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Low-energy phenomenology of the unparticle physics associated with an exact scale invariant sector
possessing a nontrivial infrared fixed point at a higher energy scale is explored for both electron-positron
and hadronic colliders. Feynman rules for a spin 0, 1, or 2 unparticle coupled to a variety of standard
model gauge invariant operators that are relevant to many low-energy processes involving either real
emissions of unparticles or their virtual propagator effects are presented. Missing energy and/or recoil
mass distributions of the unparticle in the associated production of the unparticle together with a photon or
Z boson at LEP2 and ILC as well as in Z decay into an unparticle plus a fermion-antifermion pair are
studied. In addition, monojet production with missing energy from the unparticle at hadronic collisions are
explored. The complex phase in the unparticle propagator that can give rise to interesting interference
effects between an unparticle-exchange diagram and the standard model amplitudes are studied in details
for the Drell-Yan process as well as muon pair and diphoton production in electron-positron annihilation.
These energy and/or recoil mass distributions (with the exception in hadron colliders) and interference
effects are found sensitively depending not only on the scaling dimension but also on the spin of the
unparticle. For the spin-2 unparticle, its physical effects are found to resemble that of a tower of Kaluza-
Klein gravitons, which strongly indicates that the underlying unparticle physics may have root in a higher
dimensional theory. A connection between unparticle physics and theories of large extra dimensions is
speculated. Experimental constraints on the unparticle scale are deduced from the LEP2 data on
monophoton production and from the 4-fermion contact interactions.
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I. INTRODUCTION

Scale invariance is a very appealing symmetry in both
physics and mathematics. The dilatation generator D for
scale transformation does not commute with the spacetime
translation generators P�. Their commutation relations are
familiar:

 �D;P�� � �iP�: (1)

This implies for a real s

 exp��isD�P2 exp��isD� � exp�2s�P2: (2)

Thus, the exact scale symmetry requires that the mass
spectrum is either continuous or all masses are zero. In a
renormalizable theory, this symmetry must be broken ei-
ther explicitly by some dimensional mass parameters in
the theory or implicitly by quantum loop effects, à la
Coleman-Weinberg mechanism [1], for example. Indeed,
scale invariance is manifestly broken in the Lagrangian of
the standard model (SM) of particle physics at tree level by
just a single negative mass-squared term in the Higgs
potential. Despite the lack of scale invariance in the stan-
dard model, it is logically plausible to imagine that there
exists such a scale invariant sector at a higher scale above
TeV that can be probed at the LHC or ILC. Such a sector
might be strongly coupled to itself and highly nontrivial
but nevertheless can be only weakly coupled to the matter
in the standard model. One expects that such a sector
decouples effectively from the low energy and can use

the power of the effective field theory approach to describe
its low-energy effects.

Recently, Georgi [2] motivated by the Banks-Zaks the-
ory [3], suggested that a scale invariant sector with a non-
trivial infrared fixed-point behaves rather peculiar from the
perspective of particle physics. It was keenly observed in
[2] that an operator OU with a general nonintegral scaling
dimension dU in a scale invariant sector has a mass spec-
trum that looked like a dU number of invisible massless
particles. This was coined as an unparticle U by Georgi.
An unparticle does not have a fixed invariant mass squared
but instead a continuous mass spectrum in accordance with
the above general argument. It was also pointed out that
real production of an unparticle at low-energy processes
described by an effective field theory can give rise to
peculiar missing energy distributions because of the pos-
sible nonintegral values of dU.

Subsequently, the propagator for the unparticle was
worked out independently in [4,5]. An unusual phase in
the unparticle propagator was discovered by both groups
and the interesting interference patterns between the am-
plitude of s-channel unparticle exchange and those from
the SM were studied. In Ref. [4], the interference effect
between the complex phase of the unparticle propagator
and the complex Breit-Wigner form of the unstable Z
boson propagator was studied in detail for the backward-
forward asymmetry in the e�e� ! ���� process near
the Z pole. In Ref. [5], the interference between the am-
plitude of an s-channel spin-1 unparticle exchange with the
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SM amplitudes for the Drell-Yan process was explored at
the Tevatron. A one-loop unparticle-exchange contribution
to the lepton anomalous magnetic moment was also calcu-
lated in [5]. More recently, various phenomenology of the
unparticle has been explored by many groups [6–24].

In this paper, we present in much more detail the results
reported earlier in [5] and extend to further processes that
are relevant to collider experiments. We believe these
processes are of immediate interests to theoretical and
experimental communities. In the next section, we review
the derivation of the two-point functions [2], propagators
[4,5], and spin structures of the unparticle operators OU,
O�

U, and O��
U first introduced in Ref. [2]. Feynman rules

for these operators coupled to those standard model invari-
ant operators of special interests are explicitly given. In
addition, four-fermion contact interactions due to spin-1
and 2 unparticle exchanges are written down. At the end of
this section, we also speculate on a possible connection
between unparticle physics and theories of large extra
dimensions. The subsequent two sections are phenomeno-
logical applications. In Sec. III, we discuss real emissions
of unparticles. This covers e�e� ! �U and e�e� ! ZU
at e�e� colliders, and Z! f �fU at the Z pole, as well as
monojet production plus the unparticle U at hadron col-
liders. LEP2 data of monophoton production is used to
constrain the unparticle scale. In Sec. IV, we study the
interference effects between the exchange of a virtual
unparticle and the standard model amplitudes. We discuss
several classic reactions including Drell-Yan process,
e�e� ! f �f with f � e, and f �f ! ��. Experimental lim-
its of the 4-fermion contact interactions from global fits are
also used to constrain the unparticle scale. Conclusions and
comments will be given in Sec. V. Some tedious formulas
are relegated in an appendix.

II. FORMALISM

To fix notation we denote the scale invariant sector as a
Banks-Zaks (BZ) sector [3] and follow closely the sce-
nario studied in [2]. The BZ sector can interact with the
standard model fields through the exchange of a connector
sector that has a high mass scaleMU. Below this high mass
scale, nonrenormalizable operators that are suppressed by
inverse powers of MU are induced. Generically, we have
operators of the form

 

1

MdSM�dBZ�4
U

OSMOBZ; (3)

where OSM and OBZ represent local operators constructed
out of the standard model and BZ fields with scaling
dimensions dSM and dBZ, respectively. As in massless
non-Abelian gauge theories, renormalization effects in
the scale invariant BZ sector induce dimensional transmu-
tation [1] at an energy scale �U. Below �U matching
conditions must be imposed onto the operator (3) to match
a new set of operators having the following form

 COU

�dBZ�dU
U

MdSM�dBZ�4
U

OSMOU; (4)

where dU is the scaling dimension of the unparticle op-
erator OU and COU

is a coefficient function fixed by the
matching. Whether this matching can be implemented is
highly nontrivial since the scale invariant sector might be
strongly coupled. While we are very much ignorant of this
scale invariant sector above the TeV scale, it was argued in
[2] that using the effective field theory approach specified
by the operators like Eq. (4) one should be able to probe the
unparticle physics at the LHC and ILC. Throughout this
work, it is tacitly assumed that an exact scale invariance
sector survives all the way down to the electroweak scale.

Three unparticle operators with different Lorentz struc-
tures were addressed in [2]: fOU; O

�
U; O

��
U g 2 OU, which

correspond to scalar, vector, and tensor operators, respec-
tively. The spin- 1

2 unparticle operator was considered in
[6]. In general, an unparticle operator from a scale invari-
ant sector can be labeled by a triple �dU; j1; j2� where dU
is its scaling dimension and 2j1 and 2j2 are two integers
labeling the representation of the Lorentz group that it
belongs to. Unitarity imposes constraints on possible val-
ues taken by the scaling dimension depending on j1 and j2

[25]. For example, for the scalar unparticle operator OU,
j1 � j2 � 0 and unitarity constrains dU > 1. In the nu-
merical works presented in this paper, we will simply
require dU > 1 for all unparticle operators. These unpar-
ticle operators can even carry standard model quantum
numbers [2], for example, a charged unparticle can be
anticipated. Throughout this work we are contented with
the unparticle operators that are standard model singlets.

