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A disorder parameter detecting dual superconductivity of the vacuum is used as a probe to characterize
the confining properties of the phase diagram of two-color QCD at finite temperature and density. We
obtain evidence for the disappearing of dual superconductivity (deconfinement) induced by a finite density
of baryonic matter, as well as for a coincidence of this phenomenon with the restoration of chiral
symmetry both at zero and finite density. The saturation transition induced by Pauli blocking is studied as
well, and a general warning is given about the possible effects that this unphysical transition could have on
the study of the QCD phase diagram at strong values of the gauge coupling.
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I. INTRODUCTION

Color confinement emerges as an absolute property of
strongly interacting matter from experimental facts, but is
not yet fully understood starting from the QCD first prin-
ciples. Lattice QCD simulations, however, have given
some evidence about confinement and have even predicted
the presence of a finite temperature transition to a decon-
fined state of matter, which is currently under investigation
in heavy ion collision experiments. Deconfinement, as seen
by lattice simulations, appears to take place at the same
temperature where other important physical phenomena
happen, like for instance the restoration of chiral
symmetry.

In the present study we address the question regarding
the fate of confining properties in the presence of a finite
density of baryonic matter: that is important in order to
understand the structure of the QCD phase diagram both in
the region of low densities and high temperatures, which is
relevant for heavy ion experiments, and in the region of
low temperatures and high densities, where the study of
confining properties could help characterize the nature of
matter in compact astrophysical objects. In particular we
are interested in understanding how deconfinement in-
duced by a critical density of baryonic matter compares
to what happens at zero density, and how it is related to
other possible transitions in the QCD phase diagram.
Various possibilities are open in principle, like for instance
a noncoincidence of the deconfinement transition with the
restoration of chiral symmetry (see Ref. [1] for a recent
discussion about this issue).

The topic has been already studied in previous literature.
In particular, results about deconfinement at high densities
and low temperatures have been obtained in Ref. [2], while
the relation between deconfinement and the chiral transi-
tion has been investigated in Refs. [3,4]. However, pre-
vious studies have been based on the study of the expec-
tation value of the Polyakov loop as a probe for the
deconfinement transition: while that can indeed be used
as an order parameter for confinement in the pure gauge
theory, being related to the spontaneous breaking of the

center symmetry, the same is not true in the theory with
dynamical fermions, where center symmetry is explicitly
broken. For that reason in the present study we look for
different order parameters which are constructed in the
framework of specific mechanisms of color confinement
and which may be valid also in the full QCD theory.

One appealing mechanism, among others, is that based
on dual superconductivity of the QCD vacuum, which
relates confinement to the breaking of an Abelian dual
symmetry induced by the condensation of magnetic mono-
poles [5–7]. The possibility to define disorder parameters
in this scenario has been studied since a long time; one
parameter has been developed by the Pisa group [8,9] and
consists of the expectation value of an operator which
creates a magnetic monopole, hMi1: that has been shown
to be a good parameter for color confinement both in
pure Yang-Mills theories [10,11] and in full QCD
[12,13]; similar parameters have been developed elsewhere
[14–16].

Our plan is to use hMi as a parameter for characterizing
the confining properties of the various phases in the QCD
phase diagram. Since numerical studies of QCD at finite
density are notoriously difficult because of the sign prob-
lem, which makes usual importance sampling simulations
unfeasible, in the present study we restrict ourselves to the
theory with two colors, where that problem is absent. In
principle no significant differences are expected for the
confining properties of the theory when going fromNc � 2
to Nc � 3, where Nc is the number of colors: for that
reason we believe that our study could be relevant also
for real QCD. Of course this is only partially true regarding
the relation between deconfinement and chiral symmetry
restoration, since more significant differences are expected
for the latter when going from Nc � 2 to Nc � 3. In the
low temperature region of the Nc � 2 theory, in particular,
the chiral condensate is expected to disappear at the onset

1We change the usual notation for the disorder parameter, h�i,
in order to avoid confusion with the notation for the chemical
potential.
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of the superfluid phase related to diquark condensation,
which moves towards lower values of the chemical poten-
tial as the quark masses are lowered.

In Sec. II we recall the general properties of lattice QCD
at finite baryon density as well as the specific features of
the two-color model. In Sec. III we review the definition of
the disorder parameter hMi and develop our strategy to
study its properties at finite density. In Sec. IV we present
our numerical results: in particular, in Sec. IVA we present
a study of the disorder parameter at zero density; results
at nonzero baryon density are given in Sec. IV B; a deter-
mination of the chiral transition line and its comparison
with the deconfinement transition line are presented in
Sec. IV C. In Sec. IV D the disorder parameter hMi and
other observables are used to study the nature of the
unphysical transition to the saturation regime taking place
at high values of the chemical potential, and the possible
influence of saturation on the physical transition is dis-
cussed. In Sec. IV E we discuss the relevance of our results
for the low temperature region of the phase diagram.
Finally, in Sec. V, we draw our conclusions. A partial
account of our results has been presented in Ref. [17].

