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We study Casimir forces on the partition in a closed box (piston) with perfect metallic boundary
conditions. Related closed geometries have generated interest as candidates for a repulsive force. By using
an optical path expansion we solve exactly the case of a piston with a rectangular cross section, and find
that the force always attracts the partition to the nearest base. For arbitrary cross sections, we can use an
expansion for the density of states to compute the force in the limit of small height to width ratios. The
corrections to the force between parallel plates are found to have interesting dependence on the shape of
the cross section. Finally, for temperatures in the range of experimental interest we compute finite
temperature corrections to the force (again assuming perfect boundaries).
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I. INTRODUCTION

A striking macroscopic manifestation of quantum elec-
trodynamics is the attraction of neutral metals. In 1948
Casimir predicted that such a force results from the modi-
fication of the ground state energy of the photon field due
to the presence of conducting boundary conditions [1]. The
energy spectrum is modified in a fashion that depends on
the separation between the plates, a. While the zero-point
energy is itself infinite, its variation with a gives rise to a
finite force. High precision measurements, following the
pioneering work of Lamoreaux in 1997 [2], have renewed
interest in this subject. A review of experimental attempts
to measure the force prior to 1997, and the many improve-
ments since then, can be found in Ref. [3]. As one example,
we note experiments by Mohideen et al. [4], using an
atomic force microscope, which have confirmed
Casimir’s prediction from 100 nm to several �m, to a
few percent accuracy. Forces at these scales are relevant
to operation of micro-electromechanical systems (MEMS),
such as the actuator constructed by Chan et al. [5] to
control the frequency of oscillation of a nanodevice.
They also appear as an undesirable background in preci-
sion experiments such as those that test gravity at the
submillimeter scale [6].

An undesirable aspect of the Casimir attraction is that it
can cause the collapse of a device, a phenomenon known as
‘‘stiction’’ [7]. This has motivated the search for circum-
stances where the attractive force can be reduced, or even
made repulsive [8]. The Casimir force, of course, depends
sensitively on shape, as evidenced from comparison of
known geometries from parallel plates, to the sphere op-
posite a plane [9], the cylinder opposite a plane [10],
eccentric cylinders [11], the hyperboloid opposite a plane
[12], a grating [13], a corrugated plane [14]. The possibil-
ity of a repulsive Casimir force between perfect metals can
be traced to a computation of energy of a spherical shell by

Boyer [15], who found that the finite part of this energy is
opposite in sign to that for parallel plates. This term can be
regarded as a positive pressure favoring an increased radius
for the sphere, if it were the only consequence of changing
the radius. The same sign is obtained for a square in 2
dimensions and a cube in 3 dimensions [16,17]. For a
parallelepiped with a square base of width b and height
a, the finite part of the Casimir energy is positive for aspect
ratios of 0:408< a=b < 3:48. This would again imply a
repulsive force in this regime if there were no other energy
contributions accompanying deformations at a fixed aspect
ratio. Of course, it is impossible to change the size of a
material sphere (or cube) without changing its surface area,
and other contributions to its cohesive energy. For ex-
ample, a spherical shell cut into two equal hemispheres
which are then separated has superficial resemblance to the
Boyer calculation. However the cut changes the geometry,
and it can in fact be shown [18] that the two hemispheres
attract.

The piston geometry, first considered by Cavalcanti [19]
(in 2 dimensions) and further considered in Refs. [20,21]
(in 3 dimensions), is closely related to the parallelepiped
discussed above.1 As depicted in Fig. 1, we examine a
piston of height h, with a movable partition at a distance a
from the lower base. The simplest case is that of a rectan-
gular base, but this can be generalized to arbitrary cross
sections. This setup is experimentally realizable, and does
not require any deformations of the materials as the parti-
tion is moved. The force resulting from rigid displacements
of this piece is perfectly well defined, and free from various
ambiguities due to cutoffs and divergences that will be
discussed later. In particular, we indeed find the finite
part of the energy can be ‘‘repulsive’’ if only one of the
boxes adjoining the partition is considered, while if both

1The piston geometry was earlier mentioned in Ref. [22]
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compartments are included, the net force on the partition is
attractive (in the sense that it is pulled to the closest base).

