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The color diagonal and color antisymmetric ghost propagators slightly above Tc of Nf � 2 MILC
243 � 12 lattices are measured and compared with zero-temperature unquenched Nf � 2� 1 MILCc
203 � 64 and MILCf 283 � 96 lattices and zero-temperature quenched 564 � � 6:4 and 6.45 lattices. The
expectation value of the color antisymmetric ghost propagator �c�q� is zero, but its Binder cumulant,
which is consistent with that of N2

c � 1 dimensional Gaussian distribution below Tc, decreases above Tc.
Although the color diagonal ghost propagator is temperature independent, the l1 norm of the color
antisymmetric ghost propagator is temperature dependent. The expectation value of the ghost condensate
observed at zero-temperature unquenched configuration is consistent with 0 in T > Tc. We also measure
transverse, magnetic, and electric gluon propagator and extract gluon screening masses. The running
coupling measured from the product of the gluon dressing function and the ghost dressing function are
almost temperature independent, but the effect of A2 condensate observed at zero temperature is consistent
with 0 in T > Tc. The transverse gluon dressing function at low temperature has a peak in the infrared at
low temperature, but it becomes flatter at high temperature. The magnetic gluon propagator at high
momentum depends on the temperature. These data imply that the magnetic gluon propagator and the
color antisymmetric ghost propagator are affected by the presence of dynamical quarks, and there are
strong nonperturbative effects through the temperature-dependent color antisymmetric ghost propagator.
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I. INTRODUCTION

As a condition of the color confinement in the infrared
region, Kugo-Ojima criterion [1] and the Gribov-
Zwanziger scenario [2,3] are well known. In these theories,
infrared divergence of the ghost propagator is the essential
ingredient of the emergence of the stringlike interquark
potential. In finite temperature SU(2) lattice Coulomb
gauge simulation, linearly rising color-Coulomb potential
was observed to remain above the deconfinement tempera-
ture Tc [4]. The color-Coulomb potential is defined by the
ghost propagator, and the color diagonal ghost propagator
is found to be essentially temperature independent. The
temperature dependence of the color antisymmetric ghost
propagator was not explored. Coulomb gauge is a non-
covariant gauge, and the momentum in the time direction is
not affected by the gauge fixing. In finite temperature, the
momentum in the time direction is interpreted as the
Matsubara frequency with appropriate boundary
conditions.

The Landau gauge is a covariant gauge, and in the
analysis of the quenched and unquenched lattice Landau
gauge simulation [5,6], we analyzed zero-temperature
Nf � 2� 1 unquenched configuration of the SU(3)
MILC collaboration of (1) 203 � 64 �imp � 6:76, 6.83,
which is denoted as MILCc, since relatively coarse lattice

of spacing a � 0:12 fm is used, and (2) 283 � 96 �imp �

7:09, 7.11, which is denoted as MILCf, since relatively fine
lattice of spacing a � 0:09 fm is used [7].

We observed that the Kugo-Ojima parameters of MILCc
and MILCf are consistent with 1 while the quenched
configuration of 564 lattice remained about 0.8 [8,9]. The
Binder cumulant of the color antisymmetric ghost propa-
gator of the zero-temperature quenched SU(2) and un-
quenched Nf � 2� 1, SU(3) configurations of the MILC
collaboration were consistent with those of the N2

c � 1
dimensional Gaussian distribution, where Nc is the number
of colors. The dynamical quark has the effect of quenching
randomness of the system [10].

In this paper, we extend the analysis of the color anti-
symmetric ghost propagator to the quenched SU(3) 564

lattices of � � 6:4 [6] and 6.45 [9] and the finite tempera-
ture Nf � 2 unquenched SU(3) 243 � 12 configurations of
� � 5:65; 5:725; 5:85, produced by the MILC collabora-
tion [11]. We denote the finite temperature configurations
as MILCft. The ghost propagator contributes in the off-
shell quark gluon vertex via Ward-Slavnov-Taylor identity
[12], and so we expect the screening masses of the gluons
produced by the quark loops and ghost loops would be
affected by the ghost propagator. We study the magnetic
and the electric screening mass of the gluon of the MILC
finite temperature configurations.

In the analysis of [11], the three configurations corre-
spond to the temperature T � 143, 172.5, and 185 MeV�,
respectively, where subscript �means that the scale is fixed
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from the mass of the � meson m� � 770 MeV. The tem-
perature Tc at which the chiral susceptibility shows a peak,
indicating the crossover to the deconfinement, was as-
signed to be about 140 MeV. Since the standard Wilson
plaquette action was used in the production of the gauge
configuration, the flavor symmetry was broken, and the
ratio of the � mass to pion mass is larger than the physical
value [13]. Recent simulation with Asqtad action [14]
suggests that Tc � 170 MeV, consistent with the value of
that of Nf � 2 improved Kogut-Susskind (KS) fermion
Tc � 173� 8 MeV [15]. A systematic comparison of the
� meson mass for improved staggered actions in quenched
approximation is given in [16]. Recently, [17] claims that
the transition temperature depends on which physical
quantity one measures, and that the Tc defined by the chiral
susceptibility is 151(3) MeV and consistent within errors
with [11]. They showed that the Tc defined by the strange
quark chiral susceptibility and the Polyakov loop are about
175 MeV and consistent with [15].

