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In a pilot study, we use the topological charge density defined by the eigenmodes of the overlap Dirac
operator (with ultraviolet filtering by mode truncation) to search for lumps of topological charge in SU�2�
pure gauge theory. Augmenting this search with periodic and antiperiodic temporal boundary conditions
for the overlap fermions, we demonstrate that the lumps can be classified either as calorons or as separate
caloron constituents (dyons). Inside the topological charge clusters, the (smeared) Polyakov loop is found
to show the typical profile characteristic for calorons and dyons. This investigation, motivated by recent
caloron/dyon model studies, is performed at the deconfinement phase transition for SU�2� gluodynamics
on 203 � 6 lattices described by the tadpole-improved Lüscher-Weisz (LW) action. The transition point
has been carefully located. As a necessary condition for the caloron/dyon detection capability, we check
that the LW action, in contrast to the Wilson action, generates lattice ensembles, for which the overlap
Dirac eigenvalue spectrum smoothly behaves under smearing and under the change of the boundary
conditions.
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I. INTRODUCTION

The two current confinement scenarios, the monopole
[1–3] and the vortex mechanism [4,5] of confinement in
SU�N� gauge theory have become unified within the Z�N�
vortex picture [6–11]. Yet there exists the old hope to
connect confinement also with the topological structure
as understood in terms of instantons [12–14], calorons
[15], dyons [16,17], merons [18], and more generic objects
[19], all being carriers of Pontryagin charge.1 The main
reason for this desire is to bring confinement, on first sight
a rather abstract property of pure (lattice) Yang-Mills
theory, in closer relation to the physical origin of chiral
symmetry breaking and to the continuum theory.

During the past decade, new self-dual solutions have
entered the discussion. The aim is now to explain confine-
ment in such a model via a detour through finite tempera-
ture, at 0< T < Tdec. The new solutions are the
Kraan–van-Baal–Lee–Lu (KvBLL) [20–23] calorons
with a general asymptotic holonomy P1 =2 Z�N�, not
necessarily in the center of SU�N�. For SU�2� the
asymptotic holonomy can be roughly identified with the
real-valued spatial average of the Polyakov loop L �
�1=V�

P
~x TrP � ~x�.

Very recently, Diakonov and Petrov have worked out a
model [17] based on a gas of interacting caloron constitu-
ents, i.e. self-dual dyons, that offers already a complete
picture of confinement at finite temperature. Although the
presence of both self-dual dyons and anti-self-dual anti-
dyons has been ignored so far, the model is a convincing

step forward. For the success of this description (which
describes also the limit of low temperature) the maximally
nontrivial holonomy of the gauge field is crucial.

In one paper [15], authored last year at Humboldt
University, the capability of a caloron gas model to explain
confinement has been explored in a Monte Carlo study. In
this caloron model the opposite extreme case of dyons
bound in calorons is dealt with. The importance of maxi-
mally nontrivial holonomy for the correct choice of the
caloron solutions to be used in the model was the central
idea. Even a modest dissociation of calorons into slightly
separated dyon-dyon pairs turned out sufficient to create a
confining heavy-quark potential of the right order of
magnitude.

The assumptions of these models have to be confronted
with the lattice. Will we ever have the chance to confirm or
disprove models of this type by analyzing generic
Monte Carlo lattice configurations? For some time already
our aim is to understand, albeit numerically, to what extent
calorons and dyons coexist and are discernible in the
Euclidean gauge fields, most probably below Tdec. This
has been the central question in our two previous lattice
papers on the problem [24,25] and is the central question
also now.

Traditionally, the presence of locally classical excita-
tions like instantons in Monte Carlo lattice gauge fields has
been explored by using methods like cooling [26–29],
restricted cooling [30], smearing [31], that replaced the
more demanding renormalization group cycling [32,33],
and more general, by combinations of blocking and inverse
blocking [34–36]. In the result, a well-localized topologi-
cal charge density (according to its field-theoretical defi-
nition [37,38]) becomes visible. All these methods actively
change the gluonic field of the lattice configurations.

1For brevity, in this paper we understand ‘‘calorons,’’
‘‘dyons,’’ and ‘‘self-dual’’ as including also ‘‘anticalorons,’’
‘‘antidyon,’’ and ‘‘anti-self-dual.’’
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Therefore they have been considered with some scepticism
because of the methodical bias towards classical fields.
Concerning our particular point of view, one might criti-
cize that these methods also tend to hide the presence of
dyonic constituents inside calorons.

For the evaluation of the topological charge density, the
situation has completely changed with the availability of
methods dealing with overlap fermions [39,40]—or other
fermions with improved chiral properties [41,42]—as a
probe to explore gauge fields. A definition [43,44] of the
topological charge density has been given involving the
trace of the overlap Dirac operator. Then ultraviolet filter-
ing can be given a well-defined sense [45,46] by restricting
the trace to the lowest fermionic eigenmodes with j�j<
�cut in the spectrum. The properties of this whole family of
topological densities are strongly changing with �cut and
have been investigated in detail in Ref. [47].