A. Phase space for real emission of an unparticle

It was demonstrated in [2] that scale invariance can be
used to fix the two-point functions of the unparticle opera-
tors. Let us consider a two-point function for a scalar
unparticle operator OU

 h0jOU�x�O
y
U�0�j0i � h0je

iP̂�xOU�0�e�iP̂�xO
y
U�0�j0i

�
Z
d�

Z
d�0h0jOU�0�j�0i

	 h�0je�iP̂�xj�ih�jOyU�0�j0i

�
Z d4P

�2��4
e�iP�x�U�P2�; (5)

where �U�P2� is the spectral density and is formally given
by

 �U�P2� � �2��4
Z
d��4�P� p��jh0jOU�0�j�ij2: (6)

Inverse Fourier transformation gives
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 �U�P
2� �

Z
d4xeiP�xh0jOU�x�O

y
U�0�j0i

� AdU��P
0���P2��P2�	; (7)

where 	 is an index to be determined based on scale
invariance and AdU is a normalization factor also required
to be fixed. Under a scale transformation x! sx and
OU�sx� ! s�dUOU�x�, we have

 

AdU��P
0���P2��P2�	 �

Z
d4xs4eisP�xh0js�2dUOU�x�

	OyU�0�j0i

� s�2�dU�2�AdU��sP
0���s2P2�

	 �s2P2�	: (8)

Requiring scale invariance implies 	 � dU � 2, since the
step functions are invariant. Therefore, we obtain

 �U�P
2� � AdU��P

0���P2��P2�dU�2 
 0; (9)

where AdU is normalized to interpolate the dU-body phase
space of the massless particle [2]. The phase-space factor
for the n massless particle with �p1 � p2 � � � � � pn�

2 �
s2 and p2

i � 0 can be written as

 dLIPSn � Ans
n�2; An �

16�2 ����
�
p

�2��2n
��n� 1

2�

��n� 1���2n�
;

(10)

which for the first few n’s are An!1 ! 2��n� 1�, A2 �
1

8�
and A3 �

1
256�3 , etc. Based on the similar scale depen-

dence, the unparticle spectral density is identified with
the phase space of the dU-body massless particle in a
convention advocated in [2]: dU ! n and An ! AdU . So
the factor AdU in Eq. (8) is given by

 AdU �
16�2 ����

�
p

�2��2dU
��dU �

1
2�

��dU � 1���2dU�
: (11)

Note that dU can now take on a nonintegral value as well.
This is a peculiar feature of unparticle physics since one
can now speak of something like fractional particles.

The differential cross section for a process involving the
collision of two massless particles in the initial state and
producing an unparticle plus a few other massless particles
in the final state can be written as

 d
�p1; p2 ! PU; k1; k2; . . .� �
1

2s
jMj2d�;

where

 

d� � �2��4��4��p1 � p2 � PU � k1 � k2 � � � ��

	
Y
i

�
2���k0

i ���k
2
i �
d4ki
�2��4

�

	 AdU��P
0
U���P

2
U��P

2
U�

dU�2 d
4PU

�2��4
(12)

with s � �p1 � p2�
2 and jMj2 is a spin- and color-

averaged matrix element squared. Note that in the limit
dU ! 1 from above

 lim
dU!1�

AdU�P
2
U�

dU�2��P0
U���P

2
U� � 2���P0

U���P
2
U�;

(13)

so that the phase-space factor associated with the unpar-
ticle behaves just like a single massless particle in this
limit. If there are only one massless particle and an un-
particle in the final state, the phase-space factor is further
simplified to

 d� �
1

2�2��3
AdU��P

0
U���P

2
U��P

2
U�

dU�2k0
1dk

0
1d�: (14)

B. Virtual propagator of the unparticle

The derivation of the virtual unparticle propagator is
also based on scale invariance. Without loss of generality
we consider a scalar propagator. The extensions to spin-1
and spin-2 propagators simply include the appropriate spin
structures and will be presented in the next subsection. The
Feynman propagator �F�P

2� of the unparticle is deter-
mined by the spectral formula

 �F�P2� �
1

2�

Z 1
0

R�M2�dM2

P2 �M2 � i�
(15)

 �
1

2�
�
Z 1

0

R�M2�dM2

P2 �M2 � i
1

2
R�P2���P2�; (16)

where R�M2� � AdU�M
2�dU�2 is the spectral density given

in Eq. (9). The appropriate form for �F�P2� to be scale
invariant is �F�P2� � ZdU��P

2�dU�2, where ZdU is the
factor to be determined. Note that our polar angle of
complex number is restricted to ���;��. The complex
function ��P2�dU�2 is analytic for negative P2, but needs
a branch cut for positive P2:

 ��P2�dU�2 �

�
jP2jdU�2 if P2 is negative and real;
jP2jdU�2e�idU� for positive P2 with an infinitesimal i0�:

(17)
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This choice guarantees a propagator with a spacelike mo-
mentum is real without cuts. We can then determine the
factor ZdU by comparing with the imaginary part of
�F�P2� for a timelike momentum �P2 > 0�:

 =m�F�P
2� � �ZdU sin�dU���P

2�dU�2

� �1
2AdU�P

2�dU�2: (18)

We thus obtain

 ZdU �
AdU

2 sin�dU��
; (19)

and the unparticle propagator is given by

 �F�P
2� �

AdU
2 sin�dU��

��P2�dU�2; (20)

where the definition of ��P2�dU�2 is given in Eq. (17). In a
t- or u-channel process, ��P2� is positive and so there is no
complex phase associated with the propagator. On the
other hand, for an s-channel process ��P2� is negative
and so there is a complex phase associated with the propa-
gator. This will lead to interesting interference effects with
the standard model amplitudes. For instance, in e�e� !
���� [4] or Drell-Yan process [5], the unparticle propa-
gator can interfere with the real photon propagator and
with both the real and imaginary parts of the unstable Z
boson propagator. We note that since ZdU ! �1 as dU !
1�, Eq. (20) reproduces the familiar result

 lim
dU!1�

�F�P2� �
1

P2 : (21)

C. Spin structures of unparticle operators

In Eq. (9), the operator OU is a scalar. It is straightfor-
ward to extend to spin-1 and spin-2 unparticle operators by
including appropriate tensor structures:
 

h0jO�
U�x�O

�y
U �0�j0i � AdU

Z d4P

�2��4
e�iP�x��P0���P2�

	 �P2�dU�2����P�; (22)

 

h0jO��
U �x�O

�
y
U �0�j0i � AdU

Z d4P

�2��4
e�iP�x��P0���P2�

	 �P2�dU�2T��;�
�P�; (23)

where

 ����P� � �g�� �
P�P�

P2 ; (24)

 T��;�
�P� � 1
2f�

���P���
�P� � ��
�P�����P�

� 2
3�

���P���
�P�g: (25)

The forms of ����P� and T��;�
 are chosen such that
P�����P� � 0, P�T��;�
�P� � 0, and T�;�
� � 0. The

unparticle operators are all taken to be Hermitian, and
O�

U and O��
U are assumed to be transverse. In addition,

the spin-2 unparticle operator is taken to be traceless
O�

U� � 0. The propagators for vector and tensor operators
can be derived as in Eq. (20) for the scalar case using
spectral decomposition:

 ��F�P2���� �
AdU

2 sin�dU��
��P2�dU�2����P�; (26)

 ��F�P
2����;�
 �

AdU
2 sin�dU��

��P2�dU�2T��;�
�P�: (27)

D. Effective operators

The common effective interactions that satisfy the stan-
dard model gauge symmetry for the scalar, vector, and
tensor unparticle operators with standard model fields are
given, respectively, by

 �0
1

�dU�1
U

�ffOU; �0
1

�dU�1
U

�fi�5fOU;

�0
1

�dU
U

�f��f�@�OU�; �0
1

�dU
U

G	�G
	�OU;

(28)

 �1
1

�dU�1
U

�f��fO
�
U; �1

1

�dU�1
U

�f���5fO
�
U; (29)

 �
1

4
�2

1

�dU
U

� i���D
$

� � ��D
$

�� O
��
U ;

�2
1

�dU
U

G�	G
	
�O

��
U ;

(30)

where the covariant derivative D� � @� � ig

a
2 W

a
� �

ig0 Y2 B�, G	� denotes the gauge field strength (gluon,
photon, and weak gauge bosons), f stands for a standard
model fermion,  stands for a standard model fermion
doublet or singlet, and �i are dimensionless effective cou-
plings COi

U
�dBZ

U =MdSM�dBZ�4
U with the index i � 0, 1, and

2 labeling the scalar, vector, and tensor unparticle opera-
tors, respectively. Here we label each coupling constant
�i�i � 0; 1; 2� the same for various operators of each spin.
In principle, they can be different and they are then dis-
tinguished by additional indices. For simplicity we will
also assume universality that �i’s are flavor blind. The
Feynman rules for the operators in Eqs. (28)–(30) are
shown in Figs. 1–3, respectively. Conventional wisdom
tells us that the scalar operator OU coupled to the fermion
is suppressed by the fermion mass. As already studied in
[2,4,5], some of the operators listed above can give rise to
interesting phenomenology, including real emission of the
unparticle as well as effective 4-fermion contact interac-
tions. Phenomenology of unparticles that couple to flavor
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changing neutral currents have also been studied in
[2,6,7,10–12,16]. More gauge invariant operators that
couple the spin-0 and spin-1 unparticle operators to SM
fields are listed in [17].

