�1;m1

� � � � � �N�1;mk
� � ��N;m1

� � � � � �N;mk
��;

�w00N;1 �M
2�2ewN;1 � ewN�1;N � ew12� � �2�i�0�z�
��N;m1

� � � � � �N;mk
� � ��1;m1

� � � � � �1;mk
��:

(98)

At all z except one point z � 0, where there is a source, wm;m�1 satisfy free (zero source) equations. Solutions for very
similar equations have been constructed in Refs. [38,48]. Adjusting them to our case, we write the general solutions of
Eq. (98) with the zero right-hand side:

 w�k�m;m�1�z� � ln

1� �ßk�m�1�E�k��z��
1� �ßk�m�1�E�k��z��


1� �ßkmE�k��z��2
; k � 1; . . . ; N � 1;

E�k��z� � exp��M
�����������
M�k�

p
z�;

�����������
M�k�

p
� 2 sin

�k
N
; ß � exp

�
�

2�i
N

�
:

(99)

The complex parameter � is arbitrary; there is also free-
dom in choosing the sign of the phase of ß. Equations (99)
describe free ‘‘domain-wall’’ solitons on the axis �1<
z <�1; it is easy to check that their actions do not depend
on � and are given by Eq. (97). Were � real, it could be
understood as an overall shift of the domain wall by z0

where E�k��z0� � �. However, we need pinned soliton
solutions with a nonzero �0�z� source in the right-hand
side. To find these, we have to take one free solution at z >
0 and another free solution at z < 0, where the two solu-
tions may differ only by the value of the so far arbitrary
complex parameter � and by the sign of the phase of ß.

We fix ß � exp�� 2�i
N � at z > 0 and ß � exp�� 2�i

N � at
z < 0. The condition that only the imaginary parts of
wm;m�1 have jumps at z � 0 requires that � is a pure phase
factor, � � ei	 at z > 0, and � � e�i	 at z < 0. Indeed,
with these definitions, w�k�m;m�1 at z < 0 are complex con-
jugates of the same functions at z > 0; the real parts of
w�k�m;m�1 are continuous functions at z � 0, whereas the
imaginary parts may have jumps. We define the logarithms
in Eq. (99) such that they have cuts along the negative axis.
Thus, the general form of a ‘‘pinned’’ soliton solving
Eq. (98) with a nonzero source is

 w�k�m;m�1�z� �

8><>:
ln
1��ßk�m�1�E�k��z��
1��ßk�m�1�E�k��z��


1��ßkmE�k��z��2
; z > 0;

ln
1��
�ß�k�m�1�E�k���z��
1���ß�k�m�1�E�k���z��


1���ß�kmE�k���z��2
; z < 0;

m � 1; . . . ; N; k � 1; . . . ; N � 1: (100)

We have now to choose the phase factor � such that the
functions w�k�m;m�1�z� have �2�i jumps at z � 0 in accor-
dance with the source in the right-hand side of Eq. (98). We
note that at z! �1 the arguments of the logarithms tend
to ei�0; hence, all functions tend to zero at z! �1. As one
varies jzj from 1 to 0, the arguments of the logarithms
travel in the complex plane, ending up at the real axis at
z! 0. The trajectories for z > 0 and for z < 0 are mirror
images of one another since w�k�m;m�1��z� � �w

�k�
m;m�1�z��

�.
If at z! 0 the trajectories end up at the positive semiaxis,
the function has no jump since the logarithm is uniquely
defined there. If at z! 0 the trajectories end up at the
negative semiaxis, the function has a �2�i jump owing to
the cut of the logarithm along the negative semiaxis. The
sign of the jump depends on whether the trajectory ap-
proaches the cut from above or from below. For given N
and k, the only handle ruling the behavior of the trajecto-
ries in the complex plane is the phase factor �. We shall
show below that one can find � such that a given function
wm;m�1 has a needed jump. But before presenting explicit

solutions for k � 1; 2; . . . , let us show that the string ten-
sion for a general k representation is given by Eq. (97).

To find the string tension, one needs to compute the
action on the solution (100):

 

action �k;N� �
4�f
N

Z
d3x

XN
m�1


exp�w�k�m;m�1� � 1�

 ��x; y 2 area� � ���k;N� area;

where we have subtracted the constant related to the vac-
uum. It is understood that the solution (100) is valid for x; y
inside the loop because of the � function in (96) that we
have omitted for brevity; outside the loop, there is no
source, and wm;m�1�z� � 0 is compatible with the equa-
tion. At the loop boundary, wm;m�1�z� interpolates between
(100) and zero. Substituting the solution (100), we obtain
for the string tension
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 ��k;N� � �
4�f
N

Z 1
�1

dz
XN
m�1


exp�w�k�m;m�1�z�� � 1�

�
4�f
N

XN
m�1

Z 1
�1

dz�ßk � 2� ß�k�


�ßkmE�k��z�

�1� �ßkmE�k��z��2
;

where for z < 0 one has to change E�k��z� ! E�k���z� �
1=E�k��z�, ß! ß� � 1=ß, �! �� � 1=�. In fact, the in-
tegrand is invariant under such change; therefore, one can
proceed with the above expression integrating from�1 to
�1: The integral equals 1=�M

�����������
M�k�
p

� and does not de-
pend either on m or �. Therefore, there are N equal terms
in the sum, and we obtain finally the string tension

 ��k;N� � 4�f
ßk � 2� ß�k

2M sin�kN
� MT2 sin

�k
N

as announced.