Since the continuum limit of the mass of the vector
meson would not depend on the temperature near Tc
[18], it would be natural to assign the bare lattice � mass
by about 20% heavier and shift the temperature by the
same amount. We leave a more accurate assignment of the
temperature scale of the MILCft to a future study, and
since the disconnected chiral susceptibility measured by
the configurations shows a clear peak at around 140 MeV�,
we assign the � � 5:65, 5.725, and 5.85 data, which cor-
respond to T � 143, 172.5, and 185 MeV�, by T=Tc �
1:02, 1.23, and 1.32, respectively. We compare the
quenched and unquenched ghost propagator of zero tem-
perature and finite temperature and investigate the role of
quarks on the gluon field and its dependence on the
temperature.

The organization of the paper is as follows. In Sec. II, we
show the results of the color diagonal ghost propagator of
the quenched 564 and unquenched finite temperature
MILC configurations. The corresponding color antisym-
metric ghost propagators are shown in Sec. III. The Kugo-
Ojima parameters, the transverse, magnetic, and electric
gluon propagator, and the QCD running coupling of the
finite temperature unquenched configurations are shown in
Secs. IV, V, and VI, respectively. Conclusions and a dis-
cussion are given in Sec. VII.

II. THE COLOR DIAGONAL GHOST
PROPAGATOR

The ghost propagator is defined by the Fourier transform
(FT) of the expectation value of the inverse Faddeev-Popov
operator M � �@�D�, where D� is the covariant deriva-
tive, as

 FT	Dab
G �x; y�
 � FThtr��ayf�M	U
��1gxy�

b�i

� �abDG�q
2�; (1)

where U is the link variable obtained by the Landau gauge
fixing. In all the simulation in this work we adopt the logU
definition of the gauge field, and the SU(3) color matrix �
is normalized as tr�a�b � �ab. The number of samples is
about 10 each in the 564 lattices and about 100 each in the
243 � 12 lattices.

In the usual Monte Carlo simulation, it is necessary to
make an average over many samples, but the color diago-
nal ghost propagator and the color antisymmetric ghost
propagator of unquenched configurations are almost inde-
pendent of samples. Since we adopt the cylinder cut, i.e.,
select the momentum along the diagonal direction in mo-
mentum space, and take into account translation invariance
and rotational symmetry of the lattice, the error bar of the
ghost propagator of one sample is already not so large, and
an order of 10 samples is enough to get the expectation
values, although one should be cautious to the appearance
of exceptional samples [6].

The color diagonal ghost propagator is defined as

 DG�q� �
1

N2
c � 1

1

V
� trh�ab�h�a cosqxjfbc �x�i

� h�a sinqxjfbs �x�i�i

� G�q2�=q2:

Here fbc �x� and fbs �x� are the solution of Mfb�x� � �b�x�
with �b�x� � 1���

V
p �b cosqx and 1���

V
p �b sinqx, respectively.

A. Quenched SU(3) 564 lattice

The color diagonal ghost propagators of 564 quenched
SU(3) are shown in [6], but we show the data for a
comparison with the color antisymmetric ghost propagator
in the next subsection. Figure 1 is the ghost dressing
function of the 564 � � 6:45 configurations produced by
the Monte Carlo simulation and subsequently Landau
gauge fixed.

The scale of the � � 6:4 and 6.45 configurations are
fixed as in Table I, using the formula in [19]. The ghost

FIG. 1 (color online). The ghost dressing function of quenched
564 configurations of � � 6:45 as the function of log10	q�GeV�
.
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propagator is infrared divergent, but its singularity is
weaker than q�4.

B. MILC finite temperature 243 � 12 lattice

The color diagonal ghost dressing function of MILC
finite temperature configurations are shown in Fig. 2. We
observe that the three data of different temperatures scale
as shown in the figure when each lattice spacing a is chosen
as in Ref. [11].

III. THE COLOR ANTISYMMETRIC GHOST
PROPAGATOR

The color antisymmetric ghost propagator is defined as

 �c�q� �
1

N

1

V
� trhfabc�h�a cosqxjfbs �x�i

� h�a sinqxjfbc �x�i�i;

where the outermost bracket means the ensemble average.

In a theory based on the Curci-Ferrari gauge and in its
extension to the Landau gauge, a parametrization of the
color antisymmetric ghost propagator with use of the ghost
condensate parameter v was proposed [20].

