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A complete thermodynamical analysis of the 2� 1 dimensional massless Gross-Neveu model is
performed using the optimized perturbation theory. This is a nonperturbative method that allows us to
go beyond the known large-N results already at lowest order. Our results, for a finite number of fermion
species, N, show the existence of a tricritical point in the temperature and chemical potential phase
diagram for a discrete chiral phase transition allowing us precisely to locate it. By studying the phase
diagram in the pressure and inverse density plane, we also show the existence of a liquid-gas phase, which,
so far, was unknown to exist in this model. Finally, we also derive N dependent analytical expressions for
the order parameter, critical temperature, and critical chemical potential.
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I. INTRODUCTION

The Gross-Neveu (GN) model [1] has been extensively
used as a prototype for quantum chromodynamics (QCD)
and related issues. This is due to the fact that both models
share some common features such as asymptotic freedom
and chiral symmetry breaking (CSB). For this reason the
GN model is useful as a toy model to test different tech-
niques that can be ultimately used to tackle problems
related to QCD phase transitions. At the same time, in
the condensed matter physics domain, the two (1� 1)
dimensional GN model (GN2d) has been associated to
polymers [2] including unidimensional molecules such as
polyacetylene [3], while the three (2� 1) dimensional
version (GN3d) has been related to planar superconductors
[4]. The applications concerning phase transitions within
the GN model are commonly carried out in the finite
temperature and/or finite density domain where nonpertur-
bative techniques must be employed. In these applications
the most commonly used analytical nonperturbative tech-
nique is the 1=N expansion [5] where, for the GN model,N
represents the number of fermionic species (see Ref. [6] for
a recent review). In general, this expansion is considered
only at the leading order in what is known as the large-N
approximation.

In the large-N approximation there are fundamental
differences between the GN2d and GN3d models that are
worth recalling. In dimensions d � 2 one observes chiral
symmetry restoration (CSR) occurring via a phase transi-
tion of the second kind for high temperature (T) and small
chemical potential (�) values, while for low T and high �
the transition is of the first kind [7]. One finds a tricritical

point in the T �� plane separating the second order
transition line from the first order one, while metastable
lines accompany the first order transition [7,8]. In the P�
1=� plane (P being the pressure and � the density) one
finds a phase diagram similar to the one generated by a
Van der Waals liquid so that the CSB region corresponds to
the ‘‘gas’’ phase while the CSR region corresponds to the
‘‘liquid’’ phase. It then follows that the first order transition
allows for the appearance of a (mixed) liquid-gas phase.
The chiral (dynamical) symmetry breaking happening in
the massless GN2d with discrete symmetry at finite tem-
perature, however, must be seen with care, since it is an
artifact of the large-N approximation. This is a conse-
quence of well-known no-go theorems concerning that
there should be no discrete symmetry breaking in one
space dimension [9]. In this case the system’s vacuum
manifold allows for the appearance of kink-antikink con-
figurations that are unsuppressed at any finite temperature
[10]. The system becomes segmented into regions of alter-
nating signs of the order parameter whose net average
value becomes zero. At leading order, the 1=N approxima-
tion misses this effect because the energy per kink goes to
infinity as N ! 1, while the contribution from the kinks
has the form e�N . The large-N results for the GN model in
2� 1 dimensions are rather different [4]. First of all, as far
a discrete chiral symmetry is concerned, the no-go theorem
of one space dimension no longer applies (though now, in
two space dimensions, the no-go theorem applies to the
nonexistence of a continuous broken symmetry at any
finite temperature). The GN3d phase diagram produced
by the large-N approximation shows that the CSB/CSR
transition is of the second kind everywhere except at T �
0, where it happens to be of the first kind. Within this
approximation, there are no tricritical points lying in the
T �� plane and no liquid-gas phase. The model behaves
more like a planar superconductor with the transition CSB/
CSR happening as a superconducting/normal one [4].
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Later, Kogut and Strouthos used lattice Monte Carlo simu-
lations to study the GN3d at finite N [11]. They predicted
that a tricritical point should exist at low finite values of T,
but within the numerical precision of their simulations,
they were unable to give its exact location (in earlier lattice
simulations [12] used to obtain the phase diagram for the
GN3d at finite N, some evidence for a tricritical point was
also pointed out). No other attempts or approximations
were able to improve on this situation. As far we are aware,
no evidence has been given so far for a possible chiral
‘‘liquid-gas’’ kind of phase.

In an attempt to go beyond the simple large-N approxi-
mation and in such a way that temperature and chemical
potential effects could be considered in a simple approxi-
mation method, three of the present authors [13] have
recently considered the GN2d in the linear � expansion
method (LDE), also known as the optimized perturbation
(OPT). That study allowed for the inclusion of the first
nontrivial finite N corrections to the complete phase dia-
gram of the GN2d model. The main results of Ref. [13] are
the derivation of analytic nonperturbative expressions,
containing finite N corrections, scalar field expectation
value, critical temperature Tc (at � � 0), critical chemical
potential �c (at T � 0), as well as for the tricritical point
(at T � 0 and � � 0). In the phase diagram, the predicted
CSB region is reduced for finite values of N. The OPT
expression for Tc predicts values that are lower than the
ones predicted by the large-N approximation which, in the
light of the Coleman-Mermin-Wagner-Landau theorem
[9], can be viewed as an indication of convergence.

Our recent success in treating the GN2d [13] and the
previous lattice Monte Carlo results on the GN3d, con-
cerning the eventual existence of a tricritical point in the
GN3d model [11,12], gave us the motivation to investigate
the GN3d using the OPT method to fully study its thermo-
dynamics in order to confirm, in an analytical way, the
existence of a tricritical point. The OPT method is known
for exactly reproducing the large-N result for the effective
potential (or free energy) already at the first nontrivial
order [13,14]. The perturbative computation of higher
orders brings finite N corrections, and nonperturbative
results are generated upon using a variational criterion.
One advantage is that at any perturbative order one has
complete control over the contributions, while the eventual
technical difficulties are like the ones one should encounter
in a traditional perturbative computation. The convergence
properties of the OPT in critical problems associated to
Bose-Einstein condensates have been proved [15,16]. It is
worth mentioning that some of the most accurate numeri-
cal results regarding the critical temperature for weakly
interacting homogeneous Bose gases have also been ob-
tained with this method [17]. Concerning the GN3d model
the results obtained in the present work include analytical
equations for both Tc (at � � 0) and �c (at T � 0) as well
as for the scalar field vacuum expectation value (VEV) ��c

with finite N corrections. Contrary to the GN2d case, these
values appear to be higher than the predicted large-N
values. One of our most important results concerns the
location of a tricritical point at finite values of T and �.
Being able to specialize to any value of N we choose
N � 3, which is the relevant value for QCD. In a prelimi-
nary work [18], we already have shown that the unstable
region in the T �� plane, which corresponds to the region
inside the metastable lines that accompany the first order
transition line, is rather small, thus explaining the difficulty
in observing and locating the tricritical point in previous
works. Here we extend that work and, from the (Landau)
free energy, or effective potential, we obtain other relevant
thermodynamical quantities such as the thermodynamical
potential, pressure, density, etc. This allows us to obtain the
phase diagram in the intuitively more accessible P� 1=�
plane, and that shows how important the finite N correc-
tions in the GN3d are. In fact, these corrections produce a
phase diagram that is like a Van der Waals liquid, and
contrary to the large-N predictions, we show that the
model can display a mixed liquid-gas phase, which was
previously unknown to exist.

This work is organized as follows. In the next section we
present the GN model. In Sec. III we present the OPT
method and the interpolated GN model, evaluating the
effective potential in this nonperturbative scheme. We
show that, already at leading order, our results go beyond
the known large-N results. In Sec. IV we present the
optimized results obtained from the effective potential at
finite temperature and chemical potential. The dynamically
generated fermion mass that we here associate with the
auxiliary scalar field vacuum expectation value, the critical
temperature, and critical chemical potential for chiral sym-
metry restoration are evaluated and explicit analytical ex-
pressions for these quantities are obtained. In this same
section we also discuss the complete phase diagram for the
GN model in the T and � plane that then shows the
presence of a tricritical point joining the lines of second
order and first order chiral phase transitions, which we are
able to locate precisely. In Sec. V we present other relevant
thermodynamical quantities and show explicitly the exis-
tence of a mixed chiral symmetry restored/broken phase,
the analogue of a liquid-gas phase in the P� 1=� plane.
The entropy, latent heat, and other important quantities are
also evaluated. In Sec. VI we present the next order results,
at T � 0 and � � 0, that allows us to assess the conver-
gence of the OPT in this model. Our conclusions are
presented in Sec. VII. Three appendices are included to
show some technical details and the renormalization for
the interpolated model up to second order.