E. Effective four-fermion interactions

Virtual exchange of the unparticle corresponding to the
vector operator O�

U between two fermionic currents can
result in the following 4-fermion interaction [Fig. 4(a)] [5]

 M 4f
1 � �2

1ZdU
1

�2
U

�
�
P2
U

�2
U

�
dU�2

� �f2��f1�� �f4��f3�:

(31)

The 4-momentum flowing along the unparticle propagator
is PU � �p1 � p2�. The contribution from the longitudinal
piece P�UP

�
U=P

2
U in Eq. (24) has been dropped for mass-

less external fermions. The convention of the fractional
exponent of a complex number is already given in Eq. (17).
The ��� sign in front of P2

U of the unparticle propagator in
Eq. (31) gives rise to a phase factor exp��i�dU� for
timelike momentum P2

U > 0, but not for spacelike mo-
mentum P2

U < 0. For example, in Drell-Yan production the
virtual exchange of the unparticle in the s-channel will
have P2

U taken as the ŝ of the subprocess and therefore
will contain a phase. The most important feature is that
the high-energy behavior of the amplitude scales as
�ŝ=�2

U�
dU�1. For dU � 1 the tree amplitude behaves like

that of a massless photon exchange, while for dU � 2 the
amplitude reduces to the conventional 4-fermion interac-
tion [26,27], i.e., its high-energy behavior scales like
s=�2

U. If dU is between 1 and 2, say 3=2, the amplitude
has the unusual behavior of

���̂
s
p
=�U at high energy. If

dU � 3 the amplitude’s high-energy behavior becomes
�ŝ=�2

U�
2, which resembles the exchange of a Kaluza-

Klein tower of gravitons [28]. In principle, we can allow

FIG. 3. Feynman rules for the tensor unparticle operators in Eq. (30). The K���
 � �g��p�1p


2 � p1 � p2g

��g
� � p�1p
�
2g


� �
p�2 p

�
1g


�. The double-wavy line represents a spin-2 unparticle while the single-wavy line represents a photon, and Qf denotes the
electric charge of the fermion. In case of a Z boson in the middle diagram, replace eQf by g

cos�w
�T3f �Qfsin2�w�, where T3f is the

isospin projection of the fermion doublet.

FIG. 2. Feynman rules for the vector unparticle operators in
Eq. (29).

FIG. 1. Feynman rules for the scalar unparticle operators in Eq. (28).
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different couplings in different chirality combinations in
the 4-fermion contact interactions, denoted by LL, RR,
LR, RL, which can produce parity violation and therefore
the forward-backward asymmetries. The combination of
LL� RR� LR� RL gives VV interaction while LL�
RR� LR� RL gives AA interaction that corresponds to
the vector and axial-vector interactions introduced in
Ref. [4].

One can also consider the exchange of a spin-2 unpar-
ticle between a pair of fermionic currents. The operator is
given in Eq. (30) and the Feynman rule in Fig. 3. After
simplification we arrive at the following 4-fermion inter-
action
 

M4f
2 � �

1

8
�2

2ZdU
1

�4
U

�
�
P2
U

�2
U

�
dU�2

� �f2��f1�� �f4��f3�

	 ��p1 � p2� � �p3 � p4�g��

� �p1 � p2���p3 � p4���; (32)

for massless external fermions, where pi denotes the 4-
momentum of the fermion fi along the fermion line
[Fig. 4(b)]. Note that the 4-fermion interaction induced
by the spin-2 unparticle operator is further suppressed by
�s=�U�

2 relative to that induced by the spin-1 unparticle
operator. This is similar to the exchange by a spin-2
graviton (which corresponds exactly when dU is set to 2
in Eq. (32).) Similarly, different chirality combinations are
possible for the 4-fermion contact interactions with spin-2
unparticle exchange.

The above 4-fermion amplitudes can interfere with the
standard model amplitudes of �, W, and Z exchange, and
thus leads to interesting interference effects. In particular,
the different spin structures could be differentiated by
studying various angular distributions. Based on these
spin-1 and spin-2 unparticle-exchange amplitudes one
can study the Drell-Yan process at hadron colliders,
deep-inelastic scattering at ep colliders, fermion-pair pro-
duction at e�e� colliders, atomic-parity violation, as well
as many other low-energy eq scattering processes, just in
similar ways as the conventional 4-fermion contact inter-
actions [27] or as the Kaluza-Klein states of graviton [29].

Modification of the Newton’s inverse square law in the
submillimeter range due to spin-2 unparticle exchange and
its possible tests at low-energy gravity experiments have
been studied in [24].

F. Conjecture to large extra dimensions

The close similarity between the unparticle and Kaluza-
Klein (KK) modes of the large extra dimensions [30]
(LED) has been recognized [5] in the calculation of the
production cross sections and in virtual effects. The un-
particle and the KK states [31,32] share analogous phase-
space integrations [28], in particular, the integration over
the invariant mass squared P2. It would be interesting to
relate the unparticle with the KK modes in LED.

Let us first set up all fields of the standard model to be
confined on a flat 3 dimensional spatial brane with coor-
dinates x. A scalar unparticle field can be identified as a
massless scalar bulk field ��t;x; y� permeating into the
LED described by extra coordinates yi (i � 1; � � � ; n). We
study the simplest case that the space of LED is flat and
periodic in each yi with periodicity L. The massless
energy-momentum relation is

 E2 � p2 �
Xn
i�1

�ki�
2; (33)

where p is the momentum in the ordinary 3-space and ki is
the momentum component in LED. Periodic conditions on
the extra dimensions require all the momenta ki to be
quantized such that they are integral multiples of 2�=L.
As SM physics only operates on the 3-brane, the termPn
i�1�ki�

2 of the corresponding KK modes effectively be-
comes the mass squared of a particle propagating in the
3� 1 spacetime. For large L, the summation over the KK
modes turns into an integral and the density of states is
introduced as

 

X
~k

���! Z � L
2�

�
n
dnk �

Z Ln�m2��n=2�1�dm2

�4��n=2��n2�
: (34)

Identifying the power ofm2 in the density of states with the
power of P2 in the spectral density of the unparticle, we
obtain

 dU �
n
2
� 1: (35)

With one extra dimension we can have the notion of one-
and-a-half particle viewed from the 3-brane, and so on. It is
also tempting to make the following identification

 AdU �
L2�dU�1�

�4��dU�1��dU � 1�
(36)

with dU given by Eq. (35). Perhaps hidden higher dimen-
sion spacetime reveals itself through the unparticle phys-
ics. It might be interesting to see if realistic models can be
built based on this alternative interpretation of the unpar-

FIG. 4. Feynman diagrams for exchange of spin-1 and spin-2
unparticles between two fermionic currents.
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ticle. Recently, it has been demonstrated in [33] that other
values of dU related to a dimensionless mass parameter
can be achieved by deconstructing the unparticle in the 5
dimensional warped anti-de Sitter (AdS) space using the
AdS/conformal field theory (CFT) correspondence.