This paper expands on a previous brief publication of
our results [20], and is organized as follows. Section II
introduces the technical tools preliminary to the calcula-
tions, and includes sections on cutoffs and divergences, the
optical path approach, and on the decomposition of the
electromagnetic (EM) field into two scalar fields (trans-
verse magnetic and transverse electric) with Dirichlet and
Neumann boundary conditions (respectively). Details of
the computation for pistons of rectangular cross section are
presented in Section III, and the origin of the cancellations
leading to a net attractive force on the partition is discussed
in some detail. Interestingly, it is possible to provide results
that are asymptotically exact in the limit of small separa-
tions for cross sections of arbitrary shape. As discussed in
Section IV, there is an interesting dependence on the shape
in this limit, related to the resolution with which the cross
section is viewed. Finally, in Section V we present new
results pertaining to corrections to the Casimir force at
finite temperatures in such closed geometries (for perfect
metals). We conclude with a brief summary (Section VI),
and an Appendix.

II. PRELIMINARIES

Before embarking on the calculation of the force on the
partition, we introduce some relevant concepts in this
section. Section II A discusses the general structure of the
divergences appearing in the calculation of zero-point en-
ergies, and indirectly justifies our focus on the piston
geometry. The optical path approach, which is our compu-
tational method of choice, is reviewed in Sec. II B. Another
important aspect of the piston geometry is that it enables

the decomposition of the EM field into Dirichlet and
Neumann scalar fields, as presented in Sec. II C.

A. Cutoff dependence

Let us consider an empty cavity made of perfectly con-
ducting material. The Casimir energy of the EM field is a
sum over the zero-point energies of all modes compared to
the energies in the absence of the material, EC��� �
E��� � E0��� �

1
2

P�
@!m �

1
2

P�
@!0

m, and is divergent
if the upper limit � is taken to infinity. In a physical
realization, the upper cutoff is roughly the plasma fre-
quency of the metal, as it separates the modes that are
reflected and those that are transmitted and are hence
unaffected by the presence of the metallic boundaries.
Based on general results for the density of states in a cavity
[23], we knowE��� has an asymptotic form, with a leading
term proportional to the volume V of the cavity and the
fourth power of � and subleading terms proportional to its
surface area S, a length L which is related to the average
curvature of the walls (in a cavity with edges but otherwise
flat, like a parallelepiped, it is the total length of the edges)
proportional to �3 and �2 respectively, and so forth. For
example in the case of a scalar field with Dirichlet bound-
ary conditions, we find

 E��� �
3

2�2 V�4 �
1

8�
S�3 �

1

32�
L�2 � . . .� ~E; (1)

where ‘‘. . .’’ denote lower order cutoff dependences,2 and
~E is the important finite part in the limit of �! 1. The
EM field also enjoys a similar expansion, although some
terms may be absent.

Although the volume term is canceled by an identical
term in E0, this is not obviously the case for the other
divergent terms (surface area, perimeter, and so on). The
energy of an isolated cavity is therefore dependent on the
physical properties of the metal. A determination of the
stresses in a single closed cavity requires detailed consid-
erations of the metal, and its extrapolation to the perfectly
conducting limit will be problematic [24]. It is tempting to
ignore these cutoff-dependent terms, and to remove them
in analogy to the renormalization of ultraviolet divergences
in quantum field theories. This is unjustified as there are no
boundary counter-terms to cancel them; see Ref. [25]. If
however, we are interested in the force between rigid
bodies, then any surface, perimeter, etc. terms are indepen-
dent of the distance between them, and a well-defined
(finite) force exists in the perfect conductor limit.