A simulation in the SU(2) lattice Landau gauge using a
parametrization

 

1

N2
c � 1

X
a

j�a�q�j �
r=L2 � v

q4 � v2 (2)

is performed in [21]. In [20] the ghost propagator in the
condensed vacuum in SU(2) is expressed as

 h �cacbiq � �i
q2�ab � v�ab

q4 � v2 : (3)

The term r=L2 in Eq. (2) is a term introduced to incorpo-
rate the finite lattice size effect. We applied the method to
zero-temperature unquenched SU(3) configurations of
MILCc and MILCf [9,10]. In Ref. [21], the finite size
effect expressed by r=L2 was extracted through the fitting
of the lattice data of the color antisymmetric ghost propa-
gator in the high-momentum region, where the perturbative
QCD (pQCD) is a good approximation, as

 

1

N2
c � 1

X
a

L2

cos�� �q=L�
j�a�q�j �

r
qz
; (4)

where the denominator in j�a�q�j
cos�� �q=L� is the factor that appears

in the vertex function of the lattice perturbation theory and
�q takes integer values 0; 1; � � �L=2. In the present work,
since the high-momentum data points where the enhance-
ment due to 1= cos factor is significant are few, i.e., the
enhancement of the highest momentum point of un-
quenched configuration of MILCft is 0.64, that of the
next to highest momentum point is 0.35 and the rest are
less than 0.2 in the log10 scale, we fix the parameter r and v
by the fit of j�a�q�j using Eq. (2) including the whole
momentum region except the highest momentum point.

This treatment of the finite size effect on the lattice data
is not without ambiguity, but our aim is to search qualita-
tive differences as the temperature or the masses of quarks
are changed.

Another quantity that characterizes the system is the
Binder cumulant of the color antisymmetric ghost propa-
gator defined as

 U�q� � 1�
h ~��q�4i

3h ~��q�2i2
:

A simulation of SU(2) lattice Landau gauge obtained
U� 0:44, almost independent of the momentum. This
value is compatible with that of the three-dimensional
Gaussian distribution [10] and the analysis of SU(3)
MILCc and MILCf showed that U is compatible with
that of eight-dimensional Gaussian distribution. We extend

TABLE I. The � � 2Nc=g
2
0 (�imp � 5=3� � for MILCf and

MILCc), the inverse lattice spacing 1=a, lattice size, and lattice
length (fm) of configurations investigated in this paper.
Subscripts c and f of MILC correspond to coarse lattice (a �
0:12 fm) and fine lattice (a � 0:09 fm). The MILCft corre-
sponds to the Nf � 2 finite temperature configurations, and we
assign � � 5:65, 5.725, and 5.85 data to T=Tc � 1:02, 1.23, and
1.32, respectively.

�imp=� amud=ams Nf 1=a (GeV) Ls Lt aLs (fm)

quench 6.4 0 3.66 56 56 2.96
6.45 0 3.87 56 56 2.94

MILCc 6.83 0:040=0:050 2� 1 1.64 20 64 2.41
6.76 0:007=0:050 2� 1 1.64 20 64 2.41

MILCf 7.11 0:0124=0:031 2� 1 2.19 28 96 2.52
7.09 0:0062=0:031 2� 1 2.19 28 96 2.52

MILCft 5.65 0.008 2 1.716 24 12 2.76
5.725 0.008 2 1.914 24 12 2.47
5.85 0.008 2 2.244 24 12 2.11

FIG. 2 (color online). The ghost dressing function of MILCft
configurations of T=Tc � 1:02 (diamonds), T=Tc � 1:23 (stars),
and T=Tc � 1:32 (triangles) as the function of log10	q�GeV�
.

INFRARED FEATURES OF UNQUENCHED FINITE . . . PHYSICAL REVIEW D 76, 054509 (2007)

054509-3



these analyses to large quenched lattices and the finite
temperature configurations.

A. Quenched SU(3) 564 lattice

The absolute value of the color antisymmetric ghost
propagator of quenched 564 lattice in the infrared region
is about 3 orders of magnitude smaller than that of the color
diagonal ghost propagator and the values are sample de-
pendent. Results of� � 6:45, 564 10 samples are shown in
Fig. 3.

Because of this sample dependence, quite different from
the case of unquenched 203 � 64 lattices [10] and 283 �
96 [9], the Binder cumulant of the color antisymmetric
ghost propagator of quenched configurations is noisy due
to large h ~��q�4i as compared to h ~��q�2i2. The randomness
of the color antisymmetric ghost propagator of quenched
configurations is large, and the Binder cumulant becomes
unstable.

B. MILC zero-temperature 283 � 96 lattice

The color antisymmetric ghost propagator of MILCf is
shown in Fig. 4. The fitting parameters are given in [9].