II. QCD AT FINITE DENSITY AND THE
TWO-COLOR MODEL

We will consider a discretized lattice action for two-
color QCD at finite chemical potential defined as follows:

 S � SG �
X
i;j

� iM�U�i;j i; (1)

where SG is the pure gauge Wilson action,

 SG � �
X
�

�1�
1

2
Tr��; (2)

the sum being over all plaquettes, while the fermion matrix
is defined, in the case of standard staggered fermions, as
 

Mi;j � am�i;j �
1

2

X3

��1

�i;��Ui;��i;j��̂ �U
y
i��̂;��i;j��̂�

� �i;4�ea�Ui;4�i;j�4̂ � e
�a�Uy

i�4̂;4
�i;j�4̂�: (3)

Here i and j refer to lattice sites, �̂ is a unit vector on the
lattice, �i;� are staggered phases, and U are gauge link
variables; a� and am are, respectively, the chemical po-
tential and the quark mass in lattice units. The grand-
canonical partition function can be written, after integrat-
ing out fermions, as

 Z �
Z

DUe�SG�U� detM�U�: (4)

In ordinary QCD the fermion determinant is complex for
generic values of the chemical potential, thus hindering
numerical Monte Carlo simulations. Various possibilities
have been explored to circumvent the problem, like for

instance reweighting techniques [18,19], the use of an
imaginary chemical potential either for analytic continu-
ation [3,20–25] or for reconstructing the canonical parti-
tion function [26–28], Taylor expansion techniques
[29,30], and nonrelativistic expansions [31–33].

The problem is absent in QCD with two colors, since the
gauge group is real: indeed the fermion determinant, being
expressible like any other gauge invariant observable in
terms of traces over closed loops, is real as well, and
numerical simulations are feasible. For this reason two-
color QCD has been widely studied in the past as a labo-
ratory for real QCD at finite density [2,4,34–40]. Despite
some peculiar features of the model, like the fact that
baryons and mesons are degenerate, one still expects to
learn relevant information about specific questions, like for
instance the fate of topology [4] or confinement at finite
density.

III. THE DISORDER PARAMETER hMi

The magnetically charged operator M� ~x; t�, whose ex-
pectation value detects dual superconductivity, is defined in
the continuum as the operator which creates a magnetic
monopole in ~x, t by shifting the quantum field by the
classical vector potential of a monopole, ~b?, and can be
written (see Ref. [9] for details) as

 M � ~x; t� � exp
�
i
e

Z
d3y ~E?� ~y; t� ~b?� ~y� ~x�

�
; (5)

with the electric field ~E?� ~y; t� being the momentum con-
jugate to the quantum vector potential. ~E? is defined after
Abelian projection (�3=2 is the only possible diagonal
generator in the case of SU�2�) in a given gauge. In the
present paper we work in the so-called random Abelian
projection defined in Ref. [11], where it has been shown
that numerical results are independent of the particular
gauge chosen.

The expectation value of the operator M, when discre-
tized on the lattice, can be expressed as the ratio of two
different partition functions,

 hMi � ~Z=Z; (6)

where Z is the usual QCD partition function, while ~Z is
obtained from Z by a change in the pure gauge action
SG ! ~SG, consisting in the addition of the monopole field
to the temporal plaquettes at a given timeslice where the
monopole is created. It has been shown in Ref. [16] that
hMi is equivalent to different definitions like that adopted
in Ref. [16], up to O�a2�. Differences are therefore present
at finite lattice spacing, which however disappear in the
continuum limit and are expected to be irrelevant for
investigating large scale properties such as those related
to phase transitions.

Being expressed as the ratio of two different partition
functions, the numerical study of hMi is a highly non-
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trivial task, since M gets significant contributions only on
those configurations having very small statistical weight.
While numerical methods have been recently developed
which permit a direct determination of hMi [41], we shall
not use them in the present study since they involve the
combination of several different Monte Carlo simulations,
a task which in presence of dynamical fermions could be
unpractical. We will instead study, as usual, susceptibilities
of the disorder parameter, from which the behavior of hMi
at the phase transition can be inferred.

For instance, being interested in hMi as a function of �,
as for the� � 0 phase transition, one usually measures [8–
10]

 � �
@
@�

lnhMi �
@
@�

ln ~Z�
@
@�

lnZ � hSiS � h~Si~S; (7)

where the subscript indicates the pure gauge action used
for Monte Carlo sampling. The disorder parameter can be
reconstructed from the susceptibility �, exploiting the fact
that one has exactly hMi � 1 at � � 0

 hMi��� � exp
�Z �

0
���0�d�0

�
: (8)

In particular � ’ 0 in the confined phase means hMi � 0,
a sharp negative peak of � at the phase transition implies a
sudden drop of hMi, and � diverging in the thermody-
namical limit in the deconfined phase means that hMi is
exactly zero beyond the phase transition.

Studying hMi as a function of � is what is usually done
if one is interested in the fate of dual superconductivity as
the temperature is increased. Indeed, in the Euclidean path
integral formulation of QCD, the physical temperature is
related to the inverse temporal extension, T � 1=�Lta�,
where a is the lattice spacing which for an asymptotically
free field theory is a decreasing function of the inverse
gauge coupling �. For that reason the inverse coupling � is
usually adopted in place of T when studying the QCD
phase diagram, the latter being an increasing function of
the former.