III. PHENOMENOLOGY: REAL EMISSION

A. Monophoton and mono-Z production in e�e�

collisions

The energy spectrum of the monophoton from the pro-
cess e��p1�e

��p2� ! ��k1�U�PU� can be used to probe
the unparticle [5]. Similarly, the mono-Z production is also
sensitive to the presence of some unknown particles or
unparticle. Let us first derive the cross section formulas
for mono-Z production.

The differential cross section for f�p� �f�p0� !
Z�k�U�PU� is given by

 d
 �
1

2s
jMj2

��������������������
E2
Z �M

2
Z

q
AdU

16�3�2
U

	

�P2
U

�2
U

�
dU�2

��P0
U���P

2
U�dEZd�Z; (37)

where jMj2 is the spin- and color-averaged matrix element
squared. Note that the invariant mass squared P2

U of the
unparticle is not fixed but is related to the energy EZ of the
Z boson via the recoil mass relation

 P2
U � s�M2

Z � 2
���
s
p
EZ; (38)

where the energy range of EZ is

 MZ � EZ � Emax
Z �

s�M2
Z

2
���
s
p : (39)

As usual, we define s � �p� p0�2, t � �p� k�2 and u �
�p� PU�

2. Moreover, s� t� u � M2
Z � P

2
U.

As dU approaches unity, we recover the on-mass-shell
condition in the phase space

 lim
dU!1�

AdU�P
2
U�

dU�2��P2
U� � 2���P2

U�

�
1

2
���
s
p ��EZ � E

max
Z �: (40)

Thus, the integral over EZ is trivial and the cross section
becomes

 lim
dU!1�

d
 �
1

2s
1

32�2

�
1�

M2
Z

s

�
jMj2EZ�Emax

Z
d�Z: (41)

This reproduces the usual formula for 2! 2 cross section.
This is expected since dU ! 1 corresponds to
unparticle ! particle. In this case, the energy spectrum
for the Z boson is just a delta function localized at EZ �
Emax
Z .

1. Spin-1 unparticle

Let us turn our focus back to the unparticle. For the spin-
1 unparticle, we consider only the first (vectorial) operator
in Eq. (29). Including the second (axial-vectorial) operator
in Eq. (29) is straightforward. There are two contributing
Feynman diagrams, t- and u-channels. The matrix element
squared for f�p� �f�p0� ! Z�k�U�PU� is given by

 jMj2 �
2

Nc
�2

1

e2�gf
2

L � g
f2

R �

sin2�wcos2�w

g�t=M2
Z; u=M

2
Z; P

2
U=M

2
Z�;

(42)

where Nc is the number of color for the fermion f, gfL �

T3f �Qfsin2�w, gfR � �Qfsin2�w with Qf is the electric
charge of the fermion f, and the function g�x; y; z� is
defined by
 

g�x; y; z� �
1

2

�
x
y
�
y
x

�
�
�1� z�2

xy
�
z
2

�
1

x2 �
1

y2

�

� �1� z�
�
1

x
�

1

y

�
: (43)

The result for f�p� �f�p0� ! ��k�U�PU� can be obtained
by settingMZ equal to zero and the appropriate substitution
for the couplings in Eq. (37), viz.

 d
 �
1

2s
jMj2

AdU
16�3�2

U

�P2
U

�2
U

�
dU�2

E�dE�d� (44)

with the matrix element squared given by

 jMj2 �
2

Nc
�2

1e
2Q2

f

u2 � t2 � 2sP2
U

ut
: (45)

The P2
U is related to the energy of the photon E� by a

simpler recoil mass relation,

 P2
U � s� 2

���
s
p
E�: (46)

The monophoton energy and recoil mass distributions
are plotted in Fig. 5 for various choices of dU at

���
s
p
�

1 TeV. The sensitivity of the scaling dimension to these
distributions can be easily discerned. The standard model
background from e�e� ! �Z
 ! �� �� is also displayed
for comparison. Similar features are also found for the
process e�e� ! ZU which has also been studied recently
in [17].

2. Spin-2 unparticle

We consider both spin-2 unparticle operators in Eq. (30)
and let their coupling constants be different, denoted by �02
and �2, respectively. There are four contributing Feynman
diagrams for the process: t- and u-channels plus a seagull
diagrams from the first operator and an s-channel diagram
from the second. The matrix element squared for
f�p� �f�p0� ! Z�k�U�PU� is given by
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jMj2 �
1

4Nc

�2
2

�2
U

e2�gf2
L � g

f2
R �

2sin2�wcos2�w

1

3�s�M2
Z�

2t2u2

	 �F�t; u� � rG�t; u� � r2H�t; u�� (47)

with r � �02=�2 and
 

�F;G;H� � �F0; G0; H0� �
1

P2
U

�F2; G2; H2�

�
1

P4
U

�F4; G4; H4�; (48)

where these complicated functions can be found in the
appendix. We note that these functions satisfy the follow-
ing equations

 F2 �G2 �H2 � 0; F4 �G4 �H4 � 0:

Thus, if we set r � 1, i.e., �2 � �02, the 1=P2
U and 1=P4

U

terms in the matrix element squared summed up to zero.
This simply reflects the fact that longitudinal parts in the
polarization sum of the spin-2 unparticle, just like the Z
boson case, make no contribution to the matrix elements
since the external fermion masses have been set to be zero
in our calculation. In the case of r � 1, the above matrix
element squared is simplified to

 jMj2 �
1

4Nc

�2
2

�2
U

e2�gf2
L � g

f2
R �

2sin2�wcos2�w

1

3�s�M2
Z�

2t2u2 F �t; u�;

(49)

where

 

F � F0 �G0 �H0

� 8M6
Ztu�3P

4
U � 4tu� 3P2

U�t� u�� � 3tu��P2
U � t� u��2P

4
U � t

2 � u2 � 2P2
U�t� u��

	 ��P4
U � 4tu� P2

U�t� u�� � 2M4
Ztu�27P6

U � 42P4
U�t� u� � 28tu�t� u� � 5P2

U�3t
2 � 16tu� 3u2��

�M2
Z�52t3u3 � 36t2u2�t2 � u2� � 3P8

U�t
2 � 12tu� u2� � 6P2

Utu�t
3 � 23t2u� 23tu2 � u3�

� 3P4
U�t

4 � 14t3u� 62t2u2 � 14tu3 � u4� � 6P6
U�t

3 � u3 � 12tu�t� u���: (50)

Equations (49) and (50) coincide with the matrix element
for f �f ! ZG where G is the Kaluza-Klein graviton ob-
tained previously in [34]. Setting r � 1 implies that the
two operators in Eq. (30) sum up and have the form of the
energy-momentum stress tensor in flat spacetime. This idea
has been generalized to curved spacetime [24].

Just like the spin-1 case, we can obtain f�p� �f�p0� !
��k�U�PU� with appropriate substitutions:

 

jMj2 �
1

4Nc

�2
2

�2
U

e2Q2
f

1

3s2t2u2

	 �F�t; u� � rG�t; u� � r2H�t; u��; (51)

where F,G, andH are given by the previous formulas with
MZ setting to zero. In the case of r � 1, the matrix element
squared reduces to
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FIG. 5 (color online). Comparison of photon energy and recoil mass distributions of e�e� ! �U (spin-1 unparticle) with the
standard model background e�e� ! �Z
 ! �� �� for different values of dU � 1:001, 1.2, 1.5, 2, and 3 at

���
s
p
� 1 TeV.
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jMj2 �
1

4Nc

�2
2

�2
U

e2Q2
f

1

stu
�2sP2

U � t
2 � u2��sP2

U � 4tu�:

(52)

The monophoton energy and recoil mass distributions
for emission of the spin-2 unparticle are plotted in Fig. 6
for various choices of dU at

���
s
p
� 1 TeV with r � 1. The

sensitivity of the scaling dimension to these distributions
can be also easily discerned. The standard model back-
ground from e�e� ! �Z
 ! �� �� is also displayed for
comparison. Similar features are also found for the process
e�e� ! ZU for the spin-2 case.