The expectation value of v is small, but the condition
that the fitted curve passes the lowest momentum point of
Fig. 4 within the error bar gives v � 0:026�6� GeV2. It
suggests that the presence of the BRST (Becchi, Rouet,
Stora, and Tyutin) partner of A2 condensate at zero
temperature.

The Binder cumulant of the zero-temperature Nf � 2�
1 MILCc lattice is reported in [10] and that of MILCf is
reported in [9]. We observed that the mass function of
m0 � 27:2 MeV quark propagator of �imp � 7:09 with
bare mass combination m0 � 27:2 MeV=68 MeV shows
an anomalous behavior in the q < 1 GeV region, and that
in the same region Binder cumulant U�q� shows an anoma-
lous behavior, although the mass function of m0 �
68 MeV does not show the anomaly. The non-QCD-like

behavior of staggered quarks calculated with large lattice
spacing a and small bare massm0 is reported in [22]. Since
no anomaly was observed in � � 7:09 m0 �
13:6 MeV=68 MeV [9,10], effects of the relative size of
the s-quark mass vs ud-quark mass and the number of Nf
are suggested.

Thus we extend the analysis to MILC configuration of
Nf � 3, �imp � 7:18, 283 � 96 lattice with the bare quark
mass m0 � 0:031 and that of Nf � 2, �imp � 7:20, 203 �

64 lattice with the bare quark mass m0 � 0:02 [23]. A
result of the Binder cumulants of the Nf � 3 and the Nf �

2 (50 samples) are 0.66(1), i.e., h ~��q�4i is close to h ~��q�2i2.
When the bare masses of the quarks are the same, the
system possesses the self-averaging property [24], and
when they are different as in Nf � 2� 1, the system lacks
this property. The parameter v fitted from Nf � 2 (50
samples) is found to be consistent with 0.

FIG. 3 (color online). log10j ~��q�j as the function of
log10q�GeV� of quenched � � 6:45, 564 lattice.

FIG. 4 (color online). log10j ~��q�j as the function of
log10q�GeV� of MILCf and the fit using r � 134 and v �
0:026 GeV2.

FIG. 5 (color online). log10j ~��q�j as the function of
log10q�GeV� of MILCft of T=Tc � 1:02 (diamonds), T=Tc �
1:23 (stars), and T=Tc � 1:32 (triangles).
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C. MILC finite temperature 243 � 12 lattice

The fluctuation of the color antisymmetric ghost propa-
gator around the expectation value 0 was almost Gaussian
in the case of zero-temperature unquenched configurations
[9,10]. The logarithm of the absolute value of the color
antisymmetric ghost propagator of finite temperature un-
quenched configurations as a function of the logarithm of
the momentum is shown in Fig. 5. In contrast to the color
diagonal ghost propagator, the absolute value of the color
antisymmetric ghost propagator depends on the tempera-
ture. The temperature dependence of the scale of� defined
by r of Eq. (4) can be expressed as roughly r� 5:49a�4:23,
where a is the lattice spacing at each temperature in the
unit of GeV.

The fitting parameters of the color antisymmetric ghost
propagator are given in Table II. The condensate parameter
v of finite temperature is difficult to assign since the lattice
spacing is relatively large and it is difficult to detect the
infrared bending behavior in the color antisymmetric ghost
propagator, but they are consistent with 0.

The Binder cumulant of � is almost independent of the
momentum except the lowest momentum point. We show a
typical example of T=Tc � 1:23 in Fig. 6.

The temperature dependence of the average of U�q�
excluding the lowest momentum point is shown in Fig. 7.
The averageU�T� decreases monotonically as a function of
T from that of the Gaussian distribution (dashed line) at
high temperature.

IV. THE KUGO-OJIMA COLOR CONFINEMENT
PARAMETER

The Kugo-Ojima parameter is defined by the two-point
function of the covariant derivative of the ghost and the
commutator of the antighost and gauge field
 �
����

q�q�
q2

�
uab�q2� �

1

V

X
x;y

e�iq�x�y�

�

�
tr
�
�ayD�

1

�@D
	A�;�

b


�
xy

�
:

(5)

Kugo and Ojima [1] showed that u�0� � �1 is a condition
of the color confinement. Zwanziger [3] defined the hori-
zon function h that is related to the Kugo-Ojima parameter
c � �u�0� as follows:.

 

X
x;y

e�iq�x�y�
�

tr
�
�ayD�

1

�@D
��D���

b
�
xy

�

� G���q��ab �
�
e
d

�q�q�
q2 �ab �

�
��� �

q�q�
q2

�
uab;

where, with use of the covariant derivative D��U�,

 D��Ux;��� � S�Ux;��@��� 	Ax;�; ��
;

@�� � ��x��� ���x�, �� � ��x������x�
2 , and

S�Ux�� �
adjAx;�=2

tanh�adjAx;�=2� .