At finite temperature and density we are interested in
studying the behavior of hMi in the two parameter space
��; �̂�, where �̂ � a� is the chemical potential in lattice
units. For that reason we introduce the new susceptibility

 �D �
@
@�̂

lnhMi �
@ ln ~Z
@�̂

�
@ lnZ
@�̂

� hNqi~S � hNqiS;

(9)

where Nq is the quark number operator, i.e., according to
the definition of Z given in Eq. (4),

 hNqi �
�

Tr
�
@M
@�̂
	M�1

��
(10)

[an additional factor 2 is actually needed for the case
studied in the present paper, which deals with 8 staggered
flavors, see Eq. (12)]. The dependence of hMi on the

chemical potential � can then be reconstructed as follows:

 hMi��; �̂� � hMi��; 0� exp
�Z �̂

0
�D��̂0�d�̂0

�
;

so that, if the starting point at �̂ � 0 is in the confined
phase (hMi��; 0� � 0), the behavior expected for �D��̂�
in correspondence of a possible finite density deconfine-
ment transition will be the same shown by � across the
finite temperature transition.

Assuming the presence of a (pseudo)critical line in the
T �� plane where the disorder parameter drops to zero
and dual superconductivity disappears, the two suscepti-
bilities � and �D can be used not only to locate the position
of the line, but also to compute its slope, thus providing a
more comprehensive information about the QCD phase
diagram. Indeed, it is quite natural to assume that the
gradient of the disorder parameter,

 

~rhMi �
�
@hMi
@�

;
@hMi
@�̂

�
� ��; �D�hMi; (11)

be orthogonal, in the �� �̂ plane, to the critical line,
whose slope is then equal to ��D=�. In the following
we shall directly check this property on our numerical
data and also make use of it to obtain testable predictions.

IV. NUMERICAL RESULTS

In order to perform numerical simulations we have
adopted the usual hybrid Monte Carlo algorithm. The
partition function in Eq. (4) can be rewritten, introducing
pseudofermionic fields �, as

 Z �
Z

DUD�D�
e�Sg�U���
�MyM��1�

�
Z

DUe�Sg�U��detM�U��2: (12)

In the presence of a real chemical potential the usual even-
odd factorization trick for reducing the number of flavors
cannot be performed, so that Eq. (12) actually describes a
theory with 8 (degenerate in the continuum limit) flavors.
The standard exact � algorithm described in Ref. [42] has
been used.

We have performed simulations on lattices L3
s � Lt with

Lt � 6 and different values of the spatial size ranging from
Ls � 8 to Ls � 16. The bare quark mass has been fixed to
am � 0:07. Two different simulations have been neces-
sary, for each parameter set, using the two different pure
gauge actions S and ~S in order to reconstruct the suscep-
tibilities � and �D [see Eqs. (7) and (9)]. The typical run
length has ranged from 2000 to 5000 molecular dynamics
units. In order to maintain a reasonable acceptance the
integration step �t has been varied from 0.01 to 0.002
depending on the values of � and �. In particular quite
small integration steps have been necessary for a� > 0:3
at the lowest value of � explored (� � 1:45), where the
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appearance of small eigenvalues of the fermionic matrix
makes the molecular dynamics less stable. The same phe-
nomenon has influenced the noisy determination of fermi-
onic observables, like the quark number entering the
determination of �D. O�10� random vectors have been
typically used for each gauge configuration in order to
reduce the noise.

Simulations on the smallest lattice (Ls � 8) have been
performed on a PC farm, making use of a numerical code
obtained by adapting the publicly available MILC code for
two colors and for the inclusion of a finite chemical poten-
tial. Simulations on larger lattices have been performed
instead on the INFN apeNEXT facility in Rome.

The observables we look at are, apart from the suscep-
tibilities of the disorder operator introduced in Sec. III, the
average Polyakov loop, the average plaquette, and the
chiral condensate:

 hLi �
1

L3
s

X
n

1

Nc
hTrL�n�i; (13)

 hPi �
1

6LtL
3
s

X
n;�<�

1

Nc
hTr����n�i; (14)

 h �  i �
1

LtL
3
s
hTrM�1i; (15)

as well as their susceptibilities

 	c � L3
sLth� �  � h �  i�2i; (16)

 	L � L3
sh�L� hLi�

2i; (17)

 	P � L3
sLth�P� hPi�2i: (18)

Notice that in the case of the chiral susceptibility we have
explicitly considered only the disconnected contribution.

A. The deconfining transition at zero chemical potential

It is a well-known fact that in ordinary full QCD at zero
baryon density, chiral symmetry restoration takes place at
the same critical temperature as deconfinement, with the
latter identified with the disappearance of dual supercon-
ductivity [12,13]. We will check again this fact for the
theory with two colors, since this will be an important
reference information for our following analysis at finite
density.

We show in Fig. 1 the peaks of the three susceptibilities
	c, 	L, and 	P defined above, obtained on a 163 � 6
lattice, together with curves corresponding to best fits to
the location of their peaks. Our estimate for the location of
the transition, obtained through a fit to the chiral suscep-
tibility, is�c � 1:582�2�, to be compared to those obtained
by fitting the Polyakov loop susceptibility (�L � 1:587�4�)
and the plaquette susceptibility (�P � 1:575�5�). A clear
drop of the chiral condensate and a rise of the Polyakov

loop are also observed at �c, as shown in Fig. 2. The
dependence of �c on the spatial size is not significant, as
can be appreciated from Table I, where we report a sum-
mary of the pseudocritical couplings (and chemical poten-
tials) obtained from our simulations.