B. Z! f �fU

The decay width for the process Z! f �fU with a spin-1
unparticle can be easily obtained as [5]
 

d��Z! f �f�U�

dx1dx2d�
� ��Z! f �f�

�2
1

8�3 g�1� x1; 1� x2; ��

	
M2
Z

�2
U

AdU

�P2
U

�2
U

�
dU�2

; (53)

where � � P2
U=M

2
Z and x1;2 are the energy fractions of the

fermions x1;2 � 2Ef; �f=MZ. The function g�z; w; �� has
been defined in Eq. (43). The integration domain for
Eq. (53) is defined by 0< �< 1, 0< x1 < 1� �, and 1�
x1 � � < x2 < �1� x1 � ��=�1� x1�. In [5], we plotted
the normalized decay rate of this process versus the energy
fraction of the fermion x1. Here, in Fig. 7, we plot the
normalized decay rate of this process versus the energy
fraction of the unparticle x3 � 2� x1 � x2. One can see
that the shape depends sensitively on the scaling dimension
of the unparticle operator. As dU ! 1, the result ap-
proaches a familiar case of �
 ! q �qg
 [35]. The matrix
element squared for Z! f �fU with a spin-2 unparticle can

be obtained by applying crossing symmetry to the formulas
for f �f ! ZU given in Eqs. (49) and (50). We omit the
detailed formulas here.

C. Monojet production at hadronic collisions

It was suggested in [2] that in hadronic collisions the
following partonic subprocesses which can lead to monojet
signals could be important for detection of the unparticle.
 

gg! gU; q �q! gU; qg! qU; �qg! �qU:

For the subprocesses that involve both quark and gluon, we
consider solely the effects from the vector operator O�

U.
For the gluon-gluon fusion subprocess, we consider solely
the effects from the scalar operator OU. The partonic cross
section can be derived as
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the spin-1 unparticle versus x3 � 2� x1 � x2 for different val-
ues of dU � 1�, 1.5, 2, and 3, where ‘‘1�’’ stands for 1� � for a
small positive �.
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d2
̂

dt̂dP2
U

�
1

16�ŝ2 jMj
2 1

2�
AdU

�P2
U

�2
U

�
dU�2 1

�2
U

(54)

with the following matrix element squared for subpro-
cesses

 jM�gg! gU�j2 �
1536�	s
4 � 8 � 8

�2
0

�P2
U�

4 � ŝ4 � t̂4 � û4

ŝ t̂ û�2
U

;

(55)

 jM�q �q! gU�j2 �
8

9
g2
s�2

1

�t̂� P2
U�

2 � �û� P2
U�

2

t̂ û
;

(56)

 jM�qg! qU�j2 � �
1

3
g2
s�

2
1

�t̂� P2
U�

2 � �ŝ� P2
U�

2

ŝ t̂
;

(57)

and a formula similar to the last one applies for �qg! �qU
as well. Note that the gluon fusion process involving �0 is
further suppressed by dimension counting. Although P2

U is
related to ŝ by a kinematic relation similar to Eq. (38), it is
not uniquely determined at the hadronic level where ŝ�
x1x2s with s the center-of-mass energy squared of the
colliding hadrons and x1;2 are the parton momentum frac-
tions. We found that the peculiar feature of the phase-space
factor AdU as a function of dU at partonic level is more or
less washed out. With only one jet in the final state, not
many observables can be constructed. We show in Fig. 8
the energy spectrum of the monojet at the LHC. Since the ŝ
of each collision is unknown due to parton smearing, the
P2
U of each event cannot be reconstructed. Therefore, it

would be difficult to detect the unparticle at the hadronic
environment using the monojet signal, in contrast to its
original anticipation [2]. One would anticipate that mono-

photon or mono-Z production plus an unparticle may be
more promising at hadronic collisions, because of better
experimental resolution for photons and charged leptons.
However, one still suffers from the unknown ŝ in hadronic
collisions. The unparticle information carried by the mono-
photon or mono-Z is likely to be washed out by parton
smearing as well. Even though we do not consider the case
of the spin-2 unparticle here, including them should not
alter the conclusion.

D. Present constraints on �U from monophoton
production at LEP2

LEP collaborations [36] had measured monophoton pro-
duction in the context of extra dimensions, gauge-mediated
SUSY breaking models, and other models that can produce
a single photon plus missing energy in the final state. Their
limits on monophoton production are similar. We simply
take the strongest bound among these LEP results: L3
obtained an 95% C.L. upper limit on 
�e�e� ! �� X� ’
0:2 pb under the cuts: E� > 5 GeV and j cos��j< 0:97 at���
s
p
� 207 GeV. We calculate monophoton plus unparticle

production with the same cuts in e�e� collisions with���
s
p
� 207 GeV versus the unparticle scale �U (with a

fixed �1 � 1) for dU � 1:4, 1.6, 1.8, and 2 in Fig. 9. We
have also drawn the horizontal line showing the 95% C.L.
upper limit (0.2 pb). The limits on �U can be read off
where the horizontal line intercepts the curves. We tabulate
the limits in Table I. Since the production cross section
scales as �2

1=�2dU�2
U , the limit increases very rapidly when

dU decreases from 2 to 1.4 with �1 fixed.

E. Other real emission processes

The first operator in Eq. (30) can involve the left-handed
lepton or quark doublet. Therefore, it can give rise to Z!
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� ��U and the charged-current process such as W� !
‘� ��U, etc. These decays will affect the invisible width
of the Z boson and the missing energy spectrum of the
charged W boson decay. An analysis of LEP data for these
decays could provide useful constraints on the scale of
unparticle physics.

IV. PHENOMENOLOGY: VIRTUAL EXCHANGES
AT TREE LEVEL

A. Drell-Yan process

Since the spin-0 operators often bring in a factor pro-
portional to the external light fermion mass in the ampli-
tude, their contributions are in general very small. Here we
only consider the contributions from the spin-1 and spin-2
unparticle exchange to the Drell-Yan process.

1. Spin-1 unparticle

The effect of including the spin-1 unparticle virtual
exchange in the Drell-Yan process has been studied in
Ref. [5]. We include here for completeness. The differen-
tial cross section for the Drell-Yan process can be written
as
 

d2

dM‘‘dy

� K
M3
‘‘

72�s

X
q

fq�x1�f �q�x2�

	 �jMLLj
2 � jMLRj

2 � jMRLj
2 � jMRRj

2�;

(58)

where ŝ � M2
‘‘ and

���
s
p

is the center-of-mass energy of
the colliding hadrons. M‘‘ and y are the invariant mass
and the rapidity of the lepton pair, respectively, and x1;2 �

M‘‘e
�y=

���
s
p

. The K factor equals 1� 	s
2�

4
3 �1�

4�2

3 �. The
reduced amplitude M	��	;� � L;R� is given by

 M	� � �2
1ZdU

1

�2
U

�
�

ŝ

�2
U

�
dU�2

�
e2QlQq

ŝ

�
e2gl	g

q
�

sin2�wcos2�w

1

ŝ�M2
Z � iMZ�Z

: (59)

Since ŝ > 0, the phase factor exp��i�dU� in the unparticle
4-fermion contact term will interfere with the photon and Z
boson propagator in a rather nontrivial way. This unparticle
propagator phase can interfere with both the real photon
propagator as well as the real and imaginary parts of the

unstable Z boson propagator. This gives rise to interesting
interference patterns [4]. Despite having a complex phase
in the unparticle propagator, it has been demonstrated in
[33] using deconstruction that this does not lead to an
unstable unparticle. As mentioned earlier, we can allow
different couplings in different chirality combinations in
the 4-fermion contact interactions. In fact, we are able to
reproduce the effects in Ref. [4] using our 4-fermion
amplitudes with different chirality couplings. However, it
may be difficult to disentangle the fractional differences
from the SM prediction in Drell-Yan production due to
experimental uncertainties. It may be easier to test the
angular distributions and interference patterns in e�e�

collisions. We will show the results in the next subsection.
For the moment we assume the same coupling in different
chirality combinations so that the 4-fermion interactions
are vectorlike. In Fig. 10, we depict the Drell-Yan distri-
bution as a function of the invariant mass of the lepton pair
for various dU at the Tevatron. The peculiar effects from
the phase-space factor of AdU for nonintegral values of dU
are evident.