B. Wilson loop in the fundamental representation,
k � 1

It is easy to verify that, if one takes arg��� inside one of
the N equal-length intervals covering the whole 2� range,

 arg��� 2
�
�;��

2�
N

�
;

�
��

2�
N
;��

4�
N

�
;�

��
4�
N
;��

6�
N

�
; . . . ;

�
���

2�
N
;��

�
;

(101)

Eq. (100) for k � 1 gives the solutions of Eq. (98) corre-
sponding to a single source at m1 � 1; 2; 3; . . . ; N, respec-
tively. For example, taking arg��� inside the first interval
makes the functions w12 and wN;1 discontinuous at z � 0,
where their imaginary parts have a 2� jump in accordance
with the source term 2�i�0�z��m1. All of the rest functions
are continuous. When one moves arg��� to the second
interval in (101), the functions w12 and w23 have jumps
in accordance with the source term 2�i�0�z��m2, while all
other functions are continuous, and so on. An example of
the solutions for N � 3 is shown in Fig. 1, where arg��� is
taken from the first interval, in this case ��; �3�. When

arg��� is taken from the second interval ��3 ;�
�
3� or from

the third interval �� �
3 ;���, the functions change cycli-

cally w12 ! w23 ! w31 ! w12.
The action density also varies as a function of arg��� but

is periodic with a period of 2�
N . AtN points in the middle of

the intervals (101), namely, at arg��� � �� 
�2m1 �
1��=N�, the action density is real; otherwise, it is generally
complex. It is remarkable that the action itself, or the string
tension, is real and does not depend on �. It means that
arg��� is a new string Goldstone mode, if one allows � to
be a function of 2d string coordinates—in addition to the
usual Goldstone modes associated with long-wave defor-
mations of the string surface.

C. Strings for higher representations, k � 2

The Wilson loop in the antisymmetric rank-k tensor
representation is a source for k functions wm1

; . . . ; wmk
,

where the numbers m1 < � � �<mk can lie anywhere on
the circle �1; 2; . . . ; N�. However, Toda equations do not
have solutions for all configurations of m1 . . .mk.
Configurations with no classical solutions presumably
give much smaller contributions to the Wilson loop at large
areas than configurations that do generate solitons as they
are stationary points.

The strategy for finding pinned solitons corresponding to
Wilson loops in higher representations is simple: One takes
the general solution (100) at a certain value of k and varies
the phase of � from � to ��. For any k, there will be
continuous intervals of arg��� for which the functions
w�k�m;m�1�z� satisfy Toda equations (98) with a �0�z� source
in the right-hand side corresponding to certain sets of
numbers m1 <m2 < � � �<mk. For all intervals of
arg���, the pinned soliton action and hence the k-string
tension are given by Eq. (97) and are thus degenerate in
arg���.

We did not attempt to enumerate systematically the
rapidly growing variety of solitons at arbitrary N and k.
We find it more instructive to describe all pinned solitons
of the SU�6� group, which is sufficiently ‘‘rich’’ as it
possesses nontrivial strings with k � 1, 2, and 3.

For k � 1, the solutions have been in fact given in
Sec. VI B: Six equal-length intervals of arg��� 2 ��; 2�

3 �,
�2�3 ;

�
3�, �

�
3 ; 0�, �0;�

�
3�, ��

�
3 ;�

2�
3 �, ��

2�
3 ;��� corre-

z

w12

z

w23

z

w31

FIG. 1 (color online). A bunch of profile functions w12 (left), w23 (middle), and w31 (right) inside the SU�3� string for five values of
the parameter �: arg��� � �4; 5; 6; 7; 8�  ��=9�. The solid red curves display imaginary parts, and the dashed blue curves display real
parts of w12, w23, and w31, respectively, as functions of the distance z from the Wilson loop plane. The string tension (the action) is
identical for all five curves.
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spond to solutions with a single source placed atm1 � 1, 2,
3, 4, 5, and 6, respectively. In all cases, the string tension is
��1; 6� � 2MT sin�6 .