Let us now consider the fate of dual superconductivity.
In Fig. 3 we show the behavior of the susceptibility � as a
function of � for three different lattice sizes. A clear peak
can be appreciated, which deepens when increasing the
lattice size and whose location is clearly coincident with

1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

β

0.2

0.3

0.4

0.5
Polykov loop suscept.
Plaquette suscept.
Chiral cond. suscept.

FIG. 1. Plaquette, Polyakov, and chiral susceptibilities on the
163 � 6 lattice at �̂ � 0. The chiral and the plaquette suscepti-
bility have been, respectively, divided by a factor 10 and multi-
plied by a factor 4 in order to fit in the figure. Curves
corresponding to best fits of the peak positions are superposed
to the numerical data.

0.5 1 1.5 2 2.5

β
0

0.2

0.4

0.6

0.8

1

FIG. 2. Chiral condensate and average Polyakov loop as a
function of � measured on a 163 � 6 lattice at �̂ � 0. The
vertical line indicates the pseudocritical coupling �c as deter-
mined from a best fit to the peak of the chiral susceptibility. The
Polyakov loop has been multiplied by a factor of 15 to better fit
in the figure.
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that of the chiral transition. Moreover it is also apparent
from the figure that � is practically independent of the
lattice size in the strong coupling region, confirming that
hMi � 0 in the thermodynamical limit in that phase, while
� strongly depends on Ls, and, in particular, is linear with
it, as shown in Fig. 4, in the weak coupling region, showing
that hMi is exactly equal to zero in the thermodynamical
limit beyond the transition (magnetic charge superselec-
tion [43]). Therefore �c seems to separate two phases
characterized by a different realization of the U�1� mag-
netic symmetry.

To better appreciate the coincidence of the chiral tran-
sition with the disappearance of dual superconductivity, we
have tried a finite size scaling (FSS) analysis of the critical
behavior of hMi around the transition temperature. We can

assume for hMi the following FSS ansatz:

 hMi � L���=��s ����c � ��L
1=�
s �; (19)

from which can be easily derived

 � � L1=�
s ~����c � ��L

1=�
s �: (20)

We have checked this ansatz on our data, obtaining the best
possible agreement for � ’ 0:63 and �c ’ 1:584: a reason-
able scaling is obtained, with deviations observed on the
smaller lattice (see Fig. 5). In particular we estimate �c �
1:584�2�, in good agreement with the location of the chiral
transition given above. The fitted critical index � seems to
indicate an Ising 3D critical behavior, to be compared to
that taking place in the quenched limit (3D Ising) and the
renormalization group prediction for the critical behavior
in the chiral limit (first order [44]). However, a similar
finite size scaling is not observed for the other susceptibil-
ities and we believe that a definite answer about the uni-
versality class of the transition cannot be given in the
present context, also due to the relatively small spatial
volume used (our largest aspect ratio is slightly less than
3). A more careful investigation should be performed and
we consider the present FSS analysis, as well as that
presented later for the finite density case, as only aimed
at a quantitative estimate of the critical coupling where
superconductivity disappears.

B. The deconfining transition at nonzero chemical
potential

The two susceptibilities � and �D permit to study hMi
either as a function of temperature at a fixed value of the
chemical potential �̂, or as a function of �̂ at fixed tem-
perature. Both strategies can be used to investigate the fate

0.5 1 1.5 2 2.5

β
-500

-400

-300

-200

-100

0

ρ

L
s
 = 8

L
s
 = 12

L
s
 = 16

FIG. 3. � parameter as a function of � on various lattice sizes.
The vertical line corresponds again to the location of the chiral
transition.

4 8 12 16 20
L

s

-150

-100

-50

0

ρ

a µ = 0        β = 2.5
a µ = 0.15   β = 2.5
a µ = 0        β = 0.5
a µ = 0.15   β = 0.5

FIG. 4. Behavior of � in the strong coupling (� � 0:5) and in
the weak coupling (� � 2:5) region as a function of Ls for �̂ �
0 and �̂ � 0:15. � stays constant and close to zero in the
thermodynamical limit at strong coupling, while it diverges
linearly with Ls at weak coupling.

TABLE I. Collection of pseudocritical couplings as deter-
mined from our numerical data. Physical critical couplings
have been determined through the chiral susceptibility, while
the unphysical saturation transitions have been located by means
of the plaquette susceptibility.

Ls �c �c

83 � 6 1.584(2) 0
123 � 6 1.587(2) 0
163 � 6 1.582(2) 0
163 � 6 1.568(2) 0.15

83 � 6 1.55 0.222(10)
163 � 6 1.55 0.215(10)

83 � 6 1.5 0.325(10)
123 � 6 1.5 0.349(15)
163 � 6 1.5 0.342(10)

�Sc �Sc

83 � 6 1.55 0.678(20)
83 � 6 1.675 0.793(10)

163 � 6 1.675 0.789(22)
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of dual superconductivity in presence of a finite density of
baryonic matter: the first could be more effective at small
chemical potentials, where the possible transition line
starting at �̂ � 0 should be almost parallel to the �̂ axis,
the second could be more convenient at larger chemical
potentials. Actually, a proper combination of � and �D
could be used to study the behavior of hMi along any
given path in the �� �̂ plane, so that one could even
choose an optimal combination corresponding to a relevant
direction around a critical point: however we shall limit
ourselves in the present context to the simpler cases of
either fixed temperature or fixed chemical potential. The
study at fixed temperature has a particular interest, since it
may show how the disappearance of confinement (dual
superconductivity) can be induced by simply increasing
the density of baryonic matter.