II. THE GROSS-NEVEU MODEL

The Gross-Neveu model is described by the Lagrangian
density for a fermion field  k (k � 1; . . . ; N) given by [1]
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 L � � k�i6@� k �mf
� k k �

g2

2
� � k k�

2; (2.1)

where the summation over fermionic species is implicit in
the above equation, with, e.g., � k k �

PN
k�1

� k k. When
mf � 0, the theory is invariant under the discrete trans-
formation1

  ! �5 ; (2.2)

displaying a discrete chiral symmetry. For the studies of the
model Eq. (2.1) in the large-N limit it is convenient to
redefine the four-fermion interaction as g2N � �. Since g2

vanishes like 1=N we study the theory in the large-N limit
with fixed � (see, e.g., [5]).

At finite temperature and density the model can be
studied in terms of the grand partition function given by

 Z��;�� � Tr exp����H ��Q��; (2.3)

where � is the inverse of the temperature, � is the chemi-
cal potential, H is the Hamiltonian corresponding to
Eq. (2.1), and Q �

R
dx � k�0 k is the conserved charge.

Transforming Eq. (2.3) to the form of a path integral in the
imaginary time (Euclidean) formalism of finite tempera-
ture field theory [19], we then have

 Z��;�� �
Z YN

k�1

D � kD k expf�SE� � k;  k�g; (2.4)

where the Euclidean action reads
 

SE� � k;  k� �
Z �

0
d�

Z
dx
�

� k�6@���0 �mf� k

�
�

2N
� � k k�

2

�
; (2.5)

and the functional integration in Eq. (2.4) is performed
over the fermion fields satisfying the antiperiodic boundary
condition in Euclidean time:  k�x; �� � � k�x; �� ��.

III. THE EFFECTIVE POTENTIAL FOR THE
INTERPOLATED THEORY

Let us now turn our attention to the implementation of
the OPT method within the GN model. Usually, when
employing this approximation one starts by performing a
linear interpolation on the original model in terms of a
fictitious parameter � (used only for bookkeeping pur-
poses), which allows for further expansions. According
to this OPT interpolation prescription [20] (for a long,
but far from complete list of references on the method,
see [21]) the deformed four-fermion theory reads [13]

 L �� ; � � � � k�i6@� k � �1� ��	 � k k � �
�

2N
� � k k�2:

(3.1)

So, at � � 0 we have a theory of free fermions while at
� � 1 the original theory is reproduced. Now, the intro-
duction of an auxiliary scalar field � can be achieved by
adding the quadratic term,

 �
�N
2�

�
��

�
N

� k k

�
2
; (3.2)

to L�� ; � �. We are then led to the interpolated model
 

L� � � k�i6@� k � �� � k k � �1� ��	 � k k

�
�N
2�

�2 �Lct;�; (3.3)

where Lct;� is the part of Lagrangian density containing
the necessary counterterms for renormalization, whose
coefficients are allowed to be � and 	 dependent [22,23].
As is well-known, the 2� 1 dimensional GN model is not
renormalizable in the usual perturbative expansion, but is
renormalizable in the 1=N expansion [24], which has the
property of modifying nonperturbatively the usual behav-
ior under power counting. Though our renormalization
procedure in the OPT expansion is more similar to a
perturbative renormalization, this is not a real obstacle
for our analysis. On general grounds it is always possible
to calculate physical quantities in a nonrenormalizable
model, at the price of introducing new counterterms at
successive orders, which simply means that the sensitivity
to an implicit cutoff of the model is expected to be more
pronounced than in a renormalizable theory [25]. Such a
procedure is commonly and successfully applied in many
effective theories, like, e.g., typically in chiral perturbation
theory (for a recent review of chiral perturbation theory
with emphasis on the renormalization procedure see, e.g.,
[26] and references therein). However, concretely in our
case, at first order of the OPT expansion all the relevant
quantities are actually finite (when using dimensional
regularization as we do here), thus completely unambigu-
ous. Next, at second order, that we also investigate to some
extent in this paper, it turns out that the only potentially
nonrenormalizable contributions to the effective potential
actually vanish, such that only standard (i.e., mass, wave
function, etc.) counterterms are necessary to cancel the
divergences. It should be mentioned, however, that this is
somehow an accident of using dimensional regularization,
which therefore delays at most, i.e., to much higher orders,
the necessary introduction of new counterterms in our case.
A detailed account for renormalization of the GN3d model
in the OPT up to second order will be presented in
Appendices B and C.

From the Lagrangian density in the interpolated form,
Eq. (3.3), we can immediately read the corresponding new
Feynman rules in Minkowski space. Each Yukawa vertex

1Note that in d � 3 this is only true if one considers 4� 4
Dirac matrices.
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carries a factor �i� while the (free) � propagator is now
�i�=�N��. The LDE dressed fermion propagator is

 SF�P� �
i

P6 � 		 � i

; (3.4)

where

 		 � 	� �	� �c��: (3.5)

Any quantity computed from the above rules, at some
finite order in �, is dependent on the parameter 	, which
then must be fixed somehow. Here, as in most of the
previous references on the OPT method, 	 is fixed by
using the principle of minimal sensitivity (PMS). In the
PMS procedure one requires that a physical quantity ��k�,
that is calculated perturbatively to some k-th order in �, be
evaluated at the point where it is less sensitive to this
parameter. This criterion then translates into the variational
relation [27]

 

d��k�

d	

�������� �	;��1
� 0: (3.6)

The optimum value �	 that satisfies Eq. (3.6) must be a
function of the original parameters, including the cou-
plings, thus generating nonperturbative results.

The OPT effective potential

The different contributions to the order �2 self-energy
are displayed in Fig. 1. We can use these self-energy terms
to evaluate the vacuum graphs contributing to the effective
potential as shown in Fig. 2

In the following we make use of the following notations.
The four-momentum P is given by P � �P0;p�, where
P0 � i�!n � i��, with !n � �2n� 1��T, n � 0;
1;

2; . . . , are the Matsubara frequencies for fermions. The
momentum integrals, when passing from Minkowski to
Euclidean space-time, we here denote by

 � i
Z �T�
p
� T

X�1
n��1

Z dd�1p

�2��d�1
;

where all space momentum integrals are performed using
dimensional regularization, d � 3� 
. The renormaliza-
tion procedure (which is only necessary at order �2 since
all relevant quantities are explicitly finite at order �) is
carried out in the modified minimal subtraction scheme
(MS).

The order � OPT effective potential is obtained from the
first two diagrams shown in Fig. 2 and, using the previous
Feynman rules for the GN in the OPT, it is given by

 

Veff;�1��c; 	�

N
� �

�2
c

2�
� i

Z �T�
p

tr ln�P6 � 	�

� �i
Z �T�
p

tr
	� �c

P6 � 	� i

�

�V�a�eff

N
; (3.7)

where �V�a�eff =N brings the first 1=N correction to the
effective potential shown by the second diagram in
Fig. 2. This is given by [28]

 

�V�a�eff

N
� �

i
2N

Z �T�
p

tr
�

�a�	�
P6 � 	� i


�
; (3.8)

where the trace is over Dirac’s matrices only2 while the
term �a represents the first contribution shown in Fig. 1 to
the fermion self-energy,

 �a�	� � ��
�
N
i
Z �T�
q

1

Q6 � 	� i

: (3.9)

After taking the traces in Eq. (3.7) and rearranging the
terms one obtains

FIG. 1. Diagrams contributing to the self-energy to order �2.
The thick continuous fermionic lines represent 		 dependent
terms which must be further expanded, while the thin continuous
lines represent 	 dependent fermionic propagators and the
dashed lines represent the � propagator. Diagrams (a) and (b)
(of order � and order �2, respectively) contribute with 1=N,
while diagrams (c) and (d) (both of order �2) contribute with
1=N2. Within dimensional regularization only graphs (b) and (c)
are divergent. Tadpole graphs are not shown as they do not
contribute to the effective potential nor to the counterterms (in
d � 2� 1) at the perturbative order we restrict ourselves to.

X

FIG. 2. Diagrams contributing to Veff=N to order �2. The thick
continuous fermionic lines represent 		 dependent terms which
must be further expanded while the thin continuous lines repre-
sent 	 dependent fermionic propagators and the dashed lines
represent the � propagator. The first (order �0) contributes with
1=N0, the second and third (order � and order �2 respectively)
contribute with 1=N. The fourth and fifth (both of order �2)
contribute with 1=N2. The sixth and seventh represent contribu-
tions due to the mass and wave function renormalization coun-
terterms, respectively. The last graph represents the zero point
energy subtraction term.

