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A four-dimensional Lorentz-breaking non-Abelian Chern-Simons-like action is generated as a one-loop
perturbative correction via an appropriate Lorentz-breaking coupling of the non-Abelian gauge field to a
spinor field. This term is shown to be regularization dependent, but nevertheless it can be found
unambiguously in different regularization schemes at zero and at finite temperature.
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During the last years, different aspects of the Lorentz
symmetry breaking have been intensively studied [1]. One
of the theoretical consequences of this effect is the bire-
fringence of light in vacuum. After the formulation of the
concept of noncommutativity of the space-time [2], which
implies in Lorentz symmetry breaking (see the discussion
in Ref. [3]). The interest in this subject has greatly in-
creased. One of the implications of the Lorentz symmetry
breaking is the possibility of introducing a lot of new
couplings in the standard model [4]. These terms may arise
from radiative corrections to some Lorentz-breaking field
theories at zero [5–10] and at finite temperature [11–14].
Alternatively, they may be induced from the deformation
of the canonical commutation relation through the use of
the noncommutative fields method [15,16].

Recently, the renormalizability of the Yang-Mills (YM)
theory with a four-dimensional non-Abelian Lorentz-
breaking Chern-Simons (CS) term was studied in
Ref. [17]. The induction of such Lorentz-breaking CS
term starting from a pure YM was investigated within the
noncommutative fields method in Ref. [16]. In the present
work we show how the same CS term can be induced
through radiative corrections starting from a YM theory
coupled with fermions in the presence of an interaction of
the fermions with a constant external field at zero and at
finite temperture.

We start with the following model which represents a
non-Abelian generalization of the spinor electrodynamics
with the Lorentz-breaking coupling

 L f � � i��i@6 �m� �5b6 ��ij � g��Aa���a�ij� j: (1)

Here b� is a constant four-vector. The A� � Aa��a is a
Yang-Mills field coupled to spinors  which carry the
isotopic indices,  � � i�, with i taking values from one
to N with N being the dimension of the chosen representa-
tion of the Lie algebra. The �a � ��a�ij are the Lie group

generators in this representation satisfying the relations:
��a;�b� � ifabc�c and Tr��a�b� � �ab.

The one-loop effective action of the gauge field Aa� is
SYM � Sf�b; A� where SYM is the Yang-Mills action and
Sf�b; A� can be expressed in the form of the following
functional trace:

 Sf�b; A� � �iTr ln�i@6 �m� �5b6 � g��Aa��a�: (2)

This functional trace can be rewritten as Sf�b; A� �
Sf�b� � S0f�b; A�, with the first term being Sf�b� �
�iTr ln�i@6 �m� �5b6 �. The nontrivial dynamics is con-
centrated in the second term S0f�b; A�, which is given by the
power series:

 S0f�b; A� � iTr
X1
n�1

1

n

�
1

i@6 �m� �5b6
g��Aa��a

�
n
: (3)

To make explicit the non-Abelian Chern-Simons term we
should expand this expression up to the third order in the
gauge field:

 S0f�b; A� � S�2�f �b; A� � S
�3�
f �b; A� � . . . ; (4)

where
 

S�2�f �b;A� �
ig2

2
Tr
�

1

i@6 �m��5b6
��Aa��a 1

i@6 �m��5b6

���Ab��b
�
; (5)

 

S�3�f �b;A� �
ig3

2
Tr
�

1

i@6 �m� �5b6
��Aa��a 1

i@6 �m� �5b6

� ��Ab��b 1

i@6 �m� �5b6
��Ac��c

�
; (6)

and the ellipsis stands for higher order terms in the gauge
field.