In our two lattice papers [24,25] on the caloron/dyon
issue, we were relying on the smearing technique and using
the field-theoretical definition of the topological charge
density in terms of an improved lattice field-strength tensor
[48]. Additionally, in order to support the interpretation of
the clusters of topological charge as calorons or dyons, the
monopole content of the clusters has been analyzed in the
maximal Abelian gauge.2

With the present paper we return to the investigation of
the caloron/dyon structure. We are replacing the field-
theoretical topological charge density, which always re-
quires smearing, by the overlap-based topological charge
density in the ultraviolet filtered form mentioned above.
We should remind the reader that chirally improved lattice
fermions [41,42] (another realization of Ginsparg-Wilson
[51] fermions) have already been used to analyze un-
smeared lattice configurations for the presence of calorons
[52]. Before that, unimproved Wilson fermions have been
employed [53] for the description of nearly classical calo-
rons and dyons obtained by cooling. What was common to
both techniques was inspired by the theoretically known
behavior of zero modes of caloronlike configurations [54].
Thus, particular emphasis was first given to the zero modes
(or the real modes in case of the Wilson-Dirac operator),
which must be present in configurations with topological
charge Q � 0, and to the effect on them of changing the
boundary conditions for the Dirac operator [52,53,55,56].
Confronting the zero-mode pattern with the picture re-
vealed by smearing, it became clear [55] that the zero
modes are part of the topological structure of a typical
Monte Carlo configuration but cannot exhaustively explain
it.

In a recent paper [57] reporting a collaborative project of
the Humboldt University and Regensburg University lat-
tice groups, it has been described how smearing and spec-
tral filtering methods (with fermions and scalars) can be

tuned to each other as far as the topological charge density
is concerned. In our present context, the relation between
the fermionic filtering and the result of smearing is rele-
vant. In the parameter space of competing methods (num-
ber of modes vs smearing steps), a mapping was defined by
optimizing the cross correlation between the respective
topological charge densities. As just two extreme ex-
amples, we quote the observations that 10 smearing steps
are equivalent to the filtering by 50 modes, while 20
smearing steps are equivalent to not more than 8 modes.
These are only two arbitrarily taken cases of relatively mild
and strong filtering. Of course, the structure changes (the
number of lumps decreases) with increasing smearing
steps. Moreover, even the parameter mapping does not
guarantee that the clusters of the respective densities ex-
actly coincide. The pointwise overlap amounts only to 50%
to 60%. Although in Ref. [57] chirally improved fermions
[41,42] were employed instead of overlap fermions, the
results give additional motivation and orientation for the
present investigation and may be helpful to appreciate the
new findings. We will explore the possibilities of identify-
ing caloronlike and dyonlike structures for intermediate
filtering employing 20 overlap eigenmodes.

What is the conjectured physical picture ? Our previous
experience [15,24,25] suggests, in accordance with the
model of Diakonov and Petrov [17] that a ‘‘plasma’’ in-
cluding calorons (with nontrivial holonomy) and dissolved
dyonic constituents may describe the field structure at T <
Tdec rather well. It fails, however, to describe the essential
features of lattice fields above Tdec. It has been guessed that
calorons with intermediate holonomy3 would describe the
topological structure in the high-T phase closely above
Tdec. A semiclassical evaluation of the path integral [60]
has shown, however, that the caloron becomes unstable
against dissociation into dyons outside a narrow stability
region jLj> 0:72. On the lattice, by suitable measures of
self-duality [47,61], it has been observed that locally self-
dual domains become suppressed above Tdec. The topo-
logical susceptibility is known to slowly decrease [in the
case of SU�2� gauge theory], and purely magnetic mono-
pole excitations probably acquire an overwhelming
importance.

In the confined phase, the caloron model indeed de-
scribes confinement, even if the dissociation of calorons
into dyons remains incomplete and within a description by
a phenomenological choice of the � distribution. The size
variable �2 � d=��T� in the caloron case represents a
natural extension of the size parameter �2, usually assigned
to the (Euclidean) spherical lumps of action seen at T ! 0,
to higher temperatures in the confinement phase when the
distance d between the constituents may be d� 1=��T� or

2MAG was implemented on the lattice first in Refs. [49,50].

3The usual Harrington-Shepard calorons [58], forming the
basis of the first nonperturbative description of finite-T QCD
[59], represent the limiting case of trivial holonomy.
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bigger. Dissociation is increasing with rising temperature
towards Tdec.4 This is in agreement with a practically
temperature independent �-distribution for T < Tdec, simi-
lar to the usual instanton parametrization [15]. Let us re-
mark that at very low temperature the carriers of
topological charge become more and more difficult to
distinguish from genuine instantons by means of gauge-
invariant observables alone (action and topological charge
density). All this has led to the conjecture that close to the
deconfining phase transition the dyonic content of calorons
becomes maximally manifest. Therefore we concentrate
here first on this temperature.

In the present investigation we have dispensed with
(i) the use of smearing for the detection of clusters of
topological charge, and with (ii) the maximally Abelian
gauge needed to determine the monopole content of the
latter. We gave up, on the other hand, the exclusive focus
on the zero mode(s) [52,56] of the configurations being
under investigation. We have concentrated instead on the
effect of changing the fermionic boundary conditions on
the whole overlap-based topological charge density
mapped out by a given (not too large) number of eigen-
modes. The dependence on boundary conditions has not
yet been systematically investigated. Our present paper is a
first step in this direction and hopefully stimulates such a
thorough investigation. Also concerning the SU�2� gauge
theory, this paper is the first application of the overlap-
based topological charge density. For two colors it suffices
to restrict oneself to the simultaneous consideration of
periodic vs antiperiodic boundary conditions. We shall
see that the mode-truncated topological charge densities
corresponding to the two boundary conditions, completed
by the local Polyakov loop, allow us to classify the visible
topological charge clusters as calorons and separate dyons,
respectively.

