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We show that the maximally supersymmetric vacua of minimal d � 5 N � 1 sugra remain maximally
supersymmetric solutions when taking into account higher order corrections.
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The question of whether a given supergravity solution is
a consistent background for string propagation to all orders
in perturbation theory is an interesting though hard one. It
has of course long been known that pp-waves with flat
transverse space provide such backgrounds since all the
scalar invariants vanish identically—recently the class of
exact sugra solutions with vanishing scalar invariants was
investigated in [1]—but they are exceptional.

A class of sugra solutions for which a proof of all-order
consistency is highly desirable are the maximally super-
symmetric solutions, and for most of them an answer is
known: in Ref. [2], Kallosh and Rajaraman, by making use
of superspace methods, showed the all-order consistency
of aDS2 � S

2 in minimal N�2 d�4 sugra, of aDS5 � S
5

in type IIB, and also of aDS4 � S7 and aDS7 � S4 in M-
theory. Since the associated Minkowski and Kowalski-
Glikmann solutions [3–5] are pp-waves, we must con-
clude that all the maximally supersymmetric solutions in
minimal N � 2 d � 4, type IIB-sugra or M-sugra are all-
order consistent.

The way Kallosh and Rajaraman attacked the problem
leans heavily on the fact that the Riemann tensor and the
field strengths are covariantly constant with respect to
(w.r.t.) the Levi-Cività connection. This covariantly con-
stancy, however, is due to the fact that the solutions de-
scribe symmetric spacetimes, G=H, with G-invariant field
strengths. Interestingly, the vast majority of maximally
supersymmetric solutions are described by symmetric
spaces, and one can envisage similar arguments to apply
for their consistency.

The strange ducks in the pond are the maximally super-
symmetric solutions in d � 5 sugra [6–10]. Solutions such
as the near-horizon-BMPV solution or the Gödel space, are
not symmetric [11]: rather, they describe homogeneous,
naturally reductive spacetimes with compatible fluxes. As
such, there is a metric compatible connection that paral-
lelizes the Riemann tensor and the field strengths, but it is
not the Levi-Cività one. We then should ask ourselves the
question whether the maximally supersymmetric solutions
of d � 5N � 1 sugra are all-order exact or not, and how to
attack the problem. The answer to the last question lies in
the way one would construct, and indeed constructs, higher
order sugra actions in lower dimensions, be they string
inspired or not.

Partial results have recently been obtained in Refs. [12–
14] and these works instigated the current investigations:
the symmetric solution aDS2 � S3 was shown to be maxi-
mally supersymmetric in Ref. [14] and aDS3 � S2 in
Ref. [13] in a theory with Tr�A ^2 R� corrections. This
theory was constructed in [12] and they also derived the
conditions for the existence of a maximally supersymmet-
ric aDS5.

Dealing with on-shell sypersymmetry in systems with
higher orders is quite cumbersome: since it is on-shell, the
supersymmetry transformations ‘‘need to know about’’ the
equations of motion, so that à priori we would have to face
the possibility of a lengthy Noether procedure in order to
construct the theory.1 A possible off-shell formulation of
supersymmetry evades this problem by fixing the super-
symmetry transformations once and for all, so that the
brunt of the effort goes to the construction of the action.
A similar problem occurs with the dependent fields such as
the spin connection. Indeed, trying to construct a higher
order theory in the first order prescription is cumbersome,
as it calls for the elimination of the dependent fields
through the use of its equation of motion. In conclusion,
we are looking for a supergravity description in which the
dependent fields are already fixed and is as off-shell as
possible.

Having such a prescription, then, we can discuss the
solutions to the equations defining unbroken supersymme-
try, the so-called Killing spinor equation: as was to be
expected, the solutions preserving all supersymmetries
are the ones from ordinary sugra. The more daunting task
lies in showing that maximally supersymmetric solutions
always solve the equations of motion that can be derived
from an arbitrary sugralike action, in particular, from an
action that describes stringy corrections. This can however
be accomplished by making use of the Killing spinor
identities [16,17], which we will abbreviate as KSIs.

In Sec. II we will apply the program we sketched above
to sugralike actions constructed using the superconformal
approach. In this approach, one starts out with locally
superconformal invariance, for which an off-shell formu-
lation exists, to build superconformally invariant actions.