TABLE II. The fitted parameters r, z, and v of the color
antisymmetric ghost propagator j��q�j of MILCc, MILCf, and
MILC finite temperature. Two values of U of MILCf correspond
to the average below q � 1 GeV and the average above 1 GeV,
respectively.

�imp=� m0 (MeV) r z v U

6.76 11:5=82:2 37.5 3.90 0.02(1) 0.53(5)
6.83 65:7=82:2 38.7 3.85 0.01(1) 0.57(4)
7.09 13:6=68:0 134 3.83 0.026(6) 0:57�4�=0:56�1�
7.11 27:2=68:0 112 3.81 0.028(8) 0:58�2�=0:52�1�
5.65 12.3 54.4 4.01 0.0 0.580(13)
5.725 12.8 88.3 3.95 0.0 0.571(4)
5.85 15.0 165.9 3.93 0.0 0.558(2)

FIG. 6 (color online). The Binder cumulant of the color anti-
symmetric ghost propagator of MILC Nf � 2 configurations of
T=Tc � 1:23 (stars).

FIG. 7 (color online). Averages over momenta excluding the
lowest momentum point of the Binder cumulants of MILC finite
temperature configurations. T=Tc � 1:02 (diamonds), T=Tc �
1:23 (stars), and T=Tc � 1:32 (triangles).
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Using the definition

 e �
�X
x;�

tr��ayS�Ux;���
a�

��
f�N2

c � 1�Vg;

the horizon condition reads limq!0G���q� � e � 0, and
the left-hand side of the condition is e

d� �d� 1�c� e �
�d� 1�hwhere c� e

d , where d � 4 is the dimension of the
system. It follows that h � 0 is the horizon condition, and
thus the horizon condition coincides with Kugo-Ojima
criterion provided the covariant derivative approaches the
naive continuum limit, i.e., e=d � 1.

The Kugo-Ojima parameter is defined by a scalar func-
tion at vanishing momentum in the continuum theory, but
in the lattice simulation, we measured the magnitude of the
right-hand side of Eq. (5) with � � � polarizations of A�
and D�, and then observed in the case of asymmetric
lattices there is a strong positive correlation between the
magnitude and the lattice size of the axis whose directions
are perpendicular to the polarization. These general fea-
tures are manifested in the data of MILCf and MILCc

whose time (4th) axis is longer than the spatial axes, and
in the data of MILCft whose time axis is shorter than the
spatial axes.

A. Quenched SU(3) 564 lattice

The Kugo-Ojima confinement parameter of quenched
configuration saturates at about 80% of the expected value
c � 1. There appear exceptional samples with an average
consistent with c � 1 within errors. The polarization de-
pendence of the Kugo-Ojima parameter of � � 6:45
samples shown in Fig. 8 is due to the lack of rotational
invariance of our system.

B. MILC finite temperature Nf � 2, 243 � 12 lattice

Shown in Table III are the Kugo-Ojima parameters and
the horizon function deviation of quenched 564 configura-
tions, zero-temperature unquenched MILCc and MILCf

configurations, and unquenched finite temperature
MILCft configurations.

The Kugo-Ojima parameters of unquenched zero-
temperature configurations are consistent with the theory
[8–10], and those of unquenched finite temperature con-
figurations show temperature dependence.

Figure 9 shows the dependence on the polarization of the
Kugo-Ojima parameter. The polarization dependence of
the parameter c is a result of an integration over the axes
perpendicular to the polarization. It becomes large when
there is a long axis perpendicular to the polarization.
Figure 10 shows the temperature and the polarization
dependence of the Kugo-Ojima parameter.

The quenched configurations and high-temperature con-
figurations show larger deviation from u�0� � �1, which

FIG. 8 (color online). Kugo-Ojima parameter u�0� of
quenched 564 configurations of � � 6:45 (stars). The data of
an exceptional sample is indicated by the diamond. Polarizations
1, 2, 3, 4 correspond to x, y, z, and t.

TABLE III. The Kugo-Ojima parameter of the quenched 564

lattice and that of the unquenched KS fermion (MILCc, MILCf,
MILCft). cx is the polarization along the spatial directions; ct is
that along the time direction; c is the weighted average of cx and
ct, i.e., �3cx � ct�=4; e=d is the trace divided by the dimension;
and h is the horizon function deviation.