The paper is organized as follows. In Sec. II we define
the technical details of our analysis: the action [63,64], the
overlap Dirac operator [39,40], and the corresponding
topological charge density [43,44]. Under conditions of
confinement, but close to the transition temperature, we
critically check the stability of the fermionic topological
charge (given by the index of the overlap Dirac operator)
and the continuity of the low-lying spectrum under smear-
ing and with respect to a change of fermionic boundary
conditions. This check forces us to abandon the standard
Wilson gauge action and motivates the choice of the
Lüscher-Weisz action that successfully passes the test.
The bulk of investigations is performed using the
tadpole-improved Lüscher-Weisz action [65]. In Sec. III
we determine the critical �imp;c for the quenched thermal
phase transition with this action. The search for the tran-
sition is restricted to a 203 � 6 lattice that will be used in

the following. Next, in Sec. IV, we explain how the mode-
truncated, overlap-based topological charge density ob-
tained with the two different fermionic boundary condi-
tions can be used to extract calorons and dyons from
unsmeared configurations, but restricted to the resolution
given by the number of eigenmodes. This is practiced for
an ensemble generated on top of the phase transition. In the
future we hope to proceed with this analysis deeper into the
confinement and the deconfinement phases. A discussion
of the results in the light of related work, our conclusions,
and an outlook will be presented in Sec. V.

II. WILSON VS LÜSCHER-WEISZ ACTION: THE
STABILITY OF THE DIRAC SPECTRUM

A. The action

We employ for the actual analysis of the caloron/dyon
content of SU�2� gauge theory the tadpole-improved action
of the Lüscher-Weisz form [66,67]

 S � �imp

X
pl

Spl �
�imp

20u2
0

X
rt

Srt; (1)

where Spl and Srt denote plaquette and 1� 2 rectangular
loop terms in the action,

 Spl;rt �
1
2 Tr�1�Upl;rt�: (2)

The parameter u0 is the input tadpole improvement factor
taken here equal to the fourth root of the average plaquette
W1�1 � h�1=2�TrUpli. For SU�2� gauge theory, the tad-
pole factor u0 has been self-consistently determined first in
Ref. [67] for a few �imp values in the case of vanishing
temperature on L4 lattices with a suitable lattice size L for
each value of the bare coupling constant. The result is
given in Table I. For the convenience of the reader and
later reference to the lattice scales, we present the corre-
sponding values of the string tension in lattice units.

In our simulations we have not included one-loop cor-
rections to the coefficients nor considered nonplanar 6-link
loops the coefficient of which would be purely perturba-
tive. We have adopted the u0 values obtained at zero
temperature also for the simulations at T � Tdec.

TABLE I. Details of the simulations with tadpole-improved
Lüscher-Weisz action at T � 0.

�imp L u0 hPi1=4
���������
�a2
p

2.7 12 0.871 64 0.871 65(2) 0.60(5)
3.0 12 0.894 85 0.894 78(2) 0.366(8)
3.1 12 0.900 69 0.900 69(1) 0.309(6)
3.2 16 0.905 78 0.905 765(3) 0.258(5)
3.3 16 0.910 15 0.910 152(4) 0.219(3)
3.4 20 0.914 02 0.914 020(2) 0.180(3)
3.5 20 0.917 47 0.917 481(1) 0.151(3)

4This tendency is also supported by the cooling results in
Ref. [62].
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B. The overlap Dirac operator

The overlap Dirac operator is a particular solution of the
Ginsparg-Wilson relation [51]

 D�5 � �5D �
a
�
D�5D; (3)

where � � O�1� is a dimensionless parameter not to be
confused5 with the instanton or caloron size parameter
above. These operators have nearly perfect chiral proper-
ties. In particular, the Atiyah-Singer index theorem is
fulfilled at finite lattice spacing, with N	 clearly recogniz-
able zero modes with positive or negative chirality related
to the topological charge

 Qindex � N� � N�: (4)

This is unambiguous as long as the configurations satisfy
certain weak smoothness requirements [68]. A Neuberger
operator can be constructed starting from an arbitrary input
Dirac operator (with bad chiral symmetry or with already
improved chiral symmetry) through the steps we describe
now. In our case, we take as the input kernel the simple
Wilson-Dirac operator. In this case, the emerging
Neuberger overlap operator [39,40] is

 Dov �
�
a
�1�DW=

���������������
DyWDW

q
�; DW � M�

�
a
; (5)

where DW is the Wilson-Dirac operator with a negative
mass term �=a. M is the Wilson hopping term with r � 1.
An optimal choice is � � 1:4. By construction, the opera-
tor Dov satisfies the Ginsparg-Wilson relation. In order to
compute the sign function in the alternative expression