For k � 2, three equal-length intervals arg��� 2 ��; �3�,
��3 ;�

�
3�, ��

�
3 ;��� correspond to the double k � 2

sources at m1 � 1, m2 � 4; m1 � 2, m2 � 5; m1 � 3,
m2 � 6, respectively. In all cases, the string tension is
��2; 6� � 2MT sin2�

6 .
For k � 3, two equal-length intervals arg��� 2

��; 0�; �0;��� correspond to the triple k � 3 sources at
m1 � 1, m2 � 3, m3 � 5 and m1 � 2, m2 � 4, m3 � 6,
respectively. In all cases, the string tension is ��3; 6� �
2MT sin3�

6 .
As a matter of fact, k � 3, N � 6 is a particular case of

the general rank-k representation of the SU�2k� group.
[Another example is the k � 1 representation of the
SU�2� group, which simultaneously is a particular case of
a fundamental representation considered in the previous
subsection.] For all k andN � 2k, there are pinned solitons
generated by k sources placed at m1 � 1, m2 � 3, m3 �
5; . . . , if arg��� 2 ��; 0�, and placed at m1 � 2, m2 � 4,
m3 � 6; . . . , if arg��� 2 �0;���. The string tension is
given by Eq. (97), where one puts N � 2k, and is degen-
erate in arg���.

To summarize this section, we have shown that, to find
the spatial Wilson loop averaged over the ensemble of
dyons, one needs to solve a chain of Toda equations with
a �0�z� source in the right-hand side. We have solved those
equations for any N and Wilson loop representation k,
finding pinned solitons in the transverse direction to the
loop surface. The solutions generalize the famous double-
layer solutions for the string in the 3d Georgi-Glashow
model by Polyakov [34]. The resulting ‘‘magnetic’’ string
tension is proportional to sin�kN and coincides exactly with
the ‘‘electric’’ string tension found in Sec. V from the
correlators of the Polyakov lines. We have observed that
the Toda equations with a source allow a continuous set of
solutions for the string profile, characterized by a phase
arg��� 2 ���;��, all with the same string tension. It
means that, in addition to the usual Goldstone modes
related to deformations of the string surface, there must
be an extra Goldstone mode related to the string profile.
Therefore, the string theory is more complicated than given
by the standard Nambu-Goto action, which may have
important implications for both theory and
phenomenology.

VII. SUMMARY

Generalizing previous work on the subject, we have
written down the metric of the moduli space for an arbi-
trary number of N kinds of dyons in the pure SU�N� gauge
theory. Assuming that it is mainly the metric and not the
fluctuation determinant about dyons that defines the en-

semble of interacting dyons, we have presented the grand
partition function of the ensemble (where the number of
particles is not fixed beforehand but found from the mini-
mum of the free energy at given temperature) as a path
integral overN � 1 Abelian electric potentials vm and their
duals wm, as well as over N � 1 ghost fields �ym; �m. The
resulting quantum field theory of those fields turns out to be
exactly solvable owing to the cancelation between boson
and ghost loops—a feature similar to that observed in
supersymmetric theories. It enables one to make exact
statements about the dyon ensemble: to find its free energy
and correlation functions.

The free energy appears to have the minimum at the
‘‘maximal nontrivial’’ holonomy corresponding to the con-
fining zero value of the average Polyakov line. Calculating
the correlation functions of Polyakov lines in various
N-ality � k representations (where k � 1; . . .N � 1), we
find the asymptotic linear confining potential with the
k-string tension proportional to sin�kN , the coefficient being
calculated through the Yang-Mills scale parameter � and
the ’t Hooft coupling . The actual value of  has to be
determined self-consistently at the 2-loop level not consid-
ered here. Taking  � 1

4 compatible with phenomenology,
we observe a reasonable agreement of the estimated de-
confinement temperature Tc, the string tension�, the gluon
condensate, and the topological susceptibility with what is
known from lattice simulations and phenomenology. A
more robust ratio Tc=

����
�
p

independent of � and  is in
surprisingly good agreement with the lattice data taken at
N � 3, 4, 6, and 8, given the approximate nature of the
model.

We have also shown that the dyon ensemble leads to the
area law for the average of spatial Wilson loops for any
nonzero N-ality. The calculated spatial (‘‘magnetic’’)
string tension coincides with the ‘‘electric’’ string tension
found from Polyakov lines for all N and k. We find this
coincidence interesting as it indicates the restoration of
Lorentz symmetry at low temperatures. Since the formal-
ism used is three-dimensional at finite temperatures, the
restoration of Lorentz symmetry at T ! 0 is by no means
trivial.

We do not pretend to have answered all of the questions
and obtained a realistic confining theory, as we have
ignored essential ingredients of the full Yang-Mills theory,
enumerated in the introduction. Our aim was to demon-
strate that the integration measure over dyons has a drastic,
probably decisive, effect on the ensemble of dyons that the
ensemble can be mathematically described by an exactly
solvable field theory in three dimensions and that the
resulting semiclassical vacuum built of dyons has many
features expected for the confining pure Yang-Mills theory.
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