While the piston geometry considered in this paper is
closely related to the parallelepiped cavities considered in
the literature, it does not suffer from problems associated
with changes in shape. The overall volume, surface, and

FIG. 1 (color online). The 3-dimensional piston of size h�
b� c. A partition at height a separates it into Region I and
Region II. A selection of representative paths are given in (a)–
(i). Several of these paths [namely, (a,b,c,d,h,i)] have start and
end points that actually coincide, but we have slightly separated
them for clarity.

2For general geometries, there are also linear and logarithmic
terms in �, but for the class of geometries examined in this paper
(pistons) there are no further terms in �.
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perimeter contributions are all unchanged as the height of
the partition is varied, and the force acting on it is finite and
well defined. The same observations led Cavalcanti [19] to
consider a rectangular (2-dimensional) piston. He found
that the force on the partition, though weakened relative to
parallel lines, is attractive.

B. Optical approach

The Casimir energy can be expressed as a sum over
contributions of optical paths [26], and much intuition
into the problem is gained by classifying the corresponding
paths. For generic geometries this approach yields only an
approximation to the exact result that ignores diffraction.
Fortunately, it is exact for rectilinear geometries if reflec-
tions from edges and corners are properly included.

Consider a free scalar field in spatial domain D obeying
some prescribed boundary conditions (Dirichlet or
Neumann) on the boundary B � @D. The Casimir energy
is defined as the sum over the zero-point energies, E �P 1

2 @!, where! are the eigenfrequencies in D (we refrain
from subtracting E0 for the moment). This expression
needs to be regularized, as explained in the previous sec-
tion, by some cutoff �. We choose to implement this by a
smoothing function S��k� � e�k=�, and thus examine
E��� �

P
k

1
2 @!�k�e

�k=�.
The Casimir energy can be expressed in terms of the

spectral Green’s function G�x;x0; k� which satisfies the
Helmholtz equation in D with a point source,

 �r02 � k2�G�x0;x; k� � ��3�x0 � x�; (2)

and subject to the same boundary conditions on B as the
field. The Casimir energy of a scalar field is then given by
the integral over space and wave number of the imaginary
part of G, in the coincidence limit x0 ! x [25] (@ � c �
1), as

 E��� �
1

�
=
Z 1

0
dkk2e�k=�

Z
D
dxG�x;x; k�: (3)

The knowledge of the Helmholtz Green’s function at co-
incident points allows us to calculate the Casimir energy of
the configuration.

It is convenient to introduce a fictitious time t and a
corresponding space-time propagator, G�x0;x; t�, defined
as the Fourier transform ofG�x0;x; k�. The propagatorG�t�
can be expressed as the functional integral of a free quan-
tum particle of mass m � 1=2 with appropriate phases
associated with paths that reflect off the boundaries.

In the optical approach, the path integral is approxi-
mated as a sum over classical paths of exp�iSpr�x

0;x; t��,
weighted by the Van Vleck determinant Dr�x0;x; t� [27].
Here Spr�x

0;x; t� is the classical action of a path pr from x
to x0 in time t, composed of straight segments and under-
going r reflections at the walls. For rectilinear geometries,
like the parallelepiped that we will discuss, this is exact and

effectively generalizes the method of images to the
Helmholtz equation.

For definiteness consider a scalar field satisfying either
Dirichlet or Neumann boundary conditions, introducing a
parameter �, which is �1 for the Dirichlet and �1 for the
Neumann case. The Green’s function is then given by

 G�x0;x; k� �
X
pr

��pr; ��
4�lpr�x

0;x�
eiklpr �x

0;x�; (4)

where lpr is the length of the path from x to x0 along pr.
There is a phase factor ��pr; �� � �ns�nc with ns and nc
the number of surface and corner reflections, respectively.
Note that reflections from an edge do not contribute to the
phase.