�imp=� cx ct c e=d h

quench 6.4 0.827(27) 0.954(1) �0:12
6.45 0.814(89) 0.954(1) �0:14

MILCc 6.76 1.04(11) 0.74(3) 0.97(16) 0.9325(1) 0.03(16)
6.83 0.99(14) 0.75(3) 0.93(16) 0.9339(1) �0:00�16�

MILCf 7.09 1.06(13) 0.76(3) 0.99(17) 0.9409(1) 0.04(17)
7.11 1.05(13) 0.76(3) 0.98(17) 0.9412(1) 0.04(17)

MILCft 5.65 0.72(13) 1.04(23) 0.80(21) 0.9400(7) �0:14�21�
5.725 0.68(15) 0.77(16) 0.70(15) 0.9430(2) �0:24�15�
5.85 0.63(19) 0.60(12) 0.62(17) 0.9465(2) �0:33�17�

FIG. 9 (color online). Kugo-Ojima parameter u�0� of MILCf
Nf � 2� 1 KS fermion unquenched configurations of �imp �

7:11 (diamonds), �imp � 7:09 (stars).
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would be due to higher randomness of these systems. The
origin of the randomness in the latter would be the thermal
fluctuation and that of the former would be the lack of
fermions that quench randomness of the system.

V. THE FINITE TEMPERATURE GLUON
PROPAGATOR

The fluctuation of the gluon propagators of lattice
Landau gauge is larger than that of the ghost propagator.
We measure the gluon propagators of the three tempera-
tures of MILCft by using about 100 samples each and
choosing the momenta along the three-dimensional (3D)
coordinate axes and along the diagonal in the 3D space.
The dependence on the choice of the direction is not
significant except a slight suppression of the �q �
�1; 1; 1; 0�, as compared to that with the same magnitude
but along the coordinate axes. We fix the normalization of
the gluon propagator such that the running coupling de-
fined by the product of the gluon dressing function and the
ghost dressing function squared as defined in Sec. VI in the
high-momentum region agrees with the pQCD result and
that the rescaling factor for the ghost dressing function and
the gluon dressing function are the same. The renormal-
ization factors defined by the highest momentum point
along the coordinate axes of the three temperatures are
0.48(1).

In Fig. 11 the transverse gluon dressing functions of the
three temperatures taken at momenta along the diagonal
direction in the 3D momentum space after the rescaling are
shown. The asymptotic value is about 2, since we normal-
ized Tr�a�b � �ab. Larger infrared enhancement of the
transverse gluon dressing function for low temperature
agrees with a recent result of quenched SU(2) finite tem-
perature simulation [25].

The transverse gluon propagator at the zero momentum
is finite as shown in Fig. 12. The value of DA�0� of MILCf,
� � 7:09, 283 � 96 is about 15 GeV�2 [8]. The DA�0�

decreases monotonically as T decreases to 0. Whether it
vanishes or remains finite is an important problem for
fixing the nature of the infrared fixed point of the running
coupling. There is an argument that the infrared nonvan-
ishing of the Landau gauge gluon propagator is a finite size
effect. Our lattice volume of low-temperature data is larger
than the high-temperature data, but the running coupling
which is calculated by the gluon propagator and shown in
Sec. VI excludes large temperature dependence in the finite
size effects. A correction of the global scaling factor is,
however, not excluded.

We observe that the fluctuation of the gluon propagator
at the zero momentum increases as the temperature
increases.

The one-loop off-shell contribution to the quark-gluon
vertex is related to the quark-quark-ghost-ghost amplitude
via Ward-Slavnov-Taylor identity [12]. The screening

FIG. 11 (color online). The transverse gluon dressing function
Z�q� of MILCft Nf � 2 KS fermion unquenched configuration
of T=Tc � 1:02 (diamonds), T=Tc � 1:23 (stars), and T=Tc �
1:32 (triangles).

FIG. 10 (color online). Kugo-Ojima parameter u�0� of MILCft
configurations of T=Tc � 1:02 (diamonds), T=Tc � 1:23 (stars),
and T=Tc � 1:32 (triangles).

FIG. 12 (color online). The transverse gluon propagator of
MILCft Nf � 2 KS fermion unquenched configuration of
T=Tc � 1:02 (diamonds), T=Tc � 1:23 (stars), and T=Tc �
1:32 (triangles) at q � 0 in the unit of GeV�2.
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mass of the gluon would be affected by the ghost propa-
gator. The correlation function of the gauge fields in the
position space is defined as [26]

 DA��z� � hA��z�A��0�i;

where A��z� �
P
x0;x1;x2

A��x0; ~x�.
The screening mass of the gluon is produced by the

quark-, gluon-, and ghost-loops. The electric screening
mass me is defined by

 Ge�z� � DA0�z� � exp	�mez=NtT
:

The magnetic screening mass mm is defined by

 Gm�z� � �DA1�z� �DA2�z��=2� exp	�mmz=NtT
:

We fit the propagator Ge�z� and Gm�z� by

 DA�z� � A cosh	�m=NtT��z� Nx=2�
:

The mass depends on the region of z used to fit the data and
Karsch et al. proposed to fit data of z nearNx=4 [27]. We fit

the data from z � 5 to 9. When we fit the data from z � 0
to z � 6, the masses become smaller by about 30– 40%.
Since deviations from the cosh functional form become
larger in this region, we adopt the fit from z � 5 to 9. The
fitted data of MILCft electric gluon propagator Ge�z� and
the magnetic gluon propagator Gm�z� are shown in Fig. 13
and Fig. 14, respectively.