1See e.g. [15] and references therein, for the latest advances in
the determination of the supersymmetric extention of the R4

corrections in M-sugra.
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Once such an action is known, one imposes certain gauge
choices in order to break the superconformal invariance
and to obtain (Poincaré) supergravities. Since the discus-
sion of the superconformal approach in Sec. II will be
brief, but hopefully concise, we refer the reader to
Ref. [18] as a possible starting point to the extensive
literature on the subject.

In order to declutter the technicalities, however, we will
start by discussing and applying our strategy in the less
involved case of minimal N � 1 d � 5 sugra.

I. OFF-SHELL SUPERSYMMETRY IN MINIMAL
N � 1 d � 5 SUGRA

In Ref. [19], Zucker derived an off-shell formulation of
minimal d � 5N � 1 sugra based on an off-shell multiplet
of dimension �48j48�:2 it consists of the fields from the on-
shell multiplet, namely, the Fünfbein e�a, the vector field
A�, and the gravitino  �, and a bunch of auxiliary fields:
the fermions � and � and the bosons ’, Va, vab, and the
su�2�-triplet fields ~t and ~Va. The supersymmetry variations
for purely bosonic configurations are

 ��a � ra��
1

2
���
3
p �3F6 �a � �aF6 ���

1

2
�abc�v

bc

�
i
2
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The analysis for the existence of maximally supersymmet-
ric solutions of the above off-shell Killing spinor equation
is straightforward: from Eq. (2), we see that’ � ~t � Va �
~Va � vab � 0 which automatically trivializes Eq. (3).

Equation (1) then reduces to

 0 � ra��
1

2
���
3
p �3F6 �a � �aF6 ��; (4)

which is nothing but the Killing spinor equation for mini-

mal on-shell N � 1 d � 5 sugra. Clearly, the configura-
tions solving the above equations are the ones enumerated
by Gauntlett et al. in Ref. [10], but we must ask ourselves
whether they automatically solve the equations of motion
that can be derived from an off-shell action based on
Zucker’s formulation.

The way we want to show this to be the case was
pioneered by Kallosh and Ortı́n [16], and first used to
show that some equations of motion (e.o.m.s) are implied
by supersymmetry (susy) in Ref. [17]. This approach goes
by the name of Killing spinor identities and exploits the
fact that the invariance of an action under a (super)sym-
metry implies the identity (introducing a superset of fields
�A � fBa; F�g)

 �S �
Z

5
��A ��

���
g
p

S����
g
p
��A �

Z
5
��AEA ! 0 � ��AEA���;

(5)

where we introduced the notation in which the equation of
motion for a field �A is written as EA��� � 0. If we then
consider the functional derivative of the last equation in (5)
w.r.t. some fermion field and evaluate the resulting identity
for purely bosonic configurations that solve the Killing
spinor equations, i.e. F� � ��F

�jF�0 � 0, we end up with

 0 �
�

�F	
���B

a	

��������F�0
Ea: (6)

This equation is the Killing spinor identity and must hold
for any supersymmetric system.

Let us start analyzing the implications of the KSIs by
calculating the one w.r.t. the auxiliar field �. A short
calculation results in
 

0 � Ei�~t� ���i � 2iE�’� ��� 2iEa�V� ���a � 2iEab�v� ���ab

� 4Eai � ~V� ���a�
i: (7)

Since we are interested in maximally supersymmetric so-
lutions, the above identity holds for all � which together
with the properties of the �- and �-matrices implies that

 0 � Ei�~t� � E�’� � Ea�V� � Eab�v� � Eai � ~V�: (8)

In ordinary language, this means that maximally super-
symmetric solutions of the off-shell Killing spinor equa-
tions automatically solve the e.o.m. of the auxiliar fields.
The only nontrivial e.o.m.s that remain are the ones for the
bosonic on-shell fields, and they can be derived from the
gravitino KSI

 0 � 4E�a �e� ���a �
���
3
p

E��A� ��; (9)

where we already used the results in (8). Applying the
same reasoning as before, we reach the conclusion that
we also identically solve the ‘‘Einstein’’ and the
‘‘Maxwell’’ equations.