 DW=
���������������
DyWDW

q
� �5 sgn�HW�; HW � �5DW; (6)

we have used the minmax polynomial approximation [69].
Furthermore, the low-mode projection has been used: 80
eigenmodes of the Hermitian Wilson-Dirac operator HW

have been treated explicitly.
The topological charge density can be expressed in the

form [43]

 q�x� � �tr
�
�5

�
1�

a
2�
Dov�x; x�

��
; (7)

where tr denotes the trace only over color and spinor
indices. This form of the topological charge density con-
tains vacuum fluctuations of all scales. In the apparent
chaos remarkable global, low-dimensional structures
[70–72] are formed. They are three-dimensional at the
percolation threshold [47]. The ultraviolet filtered (mode-
truncated) density [45] is written as a truncated sum over �
as the dimensionless eigenvalues of aDov=�,

 q�cut
�x� � �

X
j�j
�cut

�
1�

�
2

�
 y��5 ��x�; (8)

however, shows clustering of topological charge [47] in
four-dimensionally coherent clusters similar [57] to struc-
tures usually revealed by smoothing the gauge field. This is
the level of resolution where calorons and dyons may
appear (or not).

The integral over q�cut
�x� gives Q corresponding to the

Atiyah-Singer index theorem, independent of �cut, because
only the zero modes contribute to Q according to their
chirality. It is remarkable, but generally observed for the
overlap Dirac operator, that if there are zero modes within
a configuration, they all have the same chirality.

C. The Dirac spectrum under smearing and varying
boundary conditions

The cross relation between topological charge density
and local structure of the Polyakov loop is typical for
calorons and their constituents. In order to map out the
Polyakov loop, we need a modest amount of smearing in
this study. A second role of smearing in our present context
is that we want to monitor the independence of the index of
the overlap Dirac operator and a smooth dependence of the
low-lying spectrum on the number of APE smearing steps.
We regard this as a necessary prerequisite that this part of
the spectrum reflects medium-scale and infrared properties
only. Thus, a minimal requirement for the Dirac operator as
well as for the lattice action (to prevent lattice artefacts that
could give rise to unphysical zero modes) is the continuity
of the spectrum under moderate smearing. This in fact
selects admissible actions and an admissible range of the
respective coupling.

Smearing is an iterative sequence of four-dimensional
link substitutions, where links are replaced by a weighted
average of the links and the staples

 U�
��x� � U��x�U��x� �̂�U

y
� �x� �̂�

surrounding it:

 U��x� ! P

�
�1� 	�U��x� �

	
6

X
���

�U�
��x� �U��� �x��

�
:

(9)

Here P denotes the projection onto the gauge group. For
SU�2� this is just a rescaling of the matrix by a scalar. We
choose the smearing parameter 	 � 0:45 following [31]
where an optimal smearing schedule has been searched for.
Within some limits, this parameter could be traded against
the number of smearing steps. We allow for NAPE 
 10
iterations.

It has been known for some time [73] that the Wilson
action is problematic with respect to dislocations. We
remind the reader that the definition of a dislocation de-
pends both on the action in use for the generation of gauge5We prefer to keep this standard notation.
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configurations and on the prescription chosen to define the
topological charge (or charge density). In the case of the
SU�2� Wilson action together with the (geometrical)
Phillips-Stone topological charge [74], scaling of the to-
pological susceptibility [75] was an unsuspected fact be-
fore Pugh and Teper [76] showed that the observed value of
hQ2i was dominated by excitations of size O�a� that would
not survive blocking. The lesson we draw from this ex-
ample is that the bosonic topological charge

 Qgluon �
Z
d4xqgluon�x� (10)

to be assigned to a configuration by a suitably improved
gluonic topological charge density

 qgluon�x� �
g2

32�2 "���� Tr�F��F���; (11)

and a geometrically defined version of the topological
charge [74,77] may be in systematical disagreement due
to the presence of lattice artefacts. This can be the case
even though it might not appear as a scaling violation of the
topological susceptibility. In a first application of the over-
lap operator to SU�2� gauge fields generated with Wilson
action [78], a reasonable continuum limit of the suscepti-
bility hQ2i=V with Q defined via the index of the overlap
operator has been found. Therefore the Wilson action was
not suspicious. The value of 
top, however, was somewhat
large compared to other estimates for the SU�2� gauge
theory.6

The field-theoretic definition of the topological charge
density that we have used in our previous papers [24,25]
employs the improved field-strength tensor [48]. The geo-
metrical definition of the topological charge Q of a con-
figuration is replaced in our present context by the index of
the overlap Dirac operator, and the topological density by
the corresponding expression (7) given above. At this
point, checking the above-formulated requirements, dis-
turbing features of the Wilson action are encountered. At
first, the roughness of the configurations results in a rela-
tively bad performance of the ARPACK package used to
diagonalize the overlap Dirac operator. This probably leads
to a bad reproducibility of the measured index. Thus, the
latter can easily be misidentified due to zero modes pinned
to dislocations. During the first smearing steps such dis-
locations become even more singular.

As a typical example we show in Fig. 1 the lowest 20
eigenvalues according to the two boundary conditions
imposed, without smearing and with 5 and 10 smearing
steps, for a 203 � 6 configuration generated with the
Wilson action at � � 2:4. This � was chosen below the

critical value �c�N� � 6� � 2:4265�30� reported for the
Wilson action in Ref. [80]. We see jumps of the measured
topological charge, j�Qindexj � 1, between subsequent
stages of smearing and occurring under a change of the
boundary conditions (temporally periodic vs antiperiodic).
During the first steps, smearing changes only the short
range structure. The changing index counts here essentially
the dislocations. Hence, the number of zero modes rapidly
changes with the APE smearing steps.