2. Spin-2 unparticle

We also study the effect of exchanging a spin-2 unpar-
ticle in Drell-Yan process with the first operator in Eq. (30).
Asimilar pursuit has been performed in [18]. The ampli-
tude for q�p1� �q�p2� ! e��p3�e

��p4� due to unparticle
exchange can be adapted from Eq. (32) with the substitu-
tions p2 ! �p2 and p4 ! �p4:
 

iMU � �
i
8
�2

2ZdU
1

�4
U

�
�

ŝ

�2
U

�
dU�2

	 ��p1 � p2� � �p3 � p4� �v�p2��
�u�p1� �u�p3�

	 ��v�p4� � �v�p2��6p3 � 6p4�u�p1� �u�p3�

	 �6p1 � 6p2�v�p4��: (60)
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FIG. 10 (color online). Drell-Yan invariant mass distribution
for dU � 1:3, 1.5, and 1.8 at the Tevatron with

���
s
p
� 1:96 TeV.

We have chosen �U � 1 TeV and �1 � 1 for illustration.

TABLE I. Limits on �U from monophoton production data of

�e�e� ! �� X� ’ 0:2 pb at LEP2 (95% C.L.).

dU �U (TeV)

2.0 1.35
1.8 4
1.6 23
1.4 660

COLLIDER PHENOMENOLOGY OF UNPARTICLE PHYSICS PHYSICAL REVIEW D 76, 055003 (2007)

055003-11



Let us write the constant prefactor in iMU as

 A � �
1

8
�2

2ZdU
1

�4
U

�
�

ŝ

�2
U

�
dU�2

which includes the unparticle phase exp��i�dU� for ŝ > 0. The complete amplitude squared without color or spin average
is given by
 X

jMj2 �

�
4û2�jMsm

LLj
2 � jMsm

RRj
2� � 4t̂2�jMsm

LRj
2 � jMsm

RLj
2� � 8jAj2�t̂4 � û4 � 6t̂3û� 6t̂û3 � 18t̂2û2�

� 16
e2QeQq

ŝ
<e�A��û� t̂�3 � 16

e2

sin2�wcos2�w

<e
�

A


ŝ�M2
Z � iMZ�Z

�

	 �geag
q
a�t̂3 � 3t̂2û� 3t̂û2 � û3� � gevg

q
v�û� t̂�3�

�
; (61)

where

 Msm
	� �

e2QlQq

ŝ
�

e2gl	g
q
�

sin2�wcos2�w

1

ŝ�M2
Z � iMZ�Z

; 	; � � L;R; gfv �
gfL � g

f
R

2
; gfa �

gfL � g
f
R

2
:

The differential cross section for the subprocess is

 

d
̂
d cos�


�q �q! e�e�� �
1

32�ŝ

�
1

3

1

4

X
jMj2

�
; (62)

where �
 is the scattering angle in the parton rest frame,
and t̂ � � ŝ

2 �1� cos�
�, û � � ŝ
2 �1� cos�
�, and the fac-

tor 1
3

1
4 is for the color and spin average of the initial partons.

Integrating over cos�
 from �1 to 1, the subprocess cross
section is
 


̂�q �q! e�e�� �
1

144�ŝ

�
ŝ2�jMsm

LLj
2 � jMsm

RRj
2 � jMsm

LRj
2

� jMsm
RLj

2� �
12

5
jAj2ŝ4

�
: (63)

It is noted that once when cos�
 is integrated, the interfer-
ence term goes to zero accidentally. Therefore, it is hard to
discriminate the effect of the spin-2 unparticle by the
invariant mass spectrum because of high suppression of
powers of �U in the quantity A. Only the angular distri-
bution can show a discernible effect, but the angular dis-
tribution is somewhat smeared out in Drell-Yan production
because the central scattering angle is boosted by the
partons.

There is another contribution from the subprocess gg!
U
 ! e�e� via a tree-level exchange of a spin-2 unpar-
ticle. Such a possibility arises from both operators in
Eq. (30) in which we assume they have the same couplings.
The spin- and color-averaged amplitude squared for this
process is given by

 jMj2�gg! e�e�� � 4jAj2û t̂�û2 � t̂2�: (64)

The integrated subprocess cross section is

 
̂�gg! e�e�� �
1

40�
jAj2ŝ3: (65)

Folded with parton distribution functions we obtain

 

d2

dM‘‘dy

� K
1

72�s

�X
q

fq�x1�f �q�x2�

	

�
M3
‘‘�jM

sm
LLj

2 � jMsm
LRj

2 � jMsm
RLj

2 � jMsm
RRj

2�

�
12

5
M7
‘‘jAj

2

�
� fg�x1�fg�x2�

18

5
M7
‘‘jAj

2

�
:

(66)

It is clear that the invariant mass distribution depends on
jAj2 rather than linear in A. Therefore, it needs a rather
large coupling for the unparticle operator in order to see the
effect, given a large �U. We do not intend to show the
invariant mass distribution here because it does not have
any special feature. One would rather attempt to look at the
angular distribution, which has a linear dependence on A.
However, at hadronic machines one has to boost back to
the rest frame of the lepton pair in order to obtain the
scattering angle. Thus, experimental uncertainties are in-
volved. We would turn to the study of the angular distri-
butions in fermion-pair production at e�e� colliders,
which is more direct and the center-of-mass energy of
the collision is uniquely specified.

B. Fermion-pair production at e�e� colliders

The fermion-pair production at e�e� colliders can be
studied using the amplitude in Eq. (59) and the amplitude
squared in Eq. (61) with appropriate color-factor modifi-
cations for spin-1 and spin-2 unparticle exchange,
respectively.

KINGMAN CHEUNG, WAI-YEE KEUNG, AND TZU-CHIANG YUAN PHYSICAL REVIEW D 76, 055003 (2007)

055003-12



1. Spin-1 unparticle

The differential cross section including the spin-1 un-
particle exchange is given by
 

d
�e�e� ! f �f�
d cos�

�
Ncs

128�
��1� cos��2�jMLLj

2 � jMRRj
2�

� �1� cos��2�jMLRj
2 � jMRLj

2��;

(67)

where M	�’s are given by Eq. (59).
To reiterate, the unparticle 4-fermion contact interac-

tions in Eq. (31) can be different for different chiralities of
the fermions. Let us write the contact term between an
electron and a fermion f as
 

Mef
1 � �2

1ZdU
1

�2
U

�
�
P2
U

�2
U

�
dU�2 X

	;��L;R

�	�� �e��P	e�

	 � �f��P�f�; (68)

where PL;R � �1� �5�=2 are the chirality projection op-
erators, and �	� � �1; 0. It is clear from Eq. (67) that
different modifications toM	� can significantly change the
angular distribution, because MLL and MRR are multiplied
by �1� cos��2 while MLR and MRL are multiplied by �1�
cos��2. We show in Fig. 11 the angular distribution for
e�e� ! ���� at

���
s
p
� 200 GeV, with (a) only LL�

RR and (b) only LR� RL contact interactions. It is easy to
understand why LL� RR is increased in the positive
region of cos� while LR� RL is enhanced in the negative
cos� region. The forward-backward asymmetry can there-
fore discriminate various chirality couplings.

The integrated cross section for e�e� ! f �f can be
obtained as
 


�e�e� ! f �f� �
Ncs
48�
�jMLLj

2 � jMRRj
2 � jMLRj

2

� jMRLj
2�: (69)

As mentioned before when we calculated the 4-fermion
contact interactions, the unparticle propagator has a phase
exp��i�dU�, which can interfere with the real and imagi-
nary parts of the Z boson propagator. We show in Fig. 12
the total cross sections for e�e� ! ���� versus

���
s
p

in
the vicinity of the Z pole, with (a) LL� RR contact terms
and (b) LR� RL contact terms. Interesting interference
patterns can be seen around the Z pole.

2. Spin-2 unparticle

The differential cross section including the spin-2 un-
particle exchange can be obtained as

 

d
�e�e� ! f �f�
d cos�

�
1

32�s

�
Nc

1

4

X
jMj2

�
; (70)

where
P
jMj2 is given in Eq. (61). We show in Fig. 13 the

angular distribution for e�e� ! ���� at
���
s
p
� 0:5 TeV

with various dU. For dU < 1:3, features of the spin-2
unparticle exchange can be easily seen.