We shall first consider the case of a fixed chemical
potential, �̂ � 0:15. In Fig. 6 we show the chiral suscep-
tibility obtained on a 163 � 6 lattice and compared to the
same quantity computed at �̂ � 0. A clear shift of the
pseudocritical coupling can be appreciated; in particular,
we obtain �c��̂ � 0:15� � 1:568�2�, showing that the
(pseudo)critical temperature lowers as the chemical poten-
tial is increased. Data for the susceptibility � on the same
lattice are shown in Fig. 7 and compared to those obtained
at zero density: the peak of � shifts consistently by an
amount comparable to that of the chiral susceptibility.
Notice that in both cases the actual position of the �
peak is at a � slightly larger than �c. That is expected
since � is a logarithmic derivative: assuming that hMi0 �
@hMi=@� has a minimum at �c (maximum slope for
hMi), hence hMi00 � 0, it follows that @�=@� �
hMi00=hMi � �hMi0=hMi�2 is still negative at the same
point.

Data reported in Fig. 4 show that, also in the case �̂ �
0:15, � is independent of the lattice size and practically

equal to zero in the strong coupling region, while it di-
verges linearly with Ls in the weak coupling region.
Therefore we can conclude that, also in presence of a finite
density of baryonic matter, dual superconductivity disap-
pears as the temperature is increased at the same point
where chiral symmetry is restored.

Next we turn to the behavior of hMi as a function of �̂
at fixed temperature (�), determined by means of the
susceptibility �D. We have considered only values of �
below the (pseudo)critical coupling �c computed at �̂ �
0, in particular � � 1:50 and � � 1:55: in this case we
know that hMi � 0 at �̂ � 0, so that �D may signal a
possible disappearance of dual superconductivity induced
by finite baryon density. Notice that the lowest value of �,
on the basis of a rough two-loop estimate of the

1.45 1.50 1.55 1.60 1.65

β
0

1

2

3

4

5

a µ  = 0.15

a µ =  0.0

FIG. 6. Chiral susceptibility on a 163 � 6 lattice as a function
of � for various values of �̂. Dotted curves correspond to best fit
to the peak values.

1.45 1.5 1.55 1.6 1.65 1.7

β

-500

-400

-300

-200

-100

a µ = 0.0
a µ = 0.15

FIG. 7 (color online). � on a 163 � 6 lattice as a function of �
for various values of �̂. Vertical bands correspond to the pseu-
docritical value of � fitted according to the chiral susceptibility.

0 2 4

(β
c
 - β) L

s

1/ν

-6

-5

-4

-3

-2

ρ 
/ L

s1/
ν

L
s
 = 8

L
s
 = 12

L
s
 = 16

FIG. 5. Finite size scaling analysis of � around the transition.
The best possible scaling is obtained for � ’ 0:63 and �c ’
1:584.
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�-function, corresponds to a physical temperature T=Tc �
a�� � 1:582�=a�� � 1:5� � 0:4, where Tc is the critical
temperature at zero chemical potential.

In Fig. 8 we show the chiral susceptibility determined on
a 163 � 6 lattice at � � 1:55 and � � 1:50. A best fit
permits to locate the peak positions, hence the (pseudo)-
critical values of �̂ corresponding to chiral restoration. We
obtain �̂c�� � 1:50� � 0:340�10�2 and �̂c�� � 1:55� �
0:215�10�, as also reported in Table I.

In Fig. 9 we show instead the results obtained for �D as a
function of �̂ at the same values of� and on various lattice
sizes. It clearly appears that while �D is independent of the
lattice size and practically vanishing for small chemical
potentials, it has a sharp negative peak in correspondence
of the chiral transition which deepens as the spatial size is
increased. In order to be more quantitative about the coin-
cidence of chiral restoration and deconfinement, we have
performed a FSS analysis for the case � � 1:50, where
three different spatial sizes were available (Ls � 8, 12, 16),
according to the ansatz

 hMi � L���=��s ����̂c � �̂�L
1=�
s �; (21)

hence

 �D � L1=�
s ~����̂c � �̂�L

1=�
s �: (22)

A reasonable scaling is obtained for �� 0:55 and �̂c �
0:31 (see Fig. 10); in particular, we estimate �̂c �
0:315�15�, marginally compatible with the location of the
chiral transition.

We can therefore draw two important conclusions: dual
superconductivity (confinement) disappears in presence of
a critical density of baryonic matter; moreover the critical
line in the T �� plane corresponding to deconfinement
coincides, at least within our present uncertainties, with the
chiral transition line. These results concern that part of the
phase diagram including temperatures down to T=Tc �
0:4, where Tc is the critical temperature at zero chemical
potential: we shall discuss their relevance for the T � 0
region of the phase diagram later in this paper.