Since paths without reflections or with only one reflec-
tion can have zero length, they require a frequency cutoff
�, implemented by the smoothing function S��k� �
e�k=�. Then the x and k integrals can be exchanged, the
k integral performed, and the Casimir energy written as

 E���� �
1

2�2

X
pr

��pr; ��
Z
D
dx

�4�3� �lpr�x���
2�

�1� �lpr�x���
2�3

:

(5)

The limit �! 1 can be taken in each term of the sum,
unless a path has zero length, which can occur only for
cases with r � 0 or r � 1. After isolating these two con-
tributions, we set

 E���� � E0��� � E1��; �� � ~E�: (6)

The zero reflection path has exactly zero length, and
contributes the energy E0��� �

3
2�2 V�4, where V is the

volume of the space. This is a constant and therefore does
not contribute to the Casimir force. The one reflection
paths [energy E1��; ��] generate cutoff-dependent terms,
but generically, also cutoff-independent terms. We will
show however that such one reflection terms do not con-
tribute to the force when specialized to the piston
geometry.

For paths undergoing multiple reflections r > 1, the
length lpr is always finite, and we can safely send �!
1 in Eq. (5), resulting in the simpler and cutoff-
independent contribution

 

~E� � �
1

2�2

X
pr>1

��pr; ��
Z
D
dx

1

lpr�x�
4 : (7)

This is a finite contribution to the energy in the limit �!
1. The derivative of ~E� gives the finite force between the
rigid bodies.

C. Electromagnetic field modes

In the previous section we defined the optical approach
for a scalar field. Although a similar definition can be made
for the electromagnetic field in an arbitrary geometry, the
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Helmholtz equation becomes matrix-valued, complicating
the treatment even in a semiclassical approximation.
However, in the piston geometry, with arbitrary cross
section, the EM field can be separated into transverse
magnetic (TM) and transverse electric (TE) modes that
satisfy Dirichlet and Neumann boundary conditions.

At the surface of an ideal conductor, the E and B fields
satisfy the boundary conditions E� n � 0 and B 	 n � 0,
where n is the normal vector at the surface. The normal
modes of the piston consist of a TM set, which satisfy

 Ex �  �y; z� cos�n�x=a�; n � 0; 1; 2; 	 	 	 ; (8)

where  vanishes on the boundaries of the domain, and
therefore satisfies Dirichlet conditions on the 2-
dimensional boundary, and a TE set, with

 Bx � ��y; z� sin�n�x=a�; n � 1; 2; 3; 	 	 	 ; (9)

where � satisfies Neumann boundary conditions. The
other components of E and B can be computed from
Maxwell’s equations, and are easily shown to obey con-
ducting boundary conditions. There is, however, one im-
portant exception: the TE mode built from the trivial
Neumann solution, � � constant, does not satisfy con-
ducting boundary conditions unless the constant (and all
components of E and B) are zero. We must ensure that the
corresponding set of modes in Eq. (9) are not included in
the Casimir summation.

Eqs. (8) and (9) enable us to list the spectrum of the
electromagnetic field. Denote the spectra of the TM modes
as the set ��NI 
DS� � R. Here NI indicates that the
component on the interval satisfies Neumann boundary
conditions, and DS indicates that the component on the
cross section satisfies Dirichlet boundary conditions.
Similarly, we denote the spectra of the TE modes as
��DI 
 NS� in a similar notation. However, as explained
above, we must remove ��DI�, which are the frequencies
with � � constant. Hence, the electromagnetic spectra is
the set

 �C � ��NI 
DS� [��DI 
 NS� n��DI�: (10)

Note that ��DI� � f�=a; 2�=a; . . .g is the set of eigenfre-
quencies in 1 dimension. The Dirichlet and Neumann
spectra on the interval are identical except for the n � 0
mode [see Eqs. (8) and (9)], but the energy of this mode is
independent of a and does not contribute to the Casimir
force. So we may replace NI ! DI in the TM spectrum and
DI ! NI in the TE spectrum, with the result

 �C � ��DI 
DS� [��NI 
 NS� n��DI�; (11)

where the notation � indicates equality up to terms inde-
pendent of a. Thus, the EM spectrum is the union of
Dirichlet and Neumann spectra in the 3-dimensional do-
main, D, except that the Dirichlet spectrum on the interval
must be taken out.