The fact that the Lüscher-Weisz action is advantageous
to facilitate our study, has been confirmed for a number of
�imp values. The result is demonstrated in Fig. 2 for a
typical configuration from a Lüscher-Weisz ensemble at
�imp � 3:2. The number of zero modes is independent of
the type of temporal boundary condition and does not
change with the number of APE smearing steps (as long
as smearing is moderate, say NAPE 
 10). For �imp � 3:2
we have never encountered such ambiguities as seen in the
Wilson case. In Sec. III we will see that the critical inverse
gauge coupling for this action is�imp;c�N��6��3:248�2�.
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FIG. 1 (color online). The eigenvalue spectra of the Dirac
overlap operator with (a) periodic and (b) antiperiodic temporal
boundary conditions for equilibrium (NAPE � 0) and smeared
(NAPE � 5 and 10) pure SU�2� gauge configurations on a 203 �
6 lattice, generated with the standard Wilson action at � � 2:40.

6The scaling property of the topological susceptibility would
only be lost, resulting in a diverging susceptibility in the con-
tinuum limit, if local excitations would exist, that give rise to
highly localized zero modes and would have a Wilson action less
than SW < 12

11�
2 [79].
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The successful check presented in Fig. 2 has been per-
formed for a situation close but clearly below the phase
transition.

We should stress, however, that configurations created
by means of the Lüscher-Weisz action may also turn out
too ‘‘rough’’ at sufficiently low �imp values. For example,
exploring the temperature range around Tdec on a coarser
lattice with N� � 4 (i.e. at lower �imp), we found that the
described ambiguities reappear.

A surprising observation in the case of both actions is
that the interval covered by the 20 lowest eigenvalues does
not systematically expand under the application of smear-
ing steps. This differs from the behavior seen in Ref. [81]
for 164 configurations generated with the (tree-level)
Lüscher-Weisz action. The spectrum there was considered
not for the overlap Dirac operator but for the chirally
improved Dirac operator proposed in Refs. [41,42]. It
would be interesting to compare the two Dirac operators
in their behavior under smearing for different lattice en-

sembles (provided the smearing-induced changes are
smooth).

III. LOCATING THE FINITE TEMPERATURE
PHASE TRANSITION

The last observations make clear that we need to choose
N� � 6 for the purpose of this investigation. Let us now
look for a more precise location of the deconfinement
transition. On the 203 � 6 lattice, varying �imp, we have
studied the behavior of the Polyakov loop and of the
Polyakov loop susceptibility. We used a polynomial fit
for u0 as a function of �imp, based on the measured values
shown in Table I, in order to provide the corresponding
tadpole improvement factor for each simulation point�imp.
We stress again that this nonperturbative determination,
strictly speaking, is well established only for temperature
T � 0.

We have measured the Polyakov loop and its suscepti-
bility in the range from �imp � 3:1 to 3.4 with different
statistics per data point. The simulation data between
�imp � 3:20 and 3.29, in the immediate vicinity of the
phase transition, have been collected in 100 000 to
300 000 Monte Carlo sweeps per �imp value while the

0 0.01 0.02
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N
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N NAPE APE APE= 0 = 5 = 10

Im λ

λ

Q = 1 Q = 1Q = 1

FIG. 2 (color online). The eigenvalue spectra of the Dirac
overlap operator with (a) periodic and (b) antiperiodic temporal
boundary conditions for equilibrium (NAPE � 0) and smeared
(NAPE � 5 and 10) pure SU�2� gauge configurations on a 203 �
6 lattice, generated with the tadpole-improved Lüscher-Weisz
action at �imp � 3:20.

3 3.1 3.2 3.3 3.4 3.5
beta_imp

0
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0.2

L

3 3.1 3.2 3.3 3.4 3.5
beta_imp
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9

ch
i_

L

FIG. 3. (a) The ensemble average of the modulus jLj of the
average Polyakov loop L � 1

V

P
~x TrP � ~x� as a function of � for

the tadpole-improved Lüscher-Weisz action on a 203 � 6 lattice.
(b) The susceptibility of jLj as function of �.
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Polyakov loop L � �1=V�
P

~x TrP � ~x� was measured after
every sweep. In the closer vicinity of the phase transition,
we have fitted the susceptibility data by a Gaussian. The
data and the fit of the susceptibility are presented in Fig. 3.
For the determination of the errors, the blocked jackknife
method was used with a block size of 2000 measurements.
From the fit we are able to locate the deconfinement
transition at �imp;c � 3:248�2� for N� � 6. This confirms
our preliminary choice made in Sec. II of �imp � 3:2 for a
check of smoothness of the overlap Dirac operator that
should be done in the confinement phase on a lattice of the
same size. Interpolating the data in Table I we estimate����
�
p

a � 0:236�5� at �impc corresponding to Tdec=
����
�
p
�

0:71�2�.

IV. FINDING CALORONS AND DYONS USING
PERIODIC AND ANTIPERIODIC MODES

In the Introduction we have argued why we should first
search on top of the phase transition for calorons with
nontrivial holonomy and why we anticipate to find them
partly separated into dyons. We have chosen �imp � 3:25
very close to the transition point for the following study of
topological charge clustering. Our analysis is based on 20
lowest-lying modes for an ensemble of O�20� quenched
configurations at the deconfinement transition. This was a
realistic task within the capability of a standard modern
personal computer within a few weeks.