In high temperature, pQCD suggests that

 

me

T
/ g�T�;

mm

T
/ g2�T�;

where g2�T�=4� is the running coupling at temperature T
and 0 momentum. Our electric screening mass and the
magnetic screening mass are close to those of quenched
SU(2)me=T � 2:484�52�measured by [26]. The magnetic
screening mass in the case of SU(2) using the data in the
region of T > 2Tc was mm=T � 0:466�25�g2�T� in the
two-loop pQCD calculation with �m � 0:262�18�Tc. In
the case of quenched SU(3), [28] obtained, using the data
in the region of T > 1:5Tc, me=T � 1:69�4�g�T� and
mm=T � 0:549�16�g2�T�. Since the electric and the mag-
netic gluon propagator of [28] are normalized to 1 at z � 0
and the critical temperature of the quenched configuration
Tc � 269� 1 MeV [15] is much higher than that of the
unquenched configuration, we cannot compare quantita-
tively their data with ours, but their data of T=Tc � 1:32
are consistent with ours within errors. We do not observe
suppression of me=T near Tc. Whether the discrepancy is
due to the presence of dynamical quarks is left for future
study. Discrepancy of about factor 6 in the mm=T of SU(3)
near Tc from the extrapolation of the pQCD results in T >
1:5Tc region implies breakdown of the perturbation series
near Tc.

VI. THE FINITE TEMPERATURE QCD RUNNING
COUPLING

In [29] the calculation of the running coupling in the
Dyson-Schwinger equation (DSE) at zero temperature [30]
was extended to below Tc and the running coupling for
q0 � 2�nT is written as

 	�n; q2; T� � 	��2�G2�n; q2; �2; T�Z�n; q2; �2; T�; (6)

where G�n; q2; �2; T� is the ghost dressing function and
Z�n; q2; �2; T� is the gluon dressing function. Applying
this method to T � Tc, we measure the QCD running
coupling in the asymmetric momentum subtraction

( gMOM) scheme as the product of the gluon dressing

TABLE IV. The electric and the magnetic screening mass of
MILCft.

� T=Tc me=T mm=T

5.65 1.02 3.42(27) 3.48(48)
5.725 1.23 3.22(40) 2.90(20)
5.85 1.32 3.14(33) 2.31(22)

FIG. 14 (color online). Magnetic gluon propagator of MILCft
Nf � 2 KS fermion unquenched configurations of T=Tc � 1:02
(diamonds), T=Tc � 1:23 (stars), and T=Tc � 1:32 (triangles).

FIG. 13 (color online). Electric gluon propagator of MILCft
Nf � 2 KS fermion unquenched configuration of T=Tc � 1:02
(diamonds), T=Tc � 1:23 (stars), and T=Tc � 1:32 (triangles).
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function and the ghost dressing function squared, as a
function of the momentum q along the spatial axes. We
set n equal to 0 in the analysis. We normalize the magni-
tude to the result of four-loop pQCD [8,31–33] at the
highest momentum point of � � 5:725. A DSE result of
zero-temperature quenched configuration with the infrared
exponent of the ghost propagator 
 � 0:5 [34]. In [6] we
compared the running coupling in the quenched lattice
simulation with the parametrization suggested by the
DSE analysis as1

 

	s�q
2� �

1

c0 � �q
2=�2

QCD�
2

�
c0	0 �

4�
�0

�

�
1

log�q2=�2
QCD�

�
1

�q2=�2
QCD� � 1

��
q2

�2
QCD

�
2
�
;

(7)

where �0 � 11� 2
3Nf.

The parameters adopted in the fit were �QCD �

330 MeV, c0 � 30. The Nf dependence of the running
coupling is not so large, and to make comparison with
the quenched data the dashed line used to fit the quenched
data of Nf � 0 [6] is shown in Fig. 16.