The fact that the KSIs oblige the e.o.m.s to be identically
satisfied for maximally supersymmetric configurations

2The minimal off-shell gravity multiplet has dimension (40,
40), but the quadratic sugra action based on this multiplet, leads
to a constraint imposing the metric to be noninvertible. Further
arguments for extension of the minimal multiplet are given in
[20].
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should have been expected: indeed, since for maximally
supersymmetric configurations we can factor out the ex-
plicit appearance of the Killing spinor, �, in the KSIs and
decompose the latter into independent tensor-structure
blocks. The crux of the matter is that, since the fields are
distinguishable due to their symmetry properties, such as
R-symmetry, there can only be one e.o.m. per block,
whence a maximally supersymmetric configuration always
solves the e.o.m.s.

The conclusion thus far is that, if we use Zucker’s off-
shell multiplet to construct effective actions, then the
maximally supersymmetric solutions are the ones from
d � 5 N � 1 sugra and whatever action one writes
down, they always solve the corresponding equations of
motion. How does coupling minimal sugra to matter mul-
tiplets change this picture?

II. VACUA AND COUPLING TO VECTOR
MULTIPLETS

The field content of on-shell d � 5N � 1 sugra coupled
to n vector multiplets3 is a Fünfbein e�a, a (symplectic-
Majorana) gravitino  i� (i � 1, 2), n� 1 vector fields AI�
(I � 1; . . . ; n� 1), and n scalars 
: the scalars parame-
trize a very special manifold through the n� 1 sections
hI�
� that are constrained to satisfy

 C IJKhIhJhK � 1; (10)

where C is a constant, completely symmetric 3-tensor.
In order to arrive at this on-shell sugra by means of the

superconformal approach, one starts by introducing one
Weyl multiplet, n� 1 vector multiplets, and one hyper-
multiplet. The Weyl multiplet is the superconformal ana-
logue of the graviton-multiplet and consists of the Fünfbein
ea�, the gravitino  i�, the vectors b� and V�ij�� , a symplectic-
Majorana spinor �, and the scalars Tab and D. The n� 1
superconformal vector multiplets consist of vectors AI�,
gaugini �Ii, the unconstrained scalars hI, and the auxiliar
fields YI�ij�. The hypermultiplet, then, consists of scalars Aij
and spinors �i constrained by suitable reality conditions.

The superconformal Killing spinor equations, i.e. the
variation of the fermionic fields under supersymmetry
variations with parameter � and conformal supersymme-
tries with parameter  evaluated for vanishing fermions,
then read

 � a �Da�� a 6T�� �a: (11)

 

�� � D�� 2�c�ab�DaTbc � 2�a�"abcdeTbcTde

� 8 6T� 2R6 �V��; (12)

 �� � YI�� hI� 1
2D6 h

I�� 1
2F6

I�; (13)

 ��i �D6 Aij�
j � 2 6T�jAij � 3jAij: (14)

where the su�2� indices of �, , R�V�, and YI are implicit
but present. In the above formulas, we used

 D � � r�� 1
2�b6 �� V�; DTab � rTab � bTab;

(15)

At this point we must discuss the gauge fixings in order
to get rid of the fields that are not part of the on-shell sugra.
This process actually consists of two parts as we must not
only break the superconformal symmetry down to Poincaré
symmetry, but also get rid of the auxiliar fields. A clear
exposition of the traditional gauge fixing program in sugra
is given in Ref. [18], which has the advantage of using
physically sound criteria to select gauge fixings. One of
these concerns the normalization of the Einstein-Hilbert
term: the gauge fixing they impose is that the normalization
of the Einstein-Hilbert term is canonical, and together with
the D-e.o.m. this implies Eq. (10). In the generic case,
however, this criterion is rather cumbersome: instead we
will follow Ref. [14], which has the advantage that the
gauge-fixed Killing spinor equations have a simple form.4

The role of the gauge fixings is to break the supercon-
formal symmetry down to Poincaré symmetry, which in the
case at hand means breaking dilatations (D), conformal
translations (Ka), the R-symmetry [su�2�], as well as the
special supersymmetries (S). The conformal translations
are broken by the K-gauge b� � 0, and the rest of the
symmetries are broken by imposing conditions on the
compensating hypermultiplet: R-symmetry is broken by
the condition DA � 0, which is consistent with the con-
dition A2 � �2 for breaking the dilatational symmetry. S-
symmetry, then, is broken by the condition �i � 0.