The topological charge density of an equilibrium
Monte Carlo field configuration is represented by the
mode-truncated, i.e. ultraviolet filtered, topological charge

density (8). In that definition the temporal boundary con-
dition was not specified, that should be applied in the
construction of the Wilson-Dirac and the Neuberger over-
lap operator (5). From the work of Gattringer and Schaefer
[52], we know that the single zero mode of a Q � 	1
Monte Carlo configuration eventually hops between Ncolor

positions. On the other hand, the topological charge density
of a (quenched) lattice configuration cannot depend on the
purely analyzing fermions, in particular, not on the bound-
ary conditions imposed to them. The most suggestive rule
for the topological charge density, if given by the zero-
mode part of (8) alone, would be to average over the
boundary conditions, which eventually (but not always)
lead to a different localization of the zero mode. This
recipe is now applied to the topological charge density
with the inclusion of the low-lying nonzero modes, too.

We illustrate this in Fig. 4 for a classical charge Q � 2
caloron solution with nontrivial holonomy in a state of
maximal separation into four dyons. The upper panels
show the gluonic definition qgluon�x� of the topological
charge density and the profile of the Polyakov loop p� ~x� �
�1=2�TrP � ~x� over a two-dimensional section of a 163 � 4
lattice. The gluonic topological charge density recognizes
all the four constituents as positive peaks while the
Polyakov loop distinguishes the constituents according to
the local holonomy, i.e. positive and negative values of the
Polyakov loop. In the fermionic definition of the topologi-
cal charge density, q�cut

�x�, we content ourselves to only 20
lowest modes. We find that this filtered density depends on
the boundary condition b, with b � p denoting periodic
and b � a denoting antiperiodic temporal boundary con-

FIG. 4 (color online). (a) The gluonic topological charge density qgluon�x� (left) and the Polyakov loop p� ~x� (right) for a classical
Q � 2 configuration generated at maximally nontrivial holonomy [asymptotically p� ~x� � 0] on a 163 � 4 lattice [with four dyons
maximally separated in the �x; z�-plane]. (b) The fermionic topological charge density q�p=a��x� reconstructed out of the 20 lowest
eigenmodes of the overlap Dirac operator with periodic (right) and antiperiodic (left) temporal boundary conditions.
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ditions. The charge densities present a different profile
depending on the type of boundary conditions. The anti-
periodic boundary condition highlights the constituents
with negative local Polyakov loop, whereas the periodic
boundary condition emphasizes the complementary con-
stituents with positive local Polyakov loop. The ‘‘true’’
topological charge density (that is well represented by
the gluonic definition in this classical case) is well approxi-
mated by an average of the two fermionic topological
charge density functions q�p��cut

�x� and q�a��cut
�x�,

 q�b��cut
�x� � �

X
j�bj
�cut

�
1�

�b
2

�
 �b�y�b

�5 
�b�
�b
�x�; (12)

where the superscript b � p or b � a of the modes (the
subscript of the eigenvalues) refers to the boundary
condition.

Thus, for each boundary condition, we will search for
peaks of the modulus of the corresponding fermionic to-
pological charge density. In addition, in order to define a
size for the charge cloud surrounding the peaks, the re-
spective topological charge density is separately subjected
to a cluster analysis. As usual (see Refs. [24,25,47]), the
cluster analysis is a procedure to identify connected clus-
ters among those lattice sites x 2 S, that have been se-
lected by the condition that the modulus of the topological
charge density jq�x�j exceeds a certain threshold value qcut.
Two sites x, y 2 S, being neighbors on the lattice, belong
to the same cluster, if the signs of q�x� and q�y� agree.
Otherwise they belong to different clusters. Guided by
Ref. [57], the threshold is chosen relative to the maximal
density in the configuration as qcut �

1
5 maxx�jq�x�j�, safely

above the point where the clusters coalesce and, finally,
percolate.

For the set C�b� (b � p, a) of clusters c�b�i in a configu-
ration found by the cluster analysis of the two densities
q�p��cut
�x� and q�a��cut

�x�, respectively,7 we record the maximal
value of the modulus of the corresponding density,

 jq�b�maxcluster;ij � max
x2c�b�i

jq�b��x�j; (13)

the sign sgn�q�b�maxcluster i�, and the corresponding space-time
position x of the peak inside each cluster c�b�i . The main
purpose of defining the finite size clusters around the peaks
is to characterize the behavior of the Polyakov loop in the
vicinity. The Polyakov loop is always measured after
NAPE � 10 smearing steps. Although the sign of the
Polyakov loop at the cluster centers (topological density
peaks) is found to be dictated by the temporal periodicity/
antiperiodicity imposed on the Dirac operator, the
Polyakov loop is monitored all over the cluster to give

auxiliary information. Its extremal values, P�b�maxi and P�b�mini,
inside the clusters c�b�i are recorded. At least one of the two
corresponds to the fermionic boundary condition that de-
fines the clusters, being positive for the periodic boundary
condition and negative for the antiperiodic boundary
condition.