2The factor �1 corresponding to a closed fermionic has al-
ready been taken into account [28].
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Veff;�1��c; 	�

N
� �

�2
c

2�
� 2i

Z �T�
p

ln�P2 � 	2�

� �4i
Z �T�
p

	�	� �c�

P2 � 	2 � i


� �
2�
N
	2

�
i
Z �T�
p

1

P2 � 	2 � i


�
2

� �
2�
N

�
i
Z �T�
p

P0

P2 � 	2 � i


�
2
: (3.10)

Then, at finite temperature and chemical potential, one
finds (see Appendix A for the relevant integrals and
Matsubara sums leading to this result)
 

Veff;�1��c;	�

N
� �

�2
c

2�
�
j	j3

3�
�
j	jT2

�
I1�a; b� �

T3

�
I2�a; b�

� �
	�	���

�
�j	j � TI3�a; b��

� �
�	2

2�2��2N
�j	j � TI3�a; b��2

� �
�T4

2�2��2N
�I4�a; b��

2; (3.11)

where we have defined the functions

 I1�a; b� � Li2��e��a�b�� � Li2��e��a�b��; (3.12)

 I2�a; b� � Li3��e
��a�b�� � Li3��e

��a�b��; (3.13)

 I3�a; b� � ln�1� e��a�b�� � ln�1� e��a�b��; (3.14)

 I4�a; b� � sgn���
�
a ln

�
1� ea�b

1� ea�b

�
� Li2��ea�b�

� Li2��ea�b�
�
; (3.15)

with a � j	j=T and b � j�j=T.
The T ! 0 limit for each of the elements appearing in

Eq. (3.11) are:

 lim
T!0

T2I1�a; b� � �
1

2
�j�j � j	j�2��j�j � j	j�; (3.16)

 lim
T!0

T3I2�a; b� �
1

6
�j	j � j�j�3��j�j � j	j�; (3.17)

 lim
T!0

TI3�a; b� � �j�j � j	j���j�j � j	j�; (3.18)

 lim
T!0

T2I4�a; b� �
1

2
sgn����	2 ��2���j�j � j	j�;

(3.19)

where ��j�j � j	j� is the step function.

IV. OPTIMIZATION AND NUMERICAL RESULTS
BEYOND LARGE-N

Before proceeding to the specific d � 3 case, considered
in this work, let us apply the PMS to the most general order
� effective potential, which is given by Eq. (3.10). This
exercise will help the reader to visualize the way the OPT-
PMS resums the perturbative series. Setting � � 1 and
applying the PMS to Eq. (3.10) we obtain that
 ��
	� �c � 	

�
N

�
i
Z �T�
p

1

P2 � 	2 � i


���
1� 	

d
d	

�

�

�
i
Z �T�
p

1

P2 � 	2 � i


�
�
�
N

�
i
Z �T�
p

P0

P2 � 	2 � i


�

�
d
d	

�
i
Z �T�
p

P0

P2 � 	2 � i


����������	� �	
� 0: (4.1)

As one can see in Appendix A, Eq. (A3), the last term of
the above equation only survives when � � 0. In the case
� � 0, Eq. (4.1) factorizes in a nice way which allows us
to understand the way the OPT-PMS procedure resums the
series producing nonperturbative results. With this aim one
can easily check that (at � � 1)

 �a�	; T;�� � �
�
N
	
�
i
Z �T�
p

1

P2 � 	2 � i


�
: (4.2)

Then, when � � 0, the PMS equation factorizes to
 

� �	� �c � �a� �	; T;� � 0��
�
1� �	

d
d �	

�

�

�
i
Z �T�
p

1

P2 � �	2 � i


�
� 0; (4.3)

leading to the self-consistent relation

 �	 � �c ��a� �	; T;� � 0�; (4.4)

which is valid for any temperature and number of space-
time dimensions. In this way the OPT fermionic loops get
contributions containing �c as well as rainbow (exchange)
type of self-energy terms, like the first graph of Fig. 1. Note
that whenN ! 1, �	 � �c and the largeN result is exactly
reproduced [13]. The mathematical possibility

 i
Z �T�
p

1

P2 � �	2 � i

� 0 (4.5)

corresponds to the unphysical, coupling-independent solu-
tion discussed in Ref. [13]. Note that in the d � 3 case one
obtains

 �a�	; T;�� �
�	

4�N
�j	j � TI3�a; b��: (4.6)

For numerical purposes, taking �! �� and defining � �
�=j�j, one can consider the dimensionless PMS equation:
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 ��
	� �c �

	
4N
�j	j � TI3�a; b��

��
1� 	

d
d	

�

� �j	j � TI3�a; b�� �
T4

4N
I4�a; b�

d
d	

I4�a; b�
���������	� �	

� 0;

(4.7)

where 	, �c, T, and � are in units of �.

A The T � 0 and � � 0 case

Let us start by analyzing each of the different possible
cases involving the temperature and chemical potential
corrections. For T � 0 and� � 0 we have that, to order �,

 

V�
1

eff�	;�c�
N

� �
�2
c

2�
�
j	j3

3�
� �

	�	� �c�j	j
�

� �
�	2j	j2

2�2��2N
: (4.8)

Note that V�
1

eff�	;�c� � V�
1

eff��	;��c�, and by the virtue
of this symmetry we shall look for �	��c� only for �c > 0,
since for �c < 0 it is obvious that �	��c� � � �	���c�.

Then, using �! �� and � � �=j�j, one can write the
free energy, at T � 0 and � � 0, as
 

V�
1

eff�	;�c�
N

� ��
�2
c�

2�
�
	3

3�
� �

	2�	��c�
�

� �
	4

8�N�
;

(4.9)

where the notation is consistent with the fact that we are
only interested in �c > 0 (in this case only 	> 0 can
recover the large-N result as N ! 1 as can be seen from
the PMS solution, Eq. (4.4)). Then dVeff=d�c � 0 at �c �
��c gives

 �� c � 	2=�: (4.10)

At the same time the PMS equation dVeff=d	 � 0 at 	 �
�	 gives the relation

 �	 � ��c �
�	2

4N�
; (4.11)

from which we then obtain the expression

 �	 � ��cF �N�; (4.12)

with the function F �N� defined as

 F �N� � 1�
1

4N
: (4.13)

The above results then lead to the optimized value for the
(dynamically generated) vacuum expectation value for the
scalar field, also shown in [18],

 �� c �
�

F �N�2
: (4.14)

This result is contrasted with the large-N result in Fig. 3.

It is instructive to recall a similar result for the d � 2
where the large-N result is ��Nc ��� � M exp���=�� [24],
while the OPT result is ���

1

c � ��Nc ��	�=�1� 1=�2N��,
where �	 � ��1� 1=�2N�� [13]. The same happens here
except that we have a factor 4 inside the function depen-
dent onN, Eq. (4.13), instead of a factor 2 found in the d �
2 case. This is because of the 4� 4 Dirac matrices con-
sidered in the three dimensional problem here. Thus, we
have ���

1

c � ��Nc ��	�=�1� 1=�4N��, recalling that ��Nc ��� �
� � �=j�j. Finally, when we evaluate the thermodynam-
ical potential in the sequel, it will be useful to consider the
optimized free energy at its minimum, �c � ��c, which is
given by

 

Veff� �	; ��c�
N

� �
�3

6�F �N�3
: (4.15)

B. The T � 0 and � � 0 case

Next, let us consider the case T � 0 and� � 0 when the
free energy can be written, using again �! �� and � �
�=j�j, as
 

V�
1

eff�	;�c;T�
N

����
�2
c

2�
�
	3

3�

�
2

�
�	T2Li2��e

�	=T��T3Li3��e
�	=T��

�
	
�
�	��c��	� 2T ln�1� e�	=T��

��
	2

8�N�
�	� 2T ln�1� e�	=T��2;

(4.16)

where we have considered again the case �c > 0 and
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10

12
σ-- c
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FIG. 3. The dimensionless minimum ��c (in units of �) as a
function of � for T � � � 0. The dashed line represents the
N ! 1 result, while the continuous lines were produced by the
OPT-PMS at order �. The numbers beside the curves identify the
value of N for each case.
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	> 0. From the result given in Eq. (4.4), �	 �
�c � �a� �	; T;� � 0�, we immediately obtain the self-
consistent temperature dependent relation

 �	 � �c �
�	

4N�
� �	� 2T ln�1� e� �	=T��: (4.17)

It is a simple matter to apply dVeff=d�c � 0 at �c � ��c to
Eq. (4.16) to obtain

 �� c �
	
�
�	� 2T ln�1� e�	=T��; (4.18)

which can be used in Eq. (4.17) to yield �	 � ��F �N� that,
when inserted into Eq. (4.18), allows us to study the
thermal behavior of the order parameter ( ��c�T�) via the
extremum of V�

1

eff�	;�c; T�, given by [18]

 �� c�T�F �N� �
�

F �N�
� 2T ln�1� e� ��c�T�F �N�=T�:

(4.19)

From the above equation one retrieves the result ��c�0� �
�F �N��2, as obtained in the previous subsection. The
critical temperature Tc for chiral symmetry restoration is
obtained by requiring that ��c�T � Tc� � 0, which gives

the result

 T�
1

c �
�

2 ln2

1

F �N�
: (4.20)

This analytical result is shown in Fig. 4. Note that a
numerical application of the PMS to the OPT effective
potential, using Eqs. (4.7) and (4.16), exactly reproduces
the analytical result Eq. (4.20). Recall the similarity with
the d � 2 case [13], where the LDE result was obtained
from the large N result by the replacement �! �	 �
��1� 1=�2N��, just the same as in obtaining the scalar
field VEV, as discussed in the previous subsection.