Integrating over cos� from �1 to 1, we obtain the total
cross section:
 


�e�e� ! f �f� �
Nc

48�s

�
s2�jMsm

LLj
2 � jMsm

LRj
2 � jMsm

RLj
2

� jMsm
RRj

2� �
12

5
s4jAj2

�
: (71)

Similar to Drell-Yan production the interference term lin-
early proportional to A goes to zero accidentally.
Therefore, the total cross section is not a sensitive probe
for the spin-2 unparticle exchange.

C. Diphoton production

Diphoton production at e�e� and hadronic colliders
have been proved very useful to detect unknown reso-
nances that can decay into a pair of photons and to search
for anomalous diphoton couplings. The spin-2 unparticle
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FIG. 11 (color online). Angular distributions for e�e� ! ���� with various dU at
���
s
p
� 200 GeV. The left (right) panel is with

LL� RR (LR� RL) contact terms plus the SM contributions. We have set �U � 1 TeV and �1 � 1.
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can couple to a pair of fermions via the first operator of
Eq. (30) and to a pair of photons via the second operator in
Eq. (30). There are three contributing Feynman diagrams:
the t- and u-channel standard model diagrams and the
unparticle s-channel diagram. The amplitude for
f�p1� �f�p2� ! ��k1���k2� due to the s-channel unparticle
exchange is given by
 

iMU � �
i
4
�2

2ZdU

�
�s

�2
U

�
dU�2 1

�4
U

�v�p2�����p1 � p2�


� �
�p1 � p2���u�p1����k1����k2�

	 �g���k�1k


2 � k

�
2k



1 �

� k1 � k2�g
��g
� � g
�g���

� k�1�k
�
2g


� � k
2 g
��� � k�2 �k

�
1g


� � k
1 g
����:

(72)

Again, let us denote the constant prefactor in iMU as

 A0 � �
1

4
�2

2ZdU

�
�s

�2
U

�
dU�2 1

�4
U

: (73)

The spin- and color-averaged amplitude squared is given
by
 

jMj2 �
1

4

1

Nc

�
8e4Q4

f

�
u
t
�
t
u

�
� 32ut�u2 � t2�jA0j2

� 32e2Q2
f�u

2 � t2�<e�A0�
�
: (74)

The differential cross section is given by

 

d

dj cos��j

�f �f ! ��� �
1

32�s
jMj2; (75)
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where 0 � j cos��j � 1 because of identical photons in the
final state. We show the angular distribution in Fig. 14. In
the SM, the angular distribution is very forward with the
majority of the cross section at j cos��j close to 1. When
dU is less than 1.2 the majority comes from the central

region and a dip is formed around j cos��j � 0:9. It is
because of the spin-2 structure of the operator. The angular
variable j cos��j can be integrated from 0 to a cutoff z
because of the collinear divergence of the SM cross section
at j cos��j � 1. We obtain the integrated cross section as

 


�f �f! ���j0�jcos��j<z �
1

32�s
1

4Nc

�
8e4Q4
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�2z� 2 log
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1� z
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� 32s4
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8
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40

�
jA0j2� 32e2Q2
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�
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2
�
z3

6

�
<e�A0�

�
:

(76)

We show the total cross section of e�e� ! ��with a spin-
2 unparticle exchange versus the center-of-mass energy in
Fig. 15 with an angular cut of j cos��j< 0:95. We have set
�U � 1 TeV and �2 � 1. The cross section starts to show
visible deviations when

���
s
p

is around 0.5 TeV.

D. Experimental constraints on unparticle scale �U

Since the spin-1 unparticle exchanges will lead to 4-
fermion contact interactions, we can use the existing limits
on 4-fermion contact interactions [37,38] to constrain the
unparticle scale �U. We can compare Eq. (68) with the
conventional 4-fermion contact interactions

 L 4f �
4�

�2

X
	;��L;R

�	�� �e��P	e�� �f��P�f�; (77)

which results in the following equality:

 �2
1ZdU

1

�2
U

�
�
P2
U

�2
U

�
dU�2

�
4�

��95�2
; (78)

where �95s are the 95% C.L. limits on the eeqq contact
interaction scales obtained by combining global data on
fermion-pair production at LEP, Drell-Yan production at

the Tevatron, deep-inelastic scattering at HERA, and a
number of low-energy parity-violating experiments [37].

Instead of performing a full analysis, we do a simple
estimate here by putting a fixed value for P2

U into Eq. (78).
Since the limits are dominated by the LEP2 data [37] when
parity-conserving operators are considered, a fixed value of
P2
U � �0:2 TeV�2 is chosen. Other choices are possible but

will not affect our results significantly. The best limit is on
the LL chirality because the parity-violating experiments,
especially the atomic-parity violation, are very stringent:
�95
LL�eeuu� ’ 23 TeV while �95

LL�eedd� ’ 26 TeV.
When parity-conserving combinations are considered, the
limits are lowered: �95

VV�eeuu� ’ 20 TeV, �95
VV�eedd� ’

12 TeV, and �95
AA�eedd� ’ �95

VV�eeuu� � 15 TeV. We re-
scale these 4-fermion contact interaction limits to the limits
on the unparticle scale �U using Eq. (78), with �1 � 1 and
P2
U � �0:2 TeV�2. The results are shown in Fig. 16. Note

that we have ignored the phase in the unparticle propagator
in the analysis. The limits obtained are similar to those
obtained from the single-photon production at LEP2.
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The estimates here are rather crude, because we have
substituted the factor P2

U by a constant �0:2 TeV�2, which
should be good for a crude estimate. In principle, a differ-
ent P2

U is needed for analysis of each high-energy process.
An updated global analysis using P2

U dependent ampli-
tudes is necessary for more accurate limits. Similarly,
another global analysis is needed for constraining the
spin-2 unparticle exchange. We note that a recent paper
[22] has also derived some limits of the unparticle scale.

V. CONCLUSIONS

Scale invariance or the enlarged conformal invariance is
an attractive symmetry, but is not realized in the low-
energy visible world. Perhaps, below a sufficient high-
energy scale an exact scale invariant hidden sector may
exist. Such a strictly scale invariant sector may couple
weakly to the SM particles such that we may be able to
probe it via high-energy processes at the LHC and ILC.
Operators OU of a scale invariant sector with a general
nonintegral scaling dimension dU has a phase space that
looked like a dU number of invisible massless particles.
Therefore, a typical reaction that involves emission of the
unparticle in the final state gives rise to missing energy
signals in the detectors. We have studied a number of
processes that involve emission of the unparticle in the
final state, including e�e� ! �U, ZU at the ILC and
Z! f �fU at the Z-pole, as well as the monojet production
at the LHC. We found that the energy distribution of the
single photon or the single Z at ILC and the missing energy
distribution in Z! f �fU can discriminate the scaling
dimension dU. However, the monojet energy spectrum is
not so sensitive to dU because of the washout by parton
smearing.

We also formulate the virtual exchange of unparticles
between SM particles. We have shown that spin-1 unpar-
ticle exchange between two fermions gives rise to contact
4-fermion interactions, which scale as �ŝ=�2

U�
dU�1 and

thus differ from the conventional one because of the pecu-
liar scaling dimension dU. Spin-2 unparticle exchange
gives rise to another form of 4-fermion interactions. We
have used Drell-Yan production at hadronic colliders and
fermion-pair production at e�e� colliders to study the
interference of the unparticle-exchange amplitudes with
the SM amplitudes. One peculiar feature of the unparticle
propagator is the phase factor exp��i�dU� which may
interfere nontrivially with the Z boson propagator. We
have demonstrated the intriguing interference effects in
great detail in fermion-pair production in e�e� collisions.
Finally, we have also studied diphoton production, which
also shows the peculiar feature of the phase of unparticle
propagator.

Unparticles can be conjectured as a generalization of
extra dimensions. The number of extra dimensions only
take on integral values while the scaling dimension of the
unparticle can take on any, even nonintegral values. We

speculate on a relation dU � n=2� 1 that relates the
scaling dimension to the number of large extra dimensions.
Therefore, unparticle physics is another program just as
important as extra dimensions in the goals of the LHC.

Before we end, we offer a number of comments as
follows.

(1) The calculation of diphoton production can be easily
extended to other diboson production, such as ZZ
and W�W�, at e�e� and hadronic machines.
Likewise, one can study the unparticle effect in the
gauge boson scattering [14].