Figures 5(a) and 5(b) show ‘‘cluster plots’’ representing
two typical lattice configurations. A cluster c�b�i of the
topological charge density q�b��x� is represented in the
cluster plot by a filled circle (c�p�i ) for the periodic bound-
ary condition or by a filled triangle (c�a�i ) for the antiperi-
odic boundary condition. The clusters c�b�i are plotted in
Fig. 5 at the appropriate position,

 �q�b�maxcluster;i; P
�b�
extr cluster;i�; (14)
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FIG. 5 (color online). The maxima of clusters of the fermionic
jq�x�j seen under periodic boundary condition (filled circles) and
under antiperiodic boundary condition (filled triangles) for two
configurations (a) and (b) in the sample, shown in the
�qmaxcluster; Pextr cluster� plane (the precise meaning is explained
in the text). Peaks at opposite sign of Pextr cluster, that are con-
nected by dashed lines, have appeared under different boundary
conditions at the same space-time position (‘‘not jumping’’) and
are interpreted as calorons. Isolated peaks have appeared only
once under the respective boundary condition at the given
position (jumping) and are interpreted as dyons. The marked
objects D and CAL in (b) are portrayed in detail in Fig. 6.

7For convenience we simplify the notation from now on by
dropping the subscript �cut from q�b��cut

.
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in the �qmaxcluster; Pextr cluster� plane. Here Pextr cluster;i de-
notes either P�p�max;i or P�a�min;i, according to the p or a
boundary condition that has defined the cluster through
the corresponding topological charge density. Notice that
this means that all circles appear in the upper and all
triangles in the lower half-plane.

Sometimes it happens that, after changing the boundary
condition from periodic to antiperiodic, one of the new
clusters, c�a�i , nearly coincides in its space-time position x
with one of the previous ones, c�p�j , with a shift of the peak
position less than a distance d � 2a � 0:22 fm in space-
time. This would correspond to the ‘‘not jumping’’ case of
Ref. [52] where, however, only the scalar density of a
single zero mode was under consideration. In this case,
such clusters, the circle c�p�j , and the triangle c�a�i are
connected in Fig. 5 by a broken line. The numbers close
to the lines denote the approximate shift (0 or 1 or 2) of the
peak position. Such a pair represents a complete ‘‘calo-
ron,’’ and the average over the respective topological
charge densities q�p��x� and q�a��x� locally represents the
true topological charge density inside the caloron. For
calorons the topological charge clusters defined for both
types of boundary conditions are such that inside the
clusters the extremal values of the Polyakov loop, P�p�max;i

and P�a�min;i, have clearly an opposite sign, indicative for the
dipole structure of a caloron in terms of the Polyakov loop.

Clusters that remained unpaired in this ‘‘cluster plot’’
have appeared only once, under only one type of boundary
condition, such that the peak position could not be identi-
fied with a peak of the opposite boundary condition, within

a tolerance d < 2a. This corresponds to the ‘‘jumping’’
case of Ref. [52]. Such clusters do not have an obvious
partner (with opposite sign Polyakov loop and same sign
topological charge density) suitable to form a caloron. The
length of the broken line attached to the unpaired filled
symbols represents the difference between the maximum
and the minimum of the Polyakov loop inside the cluster.
Numbers close to the unconnected lines denote the ap-
proximate distance (in the example, 3 or 4) between the
cluster centers. In contrast to the caloron clusters, both
maximum and minimum of the Polyakov loop in an un-
paired cluster are mostly of the same sign. In the few
remaining cases the wrong-sign extremum is close to
zero. Such clusters are called ‘‘dyons’’ because they, like
the dyons in the classical Q � 2 caloron solution shown in
Fig. 4, are invisible to the fermions under the ‘‘wrong’’
boundary condition.

The open circles around the filled symbols in the plots
emphasize clusters which would have been localized
knowing the zero mode(s) alone. These can also be clusters
that we have to classify as calorons and as dyons. If they
exist in the same configuration, these are clusters of a
unique sign of the topological density, in accordance to
the (yet unexplained) empirical fact that all zero modes of
one configuration have the same sign of chirality.8

Two characteristic objects that have been marked in
Fig. 5(b) as ‘‘CAL’’ and ‘‘D’’ are visualized in Fig. 6 in
magnified form by their fermionic topological charge den-

FIG. 6 (color online). The fermionic topological charge density q�p=a��x� (left) and the Polyakov loop p� ~x� (right): (a) for a typical
caloron cluster [when q�p��x� � q�a��x�] and (b) for a typical dyon cluster [which was visible only in q�p��x�] from Fig. 5(b). The
topological density and the Polyakov loop are represented as a function over part of the �x; y�-plane. Please notice the different scales
for the topological charge density and for the Polyakov loop. The Polyakov loop is measured after NAPE � 10 smearing steps.

8The cases of more than one zero mode per configuration were
excluded from the analysis in Ref. [52].
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sity profile q�p=a��x� (left) and their Polyakov loop profile
p� ~x� (right) within the occupied part of an x-y section:
(a) for the caloron possessing the characteristic dipole
structure of the Polyakov loop and (b) for the dyon pos-
sessing a broad maximum of the Polyakov loop. Let us
stress that these objects have been identified in a generic
Monte Carlo lattice configuration without cooling or
smearing. To be sure, the Polyakov loop p� ~x� is presented
after 10 smearing steps, which explains the smooth picture.