C. The transition line

Having obtained four different locations of the transition
line, in particular �c��̂ � 0� � 1:582�2�,�c��̂ � 0:15� �
1:568�2�, �̂c�� � 1:55� � 0:215�10�, and �̂c�� �
1:50� � 0:340�10�, as obtained on our larger lattices (see
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FIG. 9 (color online). �D as a function of �̂ and for two lattice
sizes for various values of �. Vertical bands correspond to the
pseudocritical chemical potential fitted according to the chiral
susceptibility.
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�� 0:55 has been used, the best value for the critical chemical
potential being �c ’ 0:315�15�.

2Notice that the (pseudo)critical chemical potential obtained at
� � 1:50 is different from what was obtained in Ref. [4]: this
difference can be understood in terms of the different algorithm
used, which in the case of Ref. [4] was a nonexact molecular
dynamics algorithm.
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Table I), we can perform a fit of the dependence �c��� in
the whole �� �̂ plane, which will then be used in the
following. We are also interested in testing what was stated
in Sec. III, i.e., that the ratio��D=� at the transition point
can be used as an estimate of the slope of the critical line:
we give an example of a common plot of the two suscep-
tibilities in Fig. 11, from which the ratio at �c; �̂c can be
inferred.

We have tried a quadratic fit �c��̂� � A� B�̂2, obtain-
ing A � 1:5828�16�, B � �0:071�4�, and 	2=d:o:f: �
0:26. The good value of 	2=d:o:f: shows that a quadratic
dependence well describes the critical line down to T=Tc �
0:5; indeed a fit with a quartic term gives a coefficient for
�̂4 compatible with zero. Our estimates for the location of
the (pseudo)critical points are reported in Fig. 12 together
with the fitted transition line.

In correspondence of our direct locations of the transi-
tion line we also show the estimates for the slope of the line
obtained from the ratio ��D=�:, in particular, we have
drawn angles corresponding to 1 standard deviation from
the average values. A good agreement can be appreciated,
showing that ��D=� can indeed be taken as a good
estimator of the slope of the line in the �� �̂ plane.

Finally, in Fig. 13, we report again the chiral transition
line fitted above and compared to a quadratic fit in �̂ for the
critical line corresponding to the disappearance of dual
superconductivity (deconfinement). The plot supports our
previous statement, i.e., that the chiral transition coincides
with deconfinement in the range of� values (temperatures)
explored.

D. A few remarks on saturation

It is a well-known fact that, even in absence of the sign
problem, the study of lattice gauge theories in the presence
of a finite density of fermions cannot be pushed to arbi-
trarily high densities, i.e., to arbitrarily high values of the
chemical potential. Indeed the number of available energy
levels is limited by the presence of the UV cutoff, which
places an upper limit to the possible values of the Fermi
energy. Stated otherwise, we cannot place, because of the
Pauli exclusion principle, more than one fermion with
given quantum numbers per lattice site. Apart from the
upper limit that this places on the densities reachable on the
lattice, a much worse problem comes from the fact that, as
saturation sets in, the absence of available fermion levels
quenches fermion dynamics, modifying the field theory at
the ultraviolet scale. As a matter of fact, the theory be-
comes equivalent to a pure gauge theory in the large �̂
limit.

Saturation is therefore an unphysical lattice artifact
which may in principle invalidate numerical results; one
should therefore be extremely careful in locating its onset.

FIG. 13 (color online). Comparison of the chiral pseudocritical
line (continuous) and that corresponding to the disappearance of
dual superconductivity (dotted), as fitted from our data.

FIG. 12 (color online). Phase diagram in the ��� plane. The
chiral line has been fitted to a quadratic dependence on �. The
slope of the critical line, as inferred from the disorder parameter
for dual superconductivity, has been reported in the figure: a nice
agreement (within 1 standard deviation) can be appreciated.
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FIG. 11. Comparison of � and �D as a function of �̂ at � �
1:50 on a 163 � 6 lattice.
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Indeed, while saturation effects are generically expected to
appear for �̂ � a� of order 1, the exact value of �̂ where
they start to be important may depend on the dynamics of
the theory. In the following we will briefly explore the
transition to saturation in the two-color model under con-
sideration, arriving to some interesting conclusions which
may sound as a general warning.

We have explored saturation effects in some detail at
� � 1:55. In Fig. 14 we show the behavior of some ob-
servables as a function of �̂ in a wide range going up to
�̂ � 1:6. For small values of the chemical potential above
�̂c the fermion density rises roughly with a cubic depen-
dence in �̂, as expected for a gas of free fermions, but then
saturates to a value which in the figure is normalized to two
fermions per site: the departure from the cubic behavior
starts at �̂� 0:6–0:8. Also the rise of the Polyakov loop
suddenly stops at a similar value of �̂, followed by a drop;
in the same region the plaquette suddenly drops towards its
quenched value. Complete saturation is reached for �̂�
1:4–1:6.

Much is learned by looking at the behavior of the
susceptibilities of the disorder parameter in the same range,
which is shown in Fig. 15: the negative peak of �D at �̂�
0:3, corresponding to the physical deconfinement transi-
tion, is followed by a positive unphysical peak at �̂� 0:7.
That means that the disorder parameter hMi, which at first
drops to zero, thus signalling deconfinement, then rises
again as an effect of saturation: indeed the ‘‘saturation
transition’’ leads to an SU�2� pure gauge theory, which at
� � 1:55 and Lt � 6 is deep in the confined phase, imply-
ing hMi � 0. To verify that, we have explicitly recon-
structed hMi��̂�=hMi��̂ � 0� [see Eq. (10)] and reported
it in Fig. 15: in the same figure we have reported the
location of the saturation transition as obtained by a fit to
the peak of the plaquette susceptibility.