At this point the fields that do not match up with the on-
shell sugra are T, V, D, and � in the Weyl multiplet, the YI

and one of the hI and �I from the vector multiplets. In
sugra, most of them are auxiliar fields and are therefore to
be eliminated by the use of their equation of motion. In fact
we should be a bit more specific: in sugra the equation of
motion for D, abbreviated as E�D� � 0, imposes the con-
straint in Eq. (10), since D appears linearly in the action and
hence acts as a Lagrange multiplier. Similarly, Eab�T� � 0
results in �2T � CIJKhIhJFK and integration over � rids
us of the unwanted gaugino. Lastly, the e.o.m. for V would,
ignoring fermionic contributions, identify V with the pull-
back of the su�2� connection characterizing the
quaternionic-Kähler manifold spanned by the noncompen-
sating hypermultiplets.

One of the most important implications of the gauge
fixings is that, in order for them to not break the ordinary

3Hypermultiplets can be introduced as well, with the same
result, but will not be treated in order to make the discussion a
tad lighter. Also, in this section we shall follow the conventions
of [12].

4The spirit of this program is however the same as the
canonical one as displayed in Fig. 1 of Ref. [18].

ALL-ORDER CONSISTENCY OF . . . PHYSICAL REVIEW D 76, 046006 (2007)

046006-3



supersymmetries, any supersymmetry transformation must
be accompanied by a compensating S-symmetry transfor-
mation. Indeed, the supersymmetry condition ��i � 0
means that

  � 2
3 6T�; (16)

which as promised leads to a simple form of the resulting
Killing spinor equations.

The analysis of the off-shell Killing spinor equations is
then straightforward and results in

 dhI � 0; 0 � r��� � 6T��
2
3�� 6T�;

FI � �4
3h
IT; dT � 0;

YI � 0; rbT
ba � 1

3"
abcdeTbcTde;

R�V� � 0; D � 8
3TabT

ab:

(17)

The fact that R�V� � 0 means that V is pure gauge, whence
we can eliminate it. It also means that the hyperscalars in
the compensating hypermultiplet are constant. The first
three equations in the right column then mean that the
maximally supersymmetric solutions are once again given
by the ones from minimal on-shell sugra with T playing the
role of the field strength of the graviphoton.

Let us start the discussion of the KSIs by calculating the
one for the auxiliar spinor �, namely

 0 � Eab�T� � 4TabE�D�; (18)

 0 � r�E�D�; (19)

 0 � hIEIij�Y� � E�ij�V�: (20)

This result may, seeing the similar result in the foregoing
section, seem strange, yet it makes perfect sense: remem-
ber that in ordinary sugra E�D� � 0 imposes the constraint
(10). The analysis of the BPS equation, however, says
nothing, and in fact cannot say anything, about the nor-
malization of the hI. Rather, in order to embed the maxi-
mally supersymmetric vacua of minimal sugra con-

sistently, one has to solve E�D� � 0, after which E�T�
vanishes identically.

The KSI w.r.t. the gaugini �I then implies

 0 � r�EIij�Y� � EI�h� � E�I �A�; (21)

meaning that the e.o.m. for the gauge fields AI and the
scalars hI are automatically satisfied. The above KSI does,
however, mean that we should check explicitly whether
EIij�Y� really vanishes for our solutions. But its index-
structure implies that in order to construct it we must
always use Y or V and since they vanish for the vacua,
we must conclude that E�Y� � 0 for the vacua.

The one equation left to check is the Einstein equation,
which can only reside in the gravitino KSI. In fact if we
impose that we already solved all the other equations of
motion, we automatically find that maximal supersymme-
try implies that E�a �e� � 0.

In conclusion, we see that the question about maximally
supersymmetric solutions and their all-order consistency
reduces to an embedding problem that determines the
constant values of the scalars hI in terms of the parameters
determining the maximally supersymmetric solutions. As
advertised in Ref. [21], the embedding formula E�D� � 0
defines a deformation of very special geometry which
should have a profound influence on, for example, the
attractor mechanism.
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