Note also that, contrary to the d � 2 case, our prediction
for Tc is always greater (for finite N) than the large-N
prediction. The transition is found to be of the second kind,
as illustrated by Fig. 5.

C. The T � 0 and � � 0 case

Let us now consider the case T � 0 and � � 0. From
the general expression of the effective potential at the first
OPT order, Eq. (3.10), and using the T ! 0 results shown
in Eqs. (3.16), (3.17), (3.18), and (3.19), we find that the
chemical potential dependent effective potential is given
by

 

V�
1

eff�	;�c;�; T � 0�

N
� �

�2
c

2�
�
j	j3

3�
�
��	� �c�	

�
j	j �

��	4

2�2��2N

�

�
1

2�

�
�

2

3
j	j3 � j�j	2 �

j�j3

3

�
�
�	�	� �c�

�
�j�j � j	j� �

��	2

2�2��2N
��2 � 	2�

�
��

8�2��2N
�	2 ��2�2

�
��j�j � j	j�: (4.21)

For � � 0, obviously, Eq. (4.21) reduces to Eq. (4.8).
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8
Tc

103

FIG. 4. The OPT critical temperature (at � � 0 and in units of
�) as a function of �. The dashed line represents the N ! 1
result, while the continuous lines were produced by the OPT-
PMS procedure at order �. The numbers beside the curves
identify the value of N for each case.
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FIG. 5. The large-N (dashed line) and the OPT (continuous
line) predictions for ��c�T� at N � 3. All quantities are in units of
�. The figure displays a continuous, second order transition line.
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To evaluate the critical value �c for chiral symmetry
restoration, it is sufficient to compare the values of the
effective potential at the minimum Veff� ��c; T � 0� with its
value for � � 0 for ��c � 0. This is from the same line of
reasoning employed in the d � 2 case discussed in
Ref. [13]. In this case, we obtain the point where the two
minima of the effective potential, at ��c � 0 and at ��c � 0
and � � �c, coincide, i.e., there is a value �c which
satisfies

 V�
1

eff� �� � 0; � � �c; T � 0� � V�
1

eff� ��c;� � 0; T � 0�:

(4.22)

It is a simple algebraic exercise to calculate both members
of this equality. We first obtain from Eq. (4.21) that
 

V�
1

eff�� � 0; �c; T � 0�

N
� �

1

6�
j�cj

3

�
1� 3

�
16�N

j�cj

�
:

(4.23)

Then, to evaluate the right-hand side of Eq. (4.22) we use
Eq. (4.8) together with the relation between ��c and �	 in
Eq. (4.12), i.e., ��c � �	=�F �N��, which gives
 

V�
1

eff� ��c;� � 0; T � 0�

N
� j �	j3

�
1

2F �N�
�

2

3
�

� �	
8�N

�

� �
j �	j3

6�
; (4.24)

where the last simplification arises from using the
definition of F �N�, Eq. (4.13), and noting that �	 �
��=��F �N��. Note thus that V�

1

eff� ��c;� � T � 0� has
formally the same simple expression as the leading order
one, except of course that it includes nontrivial 1=N cor-
rections via the explicit expression of �	. Now we may
compare Eqs. (4.23) and (4.24) to finally extract �c [18],

 j�cj �
�

F �N�

�
1�

3

16N
j�cj

�

�
�1=3

; (4.25)

where we used again � � �=j�j. For N � 3, we find from
Eq. (4.25) the solution

 

�c

�
’ 1:067 67; (4.26)

which agrees with the numerical results obtained in the
next subsection.

D. The T � 0 and � � 0 case

Finally, turning now to the case of both finite tempera-
ture and finite chemical potential, we obtain the full phase
diagram of the three dimensional GN model. The numeri-
cal application of the PMS shows how the phase diagram is
qualitatively and quantitatively affected by finite N correc-
tions. Figure 6 shows the situation for N � 3. The CSB
region is augmented with respect to the large-N predic-
tions, when expressed in units of our reference scale � �

�=j�j. This is clear also from our results for ��c, Tc, and
�c. This appears at first sight in contrast with the lattice
results [12], which show a decreasing of the CSB region at
finite N, as compared to the large-N results. However,
within our approximation, the increase of the size of the
CSB region is rather small, being about 5% for N � 3,
while the increase would be of only about 2% for the
N � 12 case considered in Ref. [12], which in turn predicts
a decrease of about 10%. One should moreover note that in
Ref. [12] the authors present their results for the phase
diagram with quantities normalized by the scalar vacuum
expectation value obtained from the lattice simulations. In
our case it means that from Eqs. (4.14), (4.20), and (4.25),
taking N � 3 for instance, Tc= ��c ’ 0:661 and �c= ��c ’
0:897, while for N � 12, Tc= ��c ’ 0:707, and �c= ��c ’
0:976, which approximately agrees with the results pre-
sented in Ref. [12] within their level of precision. Note also
that our results agree reasonably with recent analysis of the
2� 1 GN model from exact renormalization group meth-
ods [29] (at least within the errors quoted there, and for the
case of vanishing wave function of the auxiliary scalar
field, which is the appropriate comparison to our analysis).
Thus the reduction or increase with respect to large N
results appears to be just a matter of scaling. In the present
work we consider the scale defined as � (the vacuum
expectation value of the scalar field at large-N) as more
appropriate to present the results. In a previous work [13],
we considered the same model but in 1� 1 dimensions
using exactly the same approximation. There, our result for
the phase diagram showed a drastic change concerning the
size of the CSB which was about 30% smaller than the one
produced by the large-N approximation forN � 3. Now, in
2� 1 dimensions, it turns out that the CSB region pre-
dicted by the OPT is very close to the one predicted by the

0.2 0.4 0.6 0.8 1
µ

0.2

0.4

0.6

0.8
T

FIG. 6. The large-N (dashed line) and OPT (continuous line)
predictions for the phase diagram at N � 3. All quantities are in
units of �. The black dot indicates the position of a tricritical
point, located at Ttcr ’ 0:251 and �tcr ’ 1:029. Below this point
the transition is of the first kind while above the point it is of the
second kind.
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large-N approximation. In summary, in the fixed normal-
ization scale used (�), it looks like the OPT predicts a
drastic decrease in the size of the CSB region in 1� 1
dimensions whereas in 2� 1 dimensions it seems to sup-
port, at least at lowest OPT order, the CSB size (as well as
the numerical values of ��c, Tc, and �c) predicted at
large-N. We shall see in the next section that a partial
investigation of higher OPT order corrections (for T �
� � 0) indicates a good stability of these first order results.
On the other hand, the nature of the transition line pre-
dicted at large-N in 1� 1 dimensions is unaffected by the
OPT at order � while it drastically changes in 2� 1
dimensions, as we now start to discuss.

Concerning the nature of the transition lines shown in
Fig. 6, recall that the large-N approximation predicts that it
is of the second kind everywhere, except at T � 0 where it
suddenly becomes of the first kind at a critical value of
� � �N

c � �. Using lattice Monte Carlo simulations for
the GN model, Kogut and Strouthos [11] concluded that,
for N � 4, there should be a tricritical point on the section
of the phase boundary defined by T=TNc � 0:230 and
�=�N

c  0:970. Our evaluations predict that the observed
first order transition at T � 0 spreads out through the
transition line until it reaches a tricritical point at Ttcr ’
0:251� and �tcr ’ 1:029� (for N � 3).