We should be satisfied, since the saturation transition at
�̂� 0:7 is well separated from the physical transition at
�̂� 0:3. However we notice that, defining a ‘‘saturation
line’’ in the �� �̂ plane corresponding to the onset of
saturation effects, we can predict, according to what stated
in the previous paragraph, its slope from the ratio ��D=�.
We see from Fig. 15 that in correspondence of the positive
saturation peak for �D, the other susceptibility � has a
negative peak, hence we expect a positive slope for the
saturation line. That means that at lower values of � the
onset of saturation could take place at lower values of �̂:
that, combined with the fact that the physical critical �̂c
instead increases as � decreases, could lead to the unfor-
tunate situation in which the two transitions, physical and
unphysical, merge at lower values of �, thus hindering, at
least in the present case, the study of the strong coupling
(low temperature) region of the phase diagram.

In order to further explore this possibility we have
decided to make an estimate of the location of the satura-
tion transition, through a fit to the plaquette susceptibilities
(which are reported in Fig. 16), performing simulations
also at a different value of the gauge coupling, � � 1:675.
Our estimates for the pseudocritical saturation chemical
potential �Sc are reported in Table I and are �̂Sc�� �
1:55� � 0:68�3� and �̂Sc�� � 1:675� � 0:79�3�. In
Fig. 17 we report our estimate for the location of the
saturation line together with a rough linear extrapolation
suggesting that this line could meet the physical transition
line, whose estimate given in previous paragraph is re-
ported in the figure as well, for �� 1:4. Notice that the
linear extrapolation adopted is supported by the slope of
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FIG. 14 (color online). Various observables computed at � �
1:55 on the 83 � 6 lattice to show saturation. The Polyakov loop
has been multiplied by a factor of 8, the average plaquette by a
factor of 4.
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FIG. 15 (color online). � and �D at saturation. Notice the
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and saturation transition. The thick continuous line refers to the
disorder parameter hMi reconstructed by using the susceptibility
�D: after an intermediate region where the magnetic symmetry is
restored, dual superconductivity sets in again in correspondence
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the line obtained through the ratio ��D=�, whose esti-
mates are reported in the figure as well.

We therefore give a general warning about the possible
effects of saturation on the study of finite density QCD at
low values of the gauge coupling. The situation may of
course be quite different depending on the temporal extent
Lt of the lattice, on the number of flavors, of colors, and on
the lattice discretization (staggered or Wilson fermions)
adopted. In particular, increasing Lt one should approach
the continuum limit, hence the physical transition line
should move to smaller values of �̂ � a�, thus becoming
more separated from the unphysical saturation line. The
problem should be milder with Wilson fermions; indeed in
this case saturation is known to set in at larger values of �̂
[2,45]. Improved lattice actions may also be of great bene-
fit [45]. We plan to make a more extensive study of this
problem in the future.

E. Did we catch the physics of the low temperature
region of the phase diagram?

One of our starting questions was about the fate of
confinement at high densities and low temperatures, since
that could help in understanding the nature of compact
astrophysical objects. In Ref. [2] the hypothesis has been
made, based on the analysis of the Polyakov loop, that at
T � 0 deconfinement could occur at a critical density
following and well separated from the onset of a bosonic
superfluid phase. It is natural to ask whether our present
results can be of any relevance regarding this specific issue,
i.e., how close we have got to the low temperature region of
the QCD phase diagram.

Since we have not included an explicit diquark source
term in our model, we cannot obtain direct information
about that observable; however we shall try to sketch a
qualitative picture based on the distribution of the eigen-
values of the fermionic matrix. At zero density that can be
written as M � amId�D where D is anti-Hermitian,
hence it has purely imaginary eigenvalues, therefore the
eigenvalues of M lie on a segment in the complex plane
orthogonal to the real axis.

As a real chemical potential is switched on, D ceases to
be anti-Hermitian and the eigenvalues get scattered in the
whole complex plane: that is evident in the first part of
Fig. 18, where we show the distribution of eigenvalues on a
typical configuration obtained at � � 1:55 and a small
chemical potential, �̂ � 0:10. The eigenvalues occupy a
narrow vertical band and the finite density of eigenvalues
in correspondence of the real axis is strictly linked to the
presence of chiral symmetry breaking (Banks-Casher rela-
tion [46]) The width of the distribution on the real axis
grows as �̂ increases, roughly proportionally to �̂2, till the
distribution touches the imaginary axis: at this point the
chiral condensate is expected to rotate into a diquark
condensate (see, for instance, Ref. [47] for a review): as
it is clear from the second part of Fig. 18, at � � 1:55 this
happens roughly at �̂� 0:3, a value which actually turns
out to be almost independent of the gauge coupling in the
range of � values explored in our simulations and is in
agreement with the values found for diquark condensation
in similar works using the same quark mass [34,48]: we
show as an example in Fig. 19 the eigenvalue distribution,
as obtained on typical configurations, projected onto the
real axis for three values of �̂ at � � 1:45.