We have also studied the relative separation of appro-
priate dyon pairs. In Fig. 7 a histogram of dyon-dyon
distances in our sample is presented. The first two bins
correspond to calorons with distances d < 2a. The rest of
the histogram with d � 2a contains pairs of suitably fitting
dyon-dyon pairs, i.e. with the same sign of q�x� and an
opposite sign of p� ~x�, grouped into pairs according to the
closest distance. The statistics does not warrant so far the

comparison with a specific model for the caloron/dyon
plasma.

Finally, we have collected in Fig. 8 all clusters of the
whole sample of 20 configurations analogously to Fig. 5.
The unpaired dyons are placed at their original positions in
the �qmaxcluster; Pextr cluster� plane. The difference to Fig. 5 is
that the two clusters close in space-time corresponding to
an undissociated caloron in this plot are relocated accord-
ing to the average of the Polyakov loop assigned to the
respective cluster as follows:

 

�P �b�cluster;i �
1
2�P

�b�
max;i � P

�b�
min;i�; (15)

a value which is scattered around zero because of the
dipole structure. Thus, in Fig. 8, each undissociated calo-
ron is still represented by a close pair (with b � p and b �
a) of open squares, now with j �P�b�cluster;ij< 0:25. The relo-
cation according to the averaged Polyakov loop following
Eq. (15) leads in this scatter plot of clusters to a separation
of points representing calorons and anticalorons (clustered
in the ellipses) from the four types of dyons (clustered in
the four circles) with j �P�b�cluster;ij> 0:5.

The total number of isolated dyons (separated by a
distance d > 2a) is 113 plus 126 in this ensemble, whereas
the number of dyons confined inside calorons (with a
distance d 
 2a) amounts to 101 plus 101, meaning that
on average approximately 10 calorons (dissociated or not)
are present per configuration, if the resolution corresponds
to 20 overlap eigenmodes. We emphasize again that the
counting is a counting of peaks. All peaks get classified as
dyons, regardless whether isolated or confined in calorons.
The total number corresponds to a caloron (or dyon pair)
density n1=4 � 230 MeV. This in the right ballpark set by
the topological susceptibility, given the relative arbitrari-
ness of the number of filtering modes.

V. CONCLUSION

In this paper we have continued our search for specific
KvBLL caloronlike features in finite-T lattice configura-
tions. In a feasibility study we have for the first time
employed overlap valence fermions for this diagnostic
purpose. More specifically, we have employed the depen-
dence of eigenvectors and eigenvalues on the temporal
boundary conditions imposed on the Dirac operator that
can be changed at will. Thereby, we have taken into
consideration not only the zero mode(s) but the UV filtered
topological charge density restricted to the 20 lowest
modes per configuration. The dependence of the apparent
caloron/dyon content on the number of eigenmodes has
still to be systematically looked for. According to Ref. [57]
a resolution provided by 20 lowest fermionic eigenmodes
roughly corresponds to an amount of smoothing between
10 and 20 smearing steps.

In our previous work [24,25], we have used smearing
and the corresponding gluonic topological density. The
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FIG. 8 (color online). The topological clusters of the whole
sample shown analogously to Fig. 5. The unpaired dyons are
placed at their original �qmaxcluster; Pextr cluster� positions. The dyon
pairs identified as calorons are finally relocated according to the
average �Pcluster over their original, opposite sign values Pmax and
Pmin.
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FIG. 7. The histogram of dyon-dyon distances in lattice units.
The first two bins correspond to calorons which are unambigu-
ously paired within distances d < 2a. The rest of the histogram
with d � 2a refers to the remaining lumps grouped in suitable
dyon-dyon pairs according to the closest distance.
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amount of smearing was, also somewhat arbitrarily, de-
fined by the requirement that the string tension should not
drop below 60% of the full string tension [25] which
allowed for 50 or 25–20 smearing steps in the confinement
or deconfinement phase, respectively. Even more arbi-
trarily, the threshold for the definition of the clusters was
set such that the density is split into a maximal number of
clusters. Under these circumstances, a large number of
shallow clusters entered the investigation before only a
small part of the clusters could be successfully character-
ized—by the monopole content—as calorons or dyons.

In this work, apart from the number of modes dictated by
the personal computer memory, we have fixed the cutoff
qcut in a region where the number of clusters does not
change with the cutoff and the size changes slowly.
Moreover, the cluster centers were localized by the peaks
of the modulus of the fermionic topological density
jq�cut

�x�j and do not change anymore with the cutoff.
Thus, the number of clusters is determined essentially by
the number of analyzing modes that was adopted in antici-
pation of a physically acceptable density of dyon pairs.
What we could show here is that with this resolution the
cluster composition of the topological charge can be under-
stood in terms of calorons and dyons without serious
problems.

All these clusters, once found, are seen to be accompa-
nied either by a dipole structure in the Polyakov loop p� ~x�
or a broad maximum of the modulus of the Polyakov loop
jp� ~x�j. This shows that by means of the two topological
densities (corresponding to periodic or antiperiodic tem-
poral boundary conditions for overlap fermions) the task
can be solved to identify calorons and dyonic constituents.

In future investigations we will have to further specify
those conditions for filtering that make the cluster charges
distributed around 	1 and 	1=2, hopefully a very stable
result. Furthermore, we hope for a better confirmation of
the caloron/dyon model by extending this study to lower
temperature (where the model is good for describing con-
finement) and to study also the higher temperature region.
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