Figure 7 shows an envelope of curves that displays how
the abrupt first order transition at T � 0 becomes smoother
as the temperature increases. One observes that the dis-
continuity gap becomes smaller as the temperature ap-
proaches the tricritical value, Ttcr � 0:251�.

It is also important to analyze the occurrence of meta-
stability lines related to the first order transition line (T <
Ttcr) in Fig. 6. With this aim we offer Fig. 8, where the
dashed line joining the tricritical point, Pt, to point A
corresponds to the appearance of a minimum at �c � 0,
whereas the continuous line joining points Pt and C refers
to the first order transition line. Finally, the dot-dashed line
joining points Pt and B refers to the vanishing of the
minima that occurs away from the origin. It is important
to note how small the metastable region A� Pt � B is. As
a matter of fact, point A occurs at a value of � which is
about 2% smaller than �c, whereas B occurs at a value
which is about 3% greater than �c. In d � 2 these values
are of about 30% (see Ref. [8]).

The reader may visualize the three situations shown in
Fig. 8 by examining the form of the free energy shown in
Fig. 9.

V. THE LIQUID-GAS PHASE

We are now in position to perform a more physical
interpretation of our results by examining other relevant

0.6 0.7 0.8 0.9 1
µ
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0.4

0.6

0.8

1

1.2

σ−−
c
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c

d

e

FIG. 7. The order parameter, ��c, as a function of � for differ-
ent temperatures. The continuous lines represent the OPT results
for N � 3 and the labels on the figure represent the different
temperatures: Ta � 0:050, Tb � 0:100, Tc � 0:150, Td � 0:200
and Te � 0:250. All these values are smaller than the tricritical
value Ttcr � 0:251 and the associated curves clearly display first
order transitions. All quantities are given in units of �. For
reference, the figure also shows the large-N result (dashed line)
for T � 0:150.
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FIG. 8. Part of the phase diagram that corresponds to the
metastable region (reproduced here from [18]). The dashed
line joining points Pt and A refers to the development of a
minimum at the origin. The continuous line linking the tricritical
point to C (T � 0 and � � �c) is the first order transition line,
while the dot-dashed line joining Pt to B is the second meta-
stability line and signals that the minima that occur away from
the origin have disappeared.

σc

Veff

σc

Veff

σc

Veff

FIG. 9. The shape of the free energy corresponding to the
metastable region. The left panel shows the situation correspond-
ing to the dashed Pt � A line shown in Fig. 8, while the middle
and right panels correspond to lines Pt � C and Pt � B, respec-
tively.
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thermodynamical quantities. The thermodynamical poten-
tial, ���; T�, for instance, is related to the free energy at its
minimum, �c � ��c. It is given by

 ���; T� � Veff� �	; ��c;�; T�: (5.1)

Note that we have defined this quantity in terms of the
optimized free energy. This is an important remark because
we are considering different physical quantities and one
could wonder which one to optimize. Here, our choice is to
optimize the free energy since all other thermodynamical
quantities may be obtained from it. It is usual to normalize
the thermodynamical potential by subtracting a ‘‘bag’’
term, B, given by B � ��0; 0�, so that the pressure as
well as the energy density vanish at T � 0 and � � 0. In
view of Eq. (4.15) the bag term is simply given by

 B � �
�3

6�F �N�3
: (5.2)

Then, the normalized thermodynamical potential is just
�N��; T� � ���; T� �B. At the same time, the (normal-
ized) pressure is given by P��; T� � ��N��; T� from
which one may obtain the density

 � �
@P
@�

; (5.3)

and the entropy density

 S �
@P
@T

: (5.4)

Finally, the (normalized) energy density is given by E �
�P� TS ���. Recalling that, due to the gap equation,
@P=@ ��c � 0 and that, due to the PMS equation, @P=@ �	 �
0, one obtains the density

 � � �
�	T2

�
I1;� �

T3

�
I2;� �

� �	� ��c� �	
�

TI3;�

�
� �	2

�2��2N
T� �	� TI3�I3;� �

�T4

�2��2N
I4I4;�; (5.5)

where Ii;� � @Ii=@�, and Ii, i � 1; . . . ; 4, are given by the
function in Eqs. (3.12), (3.13), (3.14), and (3.15). At the
same time one obtains that the entropy density is given by
 

S � �2
�	T
�
I1 �

�	T2

�
I1;T � 3

T2

�
I2 �

T3

�
I2;T

�
� �	� ��c� �	

�
I3 �

� �	� ��c� �	
�

TI3;T

�
� �	2

�2��2N
� �	� TI3��I3 � TI3;T�

�
�T3

�2��2N
�2I2

4 � TI4;T�; (5.6)

where Ii;T � @Ii=@T.
Having all the above quantities, we can now analyze, for

instance, the phase diagram in the physically more acces-

sible P� 1=� plane as shown by Fig. 10. This figure
displays one of our most important results which indicates
that a mixed liquid-gas phase, previously unknown to exist
within this model, develops at low pressure values. Three
isotherms are shown, and the one corresponding to T � 0
defines the edge of the region accessible to the system. The
dotted line above the tricritical point is just the mapping of
the corresponding second order transition line in the T ��
plane. Note that in the P� 1=� plane the first order
transition line displayed in the T �� plane (corresponding
to T < Ttcr) splits in two parts corresponding to the value of
the density at the two degenerate minima which produce
identical pressure values. Not being able to determine the
existence of the mixed phase, Kogut and Strouthos argued
that the liquid-gas transition was either (i) extremely weak,
(ii) very close to the chiral transition, or (iii) not realized in
this model [11]. Our result shown in Fig. 10 suggests that
their second hypothesis was the correct one. Moreover,
these authors had used N � 4; that was the smallest num-
ber allowed by the hybrid Monte Carlo algorithm used in
their simulations. With this number the tricritical point
appears at an even lower value of P (actually, for N ! 1
it happens at P � 0) and was consequently harder to be
detected within their approximation.

Figure 11 shows a detailed view of the liquid-gas phase
seen in Fig. 10 displaying how an isotherm whose tem-
perature is smaller than the tricritical value crosses the
mixed phase region. The horizontal line in the ‘‘coexis-
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FIG. 10. The phase diagram in the P� 1=� plane for N � 3.
The thick continuous line is the T � 0 isotherm which limits the
region accessible to the system. The region labeled by N=A is not
accessible. The dotted line is the mapping of the second order
transition line. The chiral symmetric region (CSR) corresponds
to the liquid phase while the region where chiral symmetry is
broken (CSB) corresponds to the gas phase. The LG region
starting at the tricritical point, Pt, is limited by first order
transition lines and corresponds to the mixed liquid-gas phase.
Point C (P � 0 and � ’ 0:197�2) corresponds to T � 0, � �
�c. The isotherm represented by the dashed line corresponds to
the tricritical temperature, Ttcr � 0:251� while the dot-dashed
line represents the isotherm corresponding to T � 0:397�. The
pressure, P, is in units of �3 while the density, �, is given in
units of �2.
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tence’’ region was drawn by connecting the value of the
pressure at the boundaries, corresponding to ‘‘mixed’’
states. This picture observes the Maxwell construction
which derives from the equality of the chemical potentials
at the edge of the two phases.

Figure 12 shows E=T3 and P=T3 as functions of
the temperature for � � 0. Note that for high
temperatures E=T3 ! �3�3�=� ’ 1:14, while P=T3 !
�3�3�=�2�� ’ 0:57 (where �3� ’ 1:202), as one can
guess by looking at the equations for E and P at � � 0.
In those high temperature regimes (T > Tc), we have ��c �
0 and �	! 0. At high temperatures both curves are sym-
metrical with respect to the numerical value �0:85.

Let us now check for the presence of latent heat, which is
inherent to first order phase transitions. We do this by
examining the energy density as a function of the tempera-
ture. For this, one chooses a value of � that corresponds to
the first order transition, like, for example, any � such that

�c >�>�tcr. Recall that for the case N � 3, �tcr �
1:029� and �c � 1:067�, so we choose, without loss of
generality, the value � � 1:040�. One then expects to see
a discontinuity in the line corresponding to E�T� at T �
Tc�� � 0:140�� � 0:194�. This is indeed the case as
shown in Fig. 13. The same figure shows the large-N result,
where the discontinuity happens only at T � 0, which can
be understood by recalling that within this approximation
the first order phase transition happens only at the point
T � 0 and � � 1:000�.