(2) The peculiar phase factor in the unparticle propa-
gator can be used as a strong phase that is required in
the CP violation studies [7] of the B-meson system.

(3) It is more natural to assume that the unparticle sector
is flavor blind. Flavor changing coupling of the SM
particles with the unparticle can then be induced at
1-loop via W-boson exchange as was done in the
second paper in [7]. Direct flavor changing cou-
plings of the SM fermions with an unparticle will
suffer strong constraints from low-energy flavor
changing processes [6,7,10–12,16]. These con-
straints would push unparticle physics out of reach
at the LHC.

(4) Dijet production at hadronic colliders is also sensi-
tive to unparticle exchange. It would be similar to
diphoton production. One would expect enhance-
ment of cross section at high invariant mass of the
dijet.

(5) Our formulas for 4-fermion contact interactions can
be applied to other areas, e.g., the ep deep-inelastic
scattering [8], low-energy parity-violating experi-
ments, D� �D or B� �B mixings [6,7,11], and
atomic-parity violation experiments [27].

(6) Quarkonium decays can also constrain the unpar-
ticle by their invisible widths and by the decay mode
of �� nothing.

(7) Astrophysics places constraints on real emission of
unparticles. In principle, emission of unparticles in
supernova, neutron stars, or some other astrophys-
ical systems can lead to substantial cooling other
than that by neutrinos. Therefore, using the experi-
mentally measured cooling rates one can constrain
the unparticle scale. Various limits of the unparticle
scale have been estimated in [15] from the super-
nova SN 1987A data as well as from other cosmo-
logical considerations.

(8) The spin-1 unparticle contribution to the lepton
anomalous magnetic moment at 1 loop has been
calculated [5]. It should be possible to extend the
calculation to the spin-2 case as well. The effect is
expected to be minuscule, however.

(9) Besides the 2-point function, the momentum part of
a 3-point or in general n-point function is known for
a conformal field theory in 4 dimensions up to an

KINGMAN CHEUNG, WAI-YEE KEUNG, AND TZU-CHIANG YUAN PHYSICAL REVIEW D 76, 055003 (2007)

055003-16



overall constant. Can one determine the overall
constant for the 3-point or in general n-point func-
tion for the unparticle operators? We will leave this
to those with more ambitious minds.

Phenomenology of unparticle physics is quite rich.
While the underlying theory of the unparticle is still
needed to be unraveled by theorists, experimentalists could
detect such a hidden scale invariant sector when the behe-
moth LHC machine becomes online in the year 2008.
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APPENDIX: FUNCTIONS F, G, AND H

These functions appeared in f �f ! ZU for the spin-2
unparticle U.

 

�F;G;H� � �F0; G0; H0� �
1
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�
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4 � 102t3u� 166t2u2 � 102tu3 � 3u4�� � tu�6P10
U � 18P8

U�t� u� � 12P4
U�t� u�

3

� 3P6
U�7t

2 � 12tu� 7u2� � 18tu�t3 � 5t2u� 5tu2 � u3� � P2
U�3t

4 � 32t3u� 78t2u2 � 32tu3 � 3u4��;

F2�t; u� � 2t2u2�t� u���8M4
Z�t� u� � 4M2

Z�t
2 � 3tu� u2� � 3�t3 � 5t2u� 5tu2 � u3��;

G2�t; u� � �4t2u2�t� u���10M4
Z�t� u� � 2M2

Z�3t
2 � 7tu� 3u2� � 3�t3 � 5t2u� 5tu2 � u3��;

H2�t; u� � 2t2u2�t� u�2��12M4
Z � 8M2

Z�t� u� � 3�t2 � 4tu� u2��;

F4�t; u� � H4�t; u� � �
1
2G4�t; u� � �2t2u2�t� u�3�t2 � u2 �M2

Z�t� u��:

The following relations are found to be satisfied by these functions

 F2 �G2 �H2 � 0; F4 �G4 �H4 � 0:

[1] S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973).
[2] H. Georgi, Phys. Rev. Lett. 98, 221601 (2007).
[3] T. Banks and A. Zaks, Nucl. Phys. B196, 189 (1982).
[4] H. Georgi, Phys. Lett. B 650, 275 (2007).
[5] K. Cheung, W. Y. Keung, and T. C. Yuan, Phys. Rev. Lett.

99, 051803 (2007).
[6] M.-x. Luo and G.-h. Zhu, arXiv:0704.3532.
[7] C.-H. Chen and C.-Q. Geng, arXiv:0705.0689;

arXiv:0706.0850 [Phys. Rev. D (to be published)].

[8] G.-J. Ding and M.-L. Yan, arXiv:0705.0794;
arXiv:0706.0325.

[9] Y. Liao, arXiv:0705.0837.
[10] T. M. Aliev, A. S. Cornell, and N. Gaur, J. High Energy

Phys. 07 (2007) 072; arXiv:0705.4542.
[11] X.-Q. Li and Z.-T. Wei, Phys. Lett. B 651, 380 (2007).
[12] C.-D. Lu, W. Wang, and Y.-M, Wang, arXiv:0705.2909.
[13] P. J. Fox, A. Rajaraman, and Y. Shirman, arXiv:0705.3092.
[14] N. Greiner, arXiv:0705.3518.

COLLIDER PHENOMENOLOGY OF UNPARTICLE PHYSICS PHYSICAL REVIEW D 76, 055003 (2007)

055003-17



[15] H. Davoudiasl, arXiv:0705.3636.
[16] D. Choudhury, D. K. Ghosh, and Mamta,

arXiv:0705.3637.
[17] S.-L. Chen and X.-G. He, arXiv:0705.3946; S.-L. Chen,

X.-G. He, and H. C. Tsai, arXiv:0707.0187.
[18] P. Mathews and V. Ravindran, arXiv:0705.4599.
[19] S. Zhou, arXiv:0706.0302.
[20] Y. Liao and J.-Y. Liu, arXiv:0706.1284.
[21] R. Foadi, M. T. Frandsen, T. A. Ryttov, and F. Sannino,

arXiv:0706.1696.
[22] M. Bander, J. L. Feng, A. Rajaraman, and Y. Shirman,

arXiv:0706.2677.
[23] T. G. Rizzo, arXiv:0706.3025.
[24] H. Goldberg and P. Nath, arXiv:0706.3898.
[25] G. Mack, Commun. Math. Phys. 55, 1 (1977).
[26] E. Eichten, K. D. Lane, and M. E. Peskin, Phys. Rev. Lett.

50, 811 (1983).
[27] V. D. Barger, K. m. Cheung, K. Hagiwara, and D.

Zeppenfeld, Phys. Rev. D 57, 391 (1998).
[28] K. Cheung, arXiv:hep-ph/0409028.
[29] K. Cheung, Phys. Lett. B 460, 383 (1999).
[30] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys.

Lett. B 429, 263 (1998).
[31] T. Han, J. D. Lykken, and R. J. Zhang, Phys. Rev. D 59,

105006 (1999).
[32] G. F. Giudice, R. Rattazzi, and J. D. Wells, Nucl. Phys.

B544, 3 (1999).
[33] M. A. Stephanov, arXiv:0705.3049 [Phys. Rev. D (to be

published)].
[34] K. m. Cheung and W. Y. Keung, Phys. Rev. D 60, 112003

(1999).
[35] K. m. Cheung, W. Y. Keung, and T. C. Yuan, Phys. Rev.

Lett. 76, 877 (1996); S. Fleming, Phys. Rev. D 50, 5808
(1994); K. Hagiwara, A. D. Martin, and W. J. Stirling,
Phys. Lett. B 267, 527 (1991).

[36] A. Heister et al. (ALEPH Collaboration), Eur. Phys. J. C
28, 1 (2003); J. Abdallah et al. (DELPHI Collaboration),
Eur. Phys. J. C 38, 395 (2005); P. Achard et al. (L3
Collaboration), Phys. Lett. B 587, 16 (2004); G.
Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C
18, 253 (2000).

[37] K. m. Cheung, Phys. Lett. B 517, 167 (2001).
[38] Particle Data Group, J. Phys. G 33, 1 (2006).

KINGMAN CHEUNG, WAI-YEE KEUNG, AND TZU-CHIANG YUAN PHYSICAL REVIEW D 76, 055003 (2007)

055003-18