Using the above expressions, it is easy now to verify that
the one-loop effective action expanded up to first order in
b� may be written as

*mgomes@fma.if.usp.br
†jroberto@fma.if.usp.br
‡ajsilva@fma.if.usp.br
xpassos@fisica.ufpb.br
kpetrov@fisica.ufpb.br

PHYSICAL REVIEW D 76, 047701 (2007)

1550-7998=2007=76(4)=047701(4) 047701-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.047701


 S0f�b; A� �
Z
d4xk������

�
@�Aa�Aa� �

2

3
igAa�Ab�Ac�f

abc
�
;

(7)

where k� is

 k� � 2ig2
Z d4p

�2��4
b��p2 � 3m2� � 4p��b 	 p�

�p2 �m2�3
: (8)

This result exactly reproduces the structure of the non-
Abelian Lorentz-breaking Chern-Simons term described in
Ref. [17]. One can observe that the expressions (7) and (8),
after reduction to the Abelian case, coincide with the
known Abelian results [14,18]. Apparently, there is a rela-
tion between the induced Lorentz-breaking Chern-Simons
term and Adler-Bell-Jackiw anomaly as both situation are
observed for the well known triangle graph. This issue has
been discursed in Ref. [6]. Also, the interesting discussion
of the problem of ambiguities in the Lorentz-breaking
theories is presented in Ref. [7]. By power counting, the
momentum integral in expression (8) involves terms with
logarithmic divergence so that different regularization pre-
scriptions will produce diverse outcomes. Lorentz preserv-
ing regularizations, more precisely any regularization in
which we can make: p�p� !

g��
D p2, will produce finite

results. By adopting the method of dimensional regulari-
zation [19], the above integral is promoted toD dimensions
and a straightforward calculation yields
 

k� � 2ig2b�
Z dDp
�2��D

1

�p2 �m2�3

��
1�

4

D

�
p2 � 3m2

�

�
4g2�4�D����4�D�=2�

��3��4��D=2
b� �

g2

4�2 b�; (9)

which coincides with the result found in Ref. [18] for the
Abelian situation. If, instead of dimensional regularization,
the integral in Eq. (8) is kept in four dimensions the
regularization enforced the replacement

 k� � 6ig2m2b�
Z d4p

�2��4
1

�p2 �m2�3
�

3g2

16�2 b�; (10)

which now agrees with the Abelian result obtained in
Ref. [20].

To develop calculations in the finite temperature case, let
us now assume that the system is in the state of thermal
equilibrium at a temperature T � 1=	. In this case, we can
use the Matsubara formalism for fermions, which consists
in taking p0 
 i!n � �n� 1=2� 2�i

	 and replacing the in-
tegration over the zeroth component of the momentum by a
discrete sum �1=2��

R
dp0 !

i
	

P
n. Thus, the Eq. (7) can

be written as

 S0f�b; A� �
Z
d4xk��	������

�
@�Aa�Aa�

�
2

3
igAa�Ab�Ac�f

abc
�
: (11)

Hereafter all expressions are in the Euclidean space (all
greek indices run from 1 to 4). The vector k��	� is given by

 k��	� �
2g2

	

X1
n��1

Z d3 ~p

�2��3
b��3m2 � p2� � 4p��b 	 p�

�p2 �m2�3
:

(12)

By extending the ~p integration to d dimensions it follows
that the timelike component of k��	� is

 k4�	� �
2g2

	
b4

X1
n��1

Z dd ~p

�2��d
3M2

n � ~p2

� ~p2 �M2
n�

3 ; (13)

where M2
n � !2

n �m2. Using the prescription of dimen-
sional regularization [19], we have

 k4�	� �
g2

2	
b4

�4��d=2
�d��2� d=2� � 6��3� d=2��

�
X1

n��1

1

�M2
n�

2�d=2

�
g2b4

m3�

�
m

2
����
�
p

�
d
�a2���1=2�3� d�����

�
X1

n��1

1

��n� 1=2�2 � a2��
; (14)

where a � m	=2� and � � 2� d=2. At this point the
following identity [21]:
 X
n

1

��n� b�2 � a2��
�

����
�
p

���� 1=2�

�����a2���1=2
� 4 sin����

�
Z 1
jaj

dz

�z2 � a2��

� Re
�

1

exp2��z� ib� � 1

�
; (15)

valid for 1=2< �< 1 can be used to get
 

k4�	� �
g2b4

m3�

�
m

2
����
�
p

�
d
�
2
����
�
p
� 4�3� d��a2��3�d�=2����

� sin����
Z 1
jaj

dz

�z2 � a2��

� Re
�

1

exp2��z� ib� � 1

��
: (16)