VI. ORDER �2 RESULTS AT T � 0 AND � � 0

Let us now investigate the order �2 contributions that are
given by the three-loop graphs shown in Fig. 2. Actually, a
complete evaluation of these graphs at finite T and � turns
out to be very cumbersome, so we shall restrict ourselves in
the present work to the T � 0 and � � 0 case which is
more tractable. This will at least allow us to have a rea-
sonable quantitative estimate of the expected higher order
corrections to our previous order � results. We plan to
tackle the calculation of the full T and � dependence in
a future work.

A. The order �2 three-loop contribution
to the free energy

The total order �2 three-loop contribution can be easily
extracted from Ref. [28] and reads
 

�V�b;c;d�eff

N
� �

i
4N

Z ddp

�2��d

� tr
�

�b�p;	� � �c�p;	� � �d�p;	�
p6 � 	� i


�
; (6.1)
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FIG. 11. Detail of the liquid-gas phase in the P� 1=� plane
for N � 3. The isotherm represented by the dashed line corre-
sponds to a temperature T � 0:194� that is smaller than the
tricritical temperature, Ttcr � 0:251�. The two dots are joined
by a straight line in a Maxwell construction. The pressure, P, is
in units of �3 while the density, �, is given in units of �2.

0.5 1 1.5 2
T

0.2

0.4

0.6

0.8

1

1.2

1.4

P/ T3

ε/ T3

FIG. 12. The dimensionless quantities E=T3 and P=T3 as
functions of the temperature for � � 0. The continuous lines
are the OPT results for N � 3, while the dashed lines represent
the large-N results. The vertical dotted line is the OPT critical
temperature for N � 3.
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FIG. 13. The energy density, E, as a function of the tempera-
ture for � � 1:040>�tcr � 1:029 (for N � 3). Both quantities
are in units of �. The continuous line is the OPT result and
shows the presence of latent heat signaled by the discontinuity at
Tc�� � 1:040�� � 0:194�. The large-N result is represented
by the dashed line and the discontinuity happens at T � 0. Both
E and T are in units of �.
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where �i�p; 	�, i � b, c, d, correspond to panels (b), (c),
and (d) (second, third, and fourth diagrams, respectively) in
Fig. 1.

The most complicated contributions arise from the first
and second terms of the above equation (or equivalently
corresponding to the third and fourth graphs of Fig. 2)
since in this case the self-energies depend on the momen-
tum p. After taking the traces, etc., and using dimensional
regularization with d � 3� 
, the corresponding integral
to be evaluated reads

 

V�b;c�eff

N
� �2�2 4

N

�
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�
2
:

(6.2)

Introducing next appropriate Feynman parameters to dis-
entangle the different momenta integrations, we obtain the
following expression
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where M is the arbitrary MS renormalization scale,

 g��� � ���1� ����3=2�
=2; (6.4)

and

 H��;�; �� � ����1� �� � �1� ����1� ����3=2�
=2:

(6.5)

The evaluation of the final integrals over Feynman parame-
ters in Eq. (6.3) is rather technical and details of this
calculation are left to Appendix B. One arrives at the final
result for the third and fourth three-loop diagrams of Fig. 2
as given by
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; (6.6)

where X� 1:636 69 is a numerical constant obtained from
the integrations. Next, the self-energy entering the last term
of Eq. (6.1), corresponding to the last diagram shown in
Fig. 1, that leads to the contribution to Veff shown by the
fifth diagram in Fig. 2 is a tadpole-like graph that can be
easily evaluated with the standard Feynman rules. It is
finite and gives the contribution

 

�V�d�eff

N
� ��2�2 	5

2N2�4��3
: (6.7)

At the three-loop order, the free energy contains diver-
gent terms that lead to the 1=
 term shown in Eq. (6.6). The
renormalization is performed as usual, by introducing the
appropriate counterterms (mass, wave function, etc.).
Actually the perturbative two-loop fermion self-energy in
Fig. 14 exhibits divergent terms of nonrenormalizable
kind, with higher power of momentum dependence, as
expected since the model is not perturbatively renormaliz-
able. Although it would not be a problem in principle to
treat those new divergences with appropriate counterterms,
similarly to what is done in other effective theories, it turns
out that these nonrenormalizable counterterms do not con-
tribute to the three-loop free energy in dimensional regu-
larization, so that only standard mass, wave function and
vacuum counterterms are needed in practice to render the
effective potential at O��2� finite. Thus the renormaliza-
tion as performed in the MS scheme after dimensional
regularization does not introduce new parameters at the
three-loop order, for the quantities we are interested in. The
arbitrariness of the final physical result for the three-loop
effective potential simply takes the standard form of a
(logarithmic) dependence on an arbitrary renormalization
scale. The details of the calculation of these counterterm
contributions are discussed in Appendix C. Now, by adding
all contributions, including the finite ones arising from the
counterterms (see Appendix C), the renormalized three-
loop effective potential can be cast into the form
 

�V�b;c;d�eff;ren
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(6.8)

B. Optimization results at T � 0 and� � 0 at order �2

From the result for the O��2�2� three-loop contribution,
Eq. (6.8), we can now perform the � expansion and PMS
optimization at this next order, limited however here to the

p p ppq k

q−k

q

k+p−q

p−q
k+p−q

k
p−qp−q

Σ Σb c

massdiv WFdiv

FIG. 14. Momentum-dependent two-loop graphs contributing
to the fermionic self-energy to order �2. �b�p� is of order 1=N
while �c�p� contributes with 1=N2. The other two graphs
represent the mass and the wave function counterterms as
indicated in the figure.
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special case T � 0 and � � 0. Following the same line of
reasoning as in Sec. IVA, care is to be taken by noticing
that other �2 terms are generated by the appropriate ex-
pansion of 		, as defined in Eq. (3.5), within the first order
O���� terms. Explicitly, after having redefined �!
��=� as previously, we arrive at the expression
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(6.9)

The remaining is simply an algebraic exercise to apply the
PMS procedure to Eq. (6.9). Similar to the first order case,
the gap equation dVeff=d�c � 0 at �c � ��c defines ��c as
a function of �	, while the PMS equation dVeff=d	 � 0 at
	 � �	 gives a further relation between ��c and �	.
However, at this next order, both relations are more com-
plicated; in particular, the PMS equation is nonlinear and
involves a ln�	� term. It is most convenient to use the gap
equation, which gives

 �� c �
	2

2	��

�
1�

	
2N�

�
; (6.10)

generalizing Eq. (4.10), at second � order, into the PMS
equation, which defines an equation depending only on
�	�N� (note that the dependence upon � can be simply
factored out, e.g., by rescaling �	 in units of �). For
instance, for the particular case N � 3, which is just suffi-
cient for our illustration, one obtains the PMS equation as
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�
�0:021 794 4�	̂� 0:819 029��	̂� 1:280 09�

� �3:482 61� 	̂�	̂� 3:6924��

� 0:162 102
�
	̂�

1

2

�
	̂2 ln

	̂�

M

�
� 0; (6.11)

where we have defined, for convenience, the dimensionless
mass parameter 	̂ � 	=�. Equation (6.11) can be solved
numerically, to find a nontrivial value of �	. For this we
have to set the arbitrary renormalization scale M in (6.11),
originating from the logarithmic dependence in Eq. (6.9),
to some appropriate value. A physically natural choice is to
set M � �; that corresponds to the basic scale and scalar
vacuum expectation value in the large-N limit. An inter-
esting feature of the optimization result in the present case
is that the presence of the ln�	� dependence in Eq. (6.11)
largely reduces the number of optimized solutions (usually
a drawback of the PMS). Indeed, one sees in Eq. (6.11)
that, without the logarithmic term, four different nonzero

(real or complex) �	 solutions would occur.3 In contrast, we
find here numerically a unique (real) solution (for M � �
and N � 3):

 �	 ’ 0:867�: (6.12)

Next, we can just plug in this result into Eq. (6.10), to
obtain

 ���2

c ’ 1:1719�; (6.13)

which appears to be very close to the first order result,
���

1

c ’ 1:1901�, obtained from Eq. (4.14) for N � 3. One
may however question if this is an artifact of our choice of
arbitrary renormalization scale � � M. Though this value
of the scale appears to be very natural, it is easy to study the
impact of varying it in a reasonable range around this
value, like is sensible to do in similar renormalization scale
dependence studies in other theories (and which give a
rough estimate of higher order corrections). We can, e.g.,
vary M in the range 0:50� & M & 1:50�, which corre-
spondingly changes ��c from values 1:16� & ��c & 1:38�
(note that for M values too far apart from M��,
Eq. (6.11) has no real solutions). From this we conclude
that the higher �2 order corrections for T, � � 0 to the
previous analysis are quite small, though their scale de-
pendence is apparent and can become non-negligible.
Actually, it is clear that the scale dependence is essentially
determined by the relative size of the ln�	=M� term with
respect to constant terms in the optimization Eq. (6.11),
which turns out to be moderate.4 On general grounds,
renormalization scale dependence is expected to be rather
pronounced at lowest loop orders and damped by higher
order perturbative contributions [25]. But in our framework
the three-loop expression, Eq. (6.8), is the very first per-
turbative order at which renormalization, and thus scale
dependence, occur for the effective potential, so that the
behavior is more similar to a one-loop quantity with re-
spect to renormalization scale dependence. For the natural
scale choice M � �, however, these second order correc-
tions for ��c value in Eq. (6.13) are very small, about only
1.5% of the first order value, so in other words the OPT
expansion seems to converge rather quickly.