In the pQCD, an approximate inversion of the four-loop
formula yields the running coupling as a function of t �
log�q2=�2� as follows [31,32].
 

	s;pert�q
2� �

4�
�0t
�

8� ~�1

�0

log�t�

��0t�
2 �

1

��0t�
3

�
2� ~�2

�0

�
16�~~�

2
1

�2
0

�log2�t� � log�t� � 1�
�
�

1

��0t�4

�

�
2� ~�3

�0
�

16� ~�3
1

�3
0

�
�2log3�t� � 5log2�t�

�

�
4�

3 ~�2�0

4 ~�2
1

�
log�t� � 1

��
; (8)

where ~�1 � �102� 38
3 Nf�=2, and

 

~�2 �

�
2857

2
�

5033

18
Nf �

325

54
N2
f

��
4;

~�3 �

�
149753

6
� 3564��3� �

�
�

1078361

162
Nf

�
6508

27
Nf��3�

�
�

�
50065

162
�

6472

81
��3�

�
N2
f

�
1093

729
N3
f

��
8:

Here the scale in the gMOM scheme is defined as [35,36]

 � � �MSe
�70=3�22Nf=9�=22;

and �MS is 0.259(22) GeV for Nf � 2 and 0.252(10) GeV
for Nf � 0 were obtained by fitting the data in the con-
tinuum window 1:8 GeV< q< 2:3 GeV (0:26<
log10	q�GeV�
< 0:37)[31,36].

The pQCD running coupling in the gMOM scheme using
�MS � 0:259 GeV is shown by the dotted line.

Comparing with the result of Nf � 2� 1 zero tempera-
ture [8], the deviation from the pQCD is smaller. Although
the presence of ghost condensate at zero temperature is not
excluded, there is no sign of finite v and A2 at finite
temperature.

The running couplings of three temperatures near Tc as a
function of the momentum q lie roughly on a single curve
and there is not strong temperature dependence. The rela-
tively large T dependence of the mm=T suggests that the

FIG. 16 (color online). The running coupling of the MILCft of
� � 5:65 (diamonds), 5.725 (stars), and 5.85 (triangles) as the
function of log10q�GeV�. The dashed line is the DSE result used
to fit the quenched zero-temperature lattice data [6] with 
 �
0:5, and the dotted line is the pQCD result with Nf � 2 of zero
temperature.

FIG. 15 (color online). The magnetic screening mass mm=T
(stars) and the electric screening mass me=T of MILCft Nf � 2
KS fermion unquenched configurations (triangles).

1We use log(t) representing ln(t). The common logarithm is
expressed as log10.
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nonperturbative effects on the magnetic screening mass are
important.

The running coupling of zero-temperature Nf � 2
MILC 203 � 64 configuration is roughly the same as that
of Nf � 2� 1 MILCc presented in Fig. 15 of [8]. In the
�0:9< log10	q�GeV�
<�0:3 region it decreases mono-
tonically. We think that the suppression of the running
coupling at the infrared is due to the singularity of the
color antisymmetric ghost dressing function there, which
suppresses the color diagonal ghost dressing function, and
that the suppression is a kind of an artifact. It may imply a
question on the structure of the infrared fixed point and on
the extensibility from the perturbative region to the non-
perturbative region of the method of defining the running
coupling from the product of the color diagonal ghost
dressing function squared and the gluon dressing function.

VII. DISCUSSION AND CONCLUSION

We measured the color diagonal and the color antisym-
metric ghost propagator of quenched, unquenched zero-
temperature and unquenched finite temperature configura-
tions. The quark has the effect of quenching randomness of
the ghost propagator and enhancing the transverse and
magnetic gluon propagator above Tc. The Binder cumulant
of the quenched SU(3) color antisymmetric ghost propa-
gator is noisy, but that of the unquenched SU(3) color
antisymmetric ghost propagator is almost constant and
independent of the momentum except the lowest momen-
tum point. The color diagonal ghost propagator of finite
temperatures above Tc is almost temperature independent,
but the scale of the color antisymmetric ghost propagator
becomes larger as the temperature becomes higher.

We observed that the Binder cumulants of unquenched
SU(3) Nf � 2� 1 configurations at zero temperature are
consistent with those of N2

c � 1 dimensional Gaussian
distribution when the strange quark mass is not close to
the ud-quark mass, and that Nf � 2 configurations at finite

temperatures deviate from Gaussian distribution as the
temperature rises from Tc, which may be interpreted as
the quark effect of quenching randomness is reduced in
high temperature. The anomaly of the KS fermion propa-
gator and that of the momentum dependence of the Binder
cumulant seem to be correlated. This may indicate that the
QCD-like region of the Nf � 2� 1 KS fermion system is
more complicated than that of the Nf � 2 case given in
[22]. The Binder cumulant of unquenched Nf � 2 and 3
which are consistent with 0.66 indicates that the ratio of the
ud-quark mass and the s-quark mass is an important
ingredient.

The parameter v introduced to investigate the ghost
condensate is found to be small, and its value depends on
the temperature and the bare mass of the KS fermion.

We observed strong nonperturbative effects in the mag-
netic screening mass of the gluon near Tc. Since near Tc
systematic perturbative QCD calculation is impossible, it is
important to formulate the lattice theory. In the quenched
finite temperature Landau gauge DSE approach [29,37] the
infrared exponent 
 and the running coupling in the mo-
mentum subtraction scheme were found to be essentially
temperature independent below Tc.
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