In d � 3 this gives

 k4�	� �
g2

4�2 b4; (17)

i.e., the same result (9) without any dependence on the
temperature, which agrees with the one obtained in
Ref. [22] for the Abelian situation. If instead of Eq. (12)
we use Eq. (10) as the starting point for the computation of
finite temperature effects we get
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 k4�	� � b4

�
3

32�2 �
3

16
F�a�

�
; (18)

where

 F�a� �
Z 1
jaj
dz�z2 � a2�1=2 tanh��z�

cosh2��z�
(19)

has the following asymptotics: F�a! 1� ! 0 (T ! 0)
and F�a! 0� ! 1=2�2 (T ! 1), see Fig. 1.

Let us now consider the space part, ki�	�, of the vector
k��	�. In this case, the expression (12) can be rewritten as

 ki�	� �
2g2

	

X1
n��1

d3 ~p

�2��3
bi�3m2 � p2� � 4pi�b 	 p�

�p2 �m2�3
;

(20)

Then, considering this expression formally in d space
dimensions, we can replace pipj by ~p2

d �ij, hence we get

 ki�	� �
2g2

	
bi

X1
n��1

dd ~p

�2��d
4m2 � �d�4

d � ~p
2 �M2

n

� ~p2 �M2
n�

3 ; (21)

which now furnishes

 ki�	� �
4m2g2

	
bi

��3� d
2�

�4��d=2

X1
n��1

1

�m2 �!2
n�

3��d=2�

�
g2bi

2m�3

�
m
2

�
d=2
�a2���1=2����

�
X1

n��1

1

��n� 1
2�

2 � a2��
; (22)

where we have introduced � � 3� d
2 . We cannot apply the

relation (15) for d � 3, because the integral in that ex-
pression does not converge. Thus, let us perform the ana-
lytic continuation of that relation; we obtain [13]

 Z 1
jaj

dz

�z2 � a2��
Re
�

1

exp2��z� ib� � 1

�

�
1

2a2

3� 2�
1� �

Z 1
jaj

dz

�z2 � a2���1 Re
�

1

exp2��z� ib� � 1

�

�
1

4a2

1

�2� ���1� ��

Z 1
jaj

dz

�z2 � a2���2

�
d2

dz2 Re
�

1

exp2��z� ib� � 1

�
: (23)

Thus for d � 3 the Eq. (22) takes the form

 ki�	� � bi

�
1

4�2 �
1

2
F�a�

�
; (24)

where F�a� was defined in Eq. (19). Thus, we see that at
high temperature the Chern-Simons coefficient is twice its
value at zero temperature, i.e., ki�	! 0� � 1

2�2 . On the
other hand, at zero temperature, one recovers the result
ki�	! 1� �

1
4�2 .

We have generated the non-Abelian Lorentz-breaking
Chern-Simons term via the Lorentz-breaking coupling of
the Yang-Mills field with the spinor field at zero and at
finite temperature. The essential property of the result is
that within the framework of dimensional regularization
this term turns out to be finite. We note that the derivative
expansion approach naturally allows to preserve the gauge
invariance for the quantum corrections. It is natural to
expect that at least some of the other Lorentz-breaking
terms whose existence was predicted in Ref. [4] also can
be generated via appropriate couplings of the gauge or
gravity fields with some matter fields.

We have also obtained the coefficient k� for the non-
Abelian Lorentz-breaking Chern-Simons term at the finite
temperature. We found that the results for this term turn out
to be dependent on the regularization scheme both at zero
and at finite temperature (in a particular regularization
scheme the timelike component was found to be tempera-
ture independent). Considering the dependence on the
regularization scheme, one should note that the momentum
integral determining the value of the vector k� is formally
superficially divergent, thus dependence of its finite part on
the renormalization procedure is very natural. However, in
the regularization schemes suggested in the paper, the
divergent part identically disappears as a consequence of
the rotational invariance of the relevant integrands.
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FIG. 1. The function F�a� is different from zero everywhere.
At zero temperature (	! 1), the function tends to a nonzero
value 1

2�2 .
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