3One may wonder if the peculiar choice of the arbitrary scale
M � �	, thus canceling the logarithmic term, would not reintro-
duce the PMS multisolution problem. But this gives no consis-
tent optimal solutions since all other �	 solutions contradict this
value of �	. This incidentally shows that Eq. (6.11) does not
always have real solutions for any values of M.

4It is interesting to note also that from Eq. (6.10) ��c�	� has a
minimum, ��c � 1:16�, at 	� 0:94�, independent of the scale
M, thus ��c cannot reach values below �1:16�: when varying
the scale M to values lower than �, the optimal solution �	 of
Eq. (6.11) decreases, so that ��c� �	� will start to increase again.
Also, the unwelcome singularity of ��c for 	 � �=2, apparent in
Eq. (6.10), is not a solution of Eq. (6.11), so this singular value is
never reached by the consistent PMS optimal solution �	.
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VII. CONCLUSIONS

In the present paper we have applied the alternative
analytical nonperturbative optimized perturbation theory
(OPT) approach, through which one can easily include
finite N effects, to a four-fermion theory with discrete
chiral symmetry represented by the massless Gross-
Neveu model in 2� 1 dimensions. We have then evaluated
the free energy, or effective potential, for the model at both
finite temperature and finite chemical potential. The evalu-
ation of the optimal value for this quantity has allowed us
to derive and study in detail other thermodynamical quan-
tities, such as the pressure, density, entropy, and energy
density.

Our main results in this paper include the analytical
derivation of expressions, going beyond the standard
large-N results, for the scalar field vacuum expectation
value, the critical temperature, and for critical chemical
potential related to chiral symmetry breaking/restoration.
We have also demonstrated the existence of a tricritical
point, not seen in the large-N approximation, and the
corresponding existence of a mixed chiral restored-broken
phase in the system for finite values of chemical potential
and temperature. Concerning the phase diagram we recall
that in a lattice simulation, Kogut and Strouthos [11] have
predicted the existence of a tricritical point in the T ��
plane that is missed by the large-N approximation.
However, within the numerical precision of their simula-
tions, those authors were unable to give its exact location.
Here, we have not only confirmed the existence of such a
point but have also demonstrated how it can be located for
any value of N. The formalism employed in this work has
allowed us to easily draw the first order transition line
together with the metastability lines. This exercise showed
that the metastable region is rather small which possibly
explains why its observation was not possible in
Refs. [11,12]. Going to the P� 1=� plane has generated
another important result for the GN3d model, namely, the
prediction of a liquid-gas phase transition, so far unknown
to exist in this model. All these results drastically change
the large-N picture of the GN3d phase diagram in which
only a ‘‘superconducting’’ phase and a ‘‘normal’’ phase
appear [4]. Although in our study the complete T and �
dependence could only be studied at the first nontrivial
order of the � expansion, we were able to estimate the
higher order �2 corrections at least at T � 0 and � � 0.
These corrections turn out to be reasonably small (about
only 1.5% for a natural choice of renormalization scale).
This also indicates that all other OPT order �2 results are
not expected to be too distant from the computed order �
results obtained for the GN3d model. So, we may argue
that all our phase transition and thermodynamical results
obtained in Secs. V and VI are likely to remain qualita-
tively unaltered by higher order corrections in this
framework.

We notice that some of our quantitative results (most
notably those displayed by Figs. 3 to 6) appear at first sight
different from the overall behavior obtained with some
Monte Carlo simulations [12] that predict a reduced size
for the CSB region, while our results display an increase of
the CSB region with respect to the large N (equivalently
mean-field) results. As discussed previously, as far as we
can compare this seems to be only an artifact of the differ-
ent reference scales chosen to express the critical quantities
(e.g., the authors of Ref. [12] express the phase diagram in
terms of the scalar field vacuum expectation value, while
we express all the relevant quantities in units of the fixed
reference scale (�)). But we note also that even for our
choice of reference scale the increase with respect the
large-N results is rather very small. This is opposite to
what is seen when the same approximation is applied to the
1� 1 dimensional GN case [13] where a large decrease of
the CSB region is observed compared to the large-N
(mean-field) results. In this respect, the OPT applied to
the 2� 1 dimensional GN model leads to results closer to
the mean-field approximation, though the character of the
CSB/CSR transition line is qualitatively very different.

As usual, within the OPT, all the large-N results are
exactly recovered from our expressions by taking the limit
N ! 1. In addition to the explicit thermodynamical analy-
sis presented here, we have also shown in detail, in
Appendices B and C, the renormalization of the effective
potential up to O��2� in the OPT. A comparison to the case
of renormalization within the 1=N expansion is also briefly
provided. In the case of the main expressions derived in
this work, all results to O��� are shown to be finite within
the dimensional regularization in the OPT. Divergences
start to appear at second order. At this order the effective
potential can be rendered completely finite just with stan-
dard counterterms. Possible extensions of the present work
are presented in Ref. [18].
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APPENDIX A: SUMMING MATSUBARA
FREQUENCIES AND RELATED FORMULAS

In this appendix we give the results for the main inte-
grals and Matsubara sums appearing along the text.
Following the general procedure for evaluating these
sums [19] and using dimensional regularization in the
MS scheme, the momentum space integrals are written as

 

Z d2p

�2��2
!

�
e�EM2

4�

�

=2 Z dd�1p

�2��d�1
;

where d � 3� 
, M is an arbitrary mass scale, and �E ’
0:5772 is the Euler-Mascheroni constant.
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For the general case of T � 0 and � � 0, we then obtain, for example, that
 

i
Z �T�
p

ln�P2 � 	2 � i
� �
j	j3

3�
�
	
�
T2fLi2��e��j	j�j�j�=T� � Li2��e��j	j�j�j�=T�g

�
T3

�
fLi3��e��j	j�j�j�=T� � Li3��e��j	j�j�j�=T�g; (A1)

 i
Z �T�
p

1

P2 � 	2 � i

� �

T
4�

�
j	j
T
� ln�1� e��j	j�j�j�=T� � ln�1� e��j	j�j�j�=T�

�
; (A2)

 i
Z �T�
p

P2
0

P2 � 	2 � i

� �i sgn���

T2

4�

�
j	j
T

ln
�

1� e�j	j�j�j�=T

1� e�j	j�j�j�=T

�
� Li2��e

�j	j�j�j�=T� � Li2��e
�j	j�j�j�=T�

�
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where sgn��� is the sign function and Li��z� is the poly-
logarithm function defined (for � > 0) as [30]

 Li ��z� �
X1
k�1

zk

k�
:

APPENDIX B: EVALUATION OF THREE-LOOP
FREE ENERGY GRAPHS AT T � 0 AND � � 0.

In this appendix we give some technical details on the
evaluation of the two complicated contributions to the
three-loop free energy. These are the third and fourth
graphs of Fig. 2 respectively, which give the expression
Eq. (6.3). There are probably different ways to perform this
integral. For convenience we choose to first integrate on the
Feynman parameter �, which can be done analytically,
with the result:
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where 2F1 is the hypergeometric function, with z � ��1�
��=���1� ���. Next we can use some well-known prop-
erties of the hypergeometric function [30], relating

2F1�. . . ; z� to 2F1�. . . ; 1� z�, and the power expansion in
z of the hypergeometric function as

 2F1�p; q; r; z� �
X
k

�p�k�q�k
�r�k

zk

k!
; (B2)

where the �p�k etc. are binomial coefficients. These ma-
nipulations allow us to factorize explicitly the � and �
integrals in the simple form

 

Z 1

0
dxxp�1� x�q �

��1� p���1� q�
��2� p� q�

; (B3)

with x � �, � with various possible values of p, q (which
in the framework of dimensional regularization is valid for
any values of p, q, since it will eventually exhibit the
location of the different poles in 
 � 0). Next it is just a
matter of systematic algebra, using for instance
MATHEMATICA [31], to perform all these simple integrals,
resumming the resulting power series to all orders, while
picking up the divergent and finite pieces we need.
Actually the divergent part occurs only in the first two
terms of the power expansion in z of the 2F1 function,
which is simple to extract analytically. In contrast, the
finite part results from contributions of all terms, which
can be extracted numerically as the corresponding series
converges quickly. Expanding all factors contained in
Eq. (B1) for 
! 0 finally yields
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where X� 1:636 69 is a constant coming from the inte-
grations. The renormalization of the bare three-loop result,
Eq. (B4), is performed in the next appendix by introducing
appropriate counterterms.