However, if we are in the high temperature region, i.e.,
slightly below Tc�� � 0�, chiral symmetry will be restored
quite soon as �̂ is increased because of the transition to the
quark-gluon plasma. Therefore there will be actually no
chiral condensate to be rotated into a diquark condensate at
the point where the distribution touches the imaginary axis.
Indeed we see from the second part of Fig. 18 that the
region around the real axis is quite depleted of eigenvalues
for � � 1:55 at �̂ � 0:3. We can easily understand this
in terms of the chiral line we have drawn in Fig. 12:

FIG. 17 (color online). Saturation transition line and its rela-
tion with the physical transition line.
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chiral symmetry gets restored already below �̂ � 0:3 at
� � 1:55.

Following this line of reasoning, the region relevant for
low temperature physics on our lattices with Lt � 6 should
be that below �� 1:5, where our fitted (pseudo)critical
line passes beyond �̂� 0:3. In this region one could for
instance observe, among other different possibilities, two

different transitions, the first corresponding to the onset of
diquark condensation, the second roughly being the con-
tinuation of the line in Fig. 12, thus corresponding to
deconfinement: this is indeed the scenario suggested by
Ref. [2].

We have therefore performed numerical simulations on
a 83 � 6 lattice at � � 1:45. In this case a finite density of
eigenvalues around the real axis is still present at �̂� 0:3,
as can be better appreciated from Fig. 20, where we plot the
distribution projected onto the imaginary axis at � � 1:45
and �̂ � 0:3, compared to that obtained at higher
temperatures.

In Fig. 21 we report the chiral susceptibility compared to
that measured on the same lattices at different gauge
couplings. We notice that the peak is strongly reduced
and its position is not much different from what was
obtained at � � 1:5 and in clear disagreement with what
was expected from the continuation of the chiral line in
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Fig. 12. The first peak could indeed correspond to the onset
of a bosonic superfluid phase. Nothing seems to happen
thereafter.

In Fig. 22 we report instead data obtained for the sus-
ceptibility �D of the disorder parameter. In this case the
negative peak has almost completely disappeared and a
very small peak at �̂� 0:3 is followed by a region �̂  0:4
where �D clearly changes its sign: on the basis of what we
have discussed in Sec. IV D and comparing this behavior
with that observed at � � 1:55, a possible interpretation is
that of an early onset of saturation effects in this case,
preventing the observation of any further physical transi-
tion. We expected saturation effects to obscure the physical
transition at �� 1:4, but we are not surprised that the
situation may be worse.

This conclusion is supported by looking at the behavior
of the Polyakov loop (see Fig. 23), in this case saturation

effects are signaled by an inversion in the growth of hLi as a
function of �̂.

We conclude therefore that we are not able to clarify the
onset of deconfinement at T � 0, at least on the present
lattice size. We could of course further decrease the tem-
perature without decreasing � by going to larger values of
Lt. However that would imply a numerical effort which is
not affordable with our present algorithmic and computa-
tional resources.

V. CONCLUSIONS

We have investigated the phase diagram of two-color
QCD at finite temperature and density by means of a
disorder parameter for color confinement detecting dual
superconductivity of the QCD vacuum.

We have obtained evidence for deconfinement induced
by a finite density of baryonic matter. Moreover the tran-
sition line corresponding to the disappearance of dual
superconductivity (deconfinement) appears to coincide,
in the range of temperature explored (0:4Tc < T < Tc,
where Tc is the critical temperature at zero density), with
that corresponding to chiral symmetry restoration, as it
happens in the zero density case. We think that this result
could be relevant also for three-color QCD, at least in the
range of relatively high temperatures explored in this
paper, where the differences between Nc � 2 and Nc � 3
should be less important also in the case of chiral proper-
ties. We have also shown that the susceptibilities of the
disorder parameter can be used in order to compute the
slope of the critical line in the �� �̂ plane, obtaining
consistent results.

We have investigated in some detail the unphysical
transition corresponding to the onset of saturation and
shown that it moves at lower values of �̂ as � is decreased
with a possible intersection with the physical transition
line, thus giving a general warning about the possible
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effects of saturation on the study of finite density QCD at
strong values of the gauge coupling. As discussed at the
end of Sec. IV D, this phenomenon of course may be quite
different depending on the fermion discretization (stag-
gered or Wilson, standard or improved lattice action), on
the number of flavors and on other parameters of the
system (Lt, quark masses); for this reason we plan to
make a more systematic study in the future. We have
also verified that in our case saturation actually prevents
us from obtaining results relevant for the T � 0 region of
the phase diagram.

Let us discuss possible future improvements of our
present investigation. The use of larger values of Lt will
be an important point: it will permit us to study the ap-
proach to the continuum limit of our results and, by better
separating the physical transition from the saturation re-
gion, it will let us explore lower temperatures. In the
present study we have used staggered fermions corre-
sponding to Nf � 8 continuum flavors, the reason being
that an exact hybrid Monte Carlo algorithm is available in
this case and no root trick is needed to reduce the number

of flavors; the same theory has indeed been investigated by
other groups in the past. However, the dependence on the
number of flavors may be important, especially in the
theory with two colors, where different nontrivial fixed
points may appear for large Nf. Therefore a comparison
with results obtained at different values of Nf will surely
be useful.

Finally, results relevant for the high temperature region
of real QCD could also be obtained by studying QCD at
finite isospin density or within the imaginary chemical
potential approach.
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