APPENDIX C: RENORMALIZATION OF THE
THREE-LOOP FREE ENERGY

Here, we give details on the renormalization procedure
used. At order �2 new counterterms, which do not posses
the form of the original tree-level Lagrangian, appear. This
clearly is a manifestation, within our OPT framework, of
perturbative nonrenormalizability. These counterterms
originate from higher momentum-dependent divergences
of some of the two-loop fermion self-energies shown in
Fig. 1, and then potentially enter as contributions to the
three-loop effective potential (or equivalently the free
energy). Since the model is renormalizable in the 1=N
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expansion, it is clear that these nonrenormalizable counter-
terms are perturbative artifacts, which can be seen indeed
to disappear in the corresponding 1=N quantities, as we
will briefly show below. But since we are not using the 1=N
expansion explicitly in our framework we have to deal to
some extent with these nonrenormalizable terms. As we
shall see below, however, the nonrenormalizable contribu-
tions to the effective potential actually vanish, such that
only standard mass, wave function, and zero point energy
counterterms are necessary to cancel the divergences
(though this feature is simply an accident of the effective
potential calculated at the second perturbative order).

At order �2 we have three two-loop contributions to the
fermionic self-energy as shown in Fig. 1. From those, only
the two displayed in Fig. 14 are divergent and will be
evaluated here in detail. First, note that by choosing the
momenta routing in an appropriate manner as indicated
in Fig. 14 one only needs to evaluate the first graph
since the closed fermionic loop contributes with �4N.
One may explicitly verify that �b�p� � �c�p� �
�1� 1=�4N���b�p�. With the LDE Feynman rules at T �
0 and � � 0 one has5
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Here all integrals are done in arbitrary dimension d � 3�

. Then, after taking the trace we have
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: (C2)

Now one can introduce one Feynman parameter (�) to
merge the two k dependent propagators. Then, one per-
forms a Wick rotation (using dimensional regularization in
the MS scheme) to carry on the integral over k. This yields
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(C3)

where 	2
� � 	2=���1� ���. Now, one can use a second

Feynman parameter (�) to merge the two final propagators,
obtaining

 

�b�p� � ��
2 4�2

N�4��3
�e�EM2�
��
� 1��2� 
�

�
Z 1

0
d�d����1� ���1=2�
=2�1� ���3=2�
=2

�
�p6 �1� �� � 	�

�	2
�;��


�1 ; (C4)

where

 	2
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2�1� ���� 	2�� 	2
��1� ��: (C5)

Note that in the above equations we have already returned
to Minkowski space. Let us now examine the type of
divergences and corresponding counterterms emerging
from these two-loop fermion self-energy expressions.
The counterterms appear in the Lagrangian density L�

ct:

 L �
ct � � k�i6@A��	�� k � B��	� � k k; (C6)

which is to be added to the original Lagrangian density,
Eq. (3.1). The perturbative order at which the required
counterterm contributions enter first can be readily found
from Eq. (4.5):
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tr ln�p6 �1� A�� � 	�1� B��;

(C7)

where, implicitly, those counterterm coefficients are of
order ����2 (since at lowest �� order, all calculations are
finite in dimensional regularization as we saw in Sec. III
and IV). These counterterms are extracted from the p6 and
	 dependent terms in Eq. (C4). For the p6 term, for in-
stance:
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5The minus sign due to the fermionic loop has already been taken into account in Eq. (C1).
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where the only pole is contained in ��
� 1�. One can then expand in 
 and perform the (finite) integrals is � and � to
obtain a counterterm as p6 A��	; p�, where

 A��	; p� � ��2 �2

�4��3
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��p2 � 25	2�: (C9)

Similarly the other counterterm can be extracted from the 	 dependent term in Eq. (C4):
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Z 1

0
d�d����1� ����1=2���
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�	2
�;��


�1 : (C10)

The same types of manipulations that lead to the pole in
Eq. (C9) above fix the other counterterm as 	B��	; p�,
where

 B��	; p� � �2 �2

�4��3
4

N

�
1�

1

4N

�
�
3

��p2 � 9	2�:

(C11)

Note in Eqs. (C9) and (C11) the extra p2 dependence
which is the manifestation of the perturbative
nonrenormalizability.

As mentioned above, all such nonrenormalizable terms
should be absent in the renormalizable 1=N expansion.
More precisely, one can check this at the next-to-leading
1=N order where the equivalent contribution to the fermion
self-energy is shown in Fig. 15 (which corresponds to an
infinite sum of perturbative one-loop graphs). We can
easily obtain the structure of the divergent terms, replacing
expression (C9) and (C11) in dimensional regularization as

 

1

N�2

1




�
p6
3
� 	

�
; (C12)

where we used expression (2.12b) of Ref. [24] for the d �
2� 1 resummed �-propagator. The expression (C12) is
consistent with the calculation of the wave function and
mass counterterm as performed in Ref. [24] with cutoff
regularization. The crucial point in the 1=N expansion is
that the resummed � propagator has the nonperturbative
jpj�1 behavior [24] at large jpj, thus damping the degree of
divergences with respect to usual perturbative graphs (such
as those in Fig. 14) and thus the absence of momentum-
dependent divergences in Eq. (C12). Nevertheless, since
our construction relies on standard perturbation, in princi-

ple we would have to introduce corresponding new coun-
terterms, with higher derivatives, into the Lagrangian at
this perturbative order. But actually these p-dependent
pieces’ contributions are canceled in the free energy
graphs, as we will see next, so that it is not needed to
deal with these extra nonrenormalizable terms. Inserting
the above two-loop counterterms into the (one-loop) free
energy graph, for instance for the A counterterm in
Eq. (C9), yields

 

VAeff

N
� �i

Z ddp

�2��d
tr
p6 � 	

p2 � 	2 A
��	�; (C13)

which gives, after taking the trace and going to Euclidean
momenta,

 

VAeff

N
� �2 8�2	2

5
�4��2
4

N
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1�

1

4N

�Z ddpE
�2��d

p2
E

p2
E � 	

2 ;

(C14)

where we simply used for the integrand p2=�p2 � 	2� �
1� 	2=�p2 � 	2�. Note also that the integral

R
dnpp2 is

zero in dimensional regularization, so that only a mass-
dependent divergence remained in Eq. (C14) and we finally
obtain

 

VAeff

N
� �2	5 8�2

5�4��3
4

N

�
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1

4N
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1



� ln

�
	
M

�
� 1� ln2

�
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(C15)

Similarly, for

 

VBeff

N
� i

Z ddp

�2��d
tr
p6 � 	

p2 � 	2 B
��	�; (C16)

one obtains6

FIG. 15. Next-to-leading order in the 1=N expansion graphs
contributing to the fermionic self-energy.

6Note that the final mass and wave function counterterms are
proportional to �2	2, which simply reflects that the coupling �
of the 3 dimensional GN model has mass dimension �1, i.e., the
counterterms coefficients are actually dimensionless.
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(C17)

Next, the contributions in Eqs. (C15) and (C17) should
be added in the MS scheme to the bare three-loop free
energy expression (B4). This leaves a remaining divergent
contribution:

 

Vc�d�A�Beff

N
� �2	5 �2

15�4�3�

4

N

�
1�

1

4N

�
1



; (C18)

which is finally renormalized by an additional vacuum
(free energy) counterterm. This additional counterterm is

expected, since the free energy is a composite operator, and
is needed similarly in the (renormalizable) d � 1� 1 GN
model, as shown in a previous reference [13]. Note that,
although the perturbative nonrenormalizability manifests
itself at order �2 by the presence of the higher derivative
divergences in Eqs. (C9) and (C11), corresponding coun-
terterms are not needed for the quantities (and perturbative
order) we restrict ourselves to. Thus the arbitrariness in the
final renormalized free energy is not more than the usual
renormalization scale introduced from dimensional regu-
larization. The complete renormalized three-loop contri-
bution to the free energy is obtained, in the MS scheme, by
adding all the finite contributions as given in Eqs. (6.6),
(6.7), (C15), and (C17), respectively, leads to the final
expression, Eq. (6.8).
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