III. RECTANGULAR PISTON

A. Derivation

The piston geometry is depicted in Fig. 1. The domain
D consists of the whole parallelepiped, the union of
Regions I and II. Only the partition, located a distance a
from the base and h� a from the top, is free to move. We
study the scalar field for both Dirichlet and Neumann
boundary conditions and the electromagnetic field.
According to Eq. (11), the EM Casimir energy arises
from the sum of the Dirichlet and Neumann energies in 3
dimensions minus the Dirichlet Casimir energy in 1 di-
mension, E � h�2=2�� ��2�=�4�a� � ��2�=�4��h�
a�� (a standard result). In total, then, the EM Casimir force
on the partition is

 FC � FD � FN �
��2�

4�a2 �
��2�

4��h� a�2
; (12)

where the final term vanishes if we take h!1.
Let us initially focus on Region I, the parallelepiped of

size a� b� c, below the partition. The optical energy
receives contributions from the sum over all closed paths
pr in domain DI: Each path is composed of straight seg-
ments with equal angles of incidence and reflection when
bouncing off the walls. There are four distinct classes of
paths: Eper, from periodic orbits reflecting off faces [e.g.
paths (c), (d), (i)]; Eaper, from aperiodic tours off faces [e.g.
paths (a), (e), (f)]; Eedge, from closed paths involving
reflections off edges [e.g. paths (b), (g)]; and Ecnr, from
closed paths with reflections off corners [e.g. path (h)]. To
each path pr, we associate a vector lpr pointed along the
initial heading of the path, and of length jlj � lprpr.

First we consider the periodic orbits, which are paths
that involve an even number of reflections off faces,
with r � f0; 2; 4; . . .g [e.g. paths (c), (d), (i)]. As the central
point is varied throughout DI, the length lpr of each
periodic path remains fixed, making the integration
trivial, i.e.

R
DI
d3x! abc � V. We index the paths by

integers n, m, l, so l � �2na; 2mb; 2lc�pr, with lnml ������������������������������������������������������
�2na�2 � �2mb�2 � �2lc�2

p
. The n � m � l � 0 term

gives E0 �
3

2�2 V�4 [see Eq. (5) with lpr � 0], while all
others are evaluated using Eq. (7), giving:

 EIper��� �
3

2�2 V�4 �
abc

32�2 Z3�a; b; c; 4� (13)

 

�
3

2�2 V�4 �
��4�

16�2

A

a3 � ��b; c�

�O�e�2�g=a�; as a! 0; (14)

where Zd�a1; . . . ; ad; s� is the Epstein zeta function defined
in the Appendix [Eq. (A1)], and ��b; c� does not depend on
a and hence does not contribute to the force on the piston.
In Eq. (14) g  min�b; c�, and A � bc is the area of the
base. The leading cutoff-independent piece as a! 0 is the

HERTZBERG, JAFFE, KARDAR, AND SCARDICCHIO PHYSICAL REVIEW D 76, 045016 (2007)

045016-4



Casimir energy for parallel plates, coming from orbits that
reflect off both the base and partition, see paths (c), (d), etc.
in Fig. 1. To extract this behavior we have used

 Zd�a1; . . . ; ad; s� �
2��s�
as1
�O

�
1

a1

�
; (15)

in the regime a1 � a2; . . . ; ad (see Appendix).
We next consider the contribution of the aperiodic orbits

that involve an odd number of reflections off faces, with
r � f1; 3; 5; . . .g. Examples in the figure include paths (a),
(e), and (f). For each such path, when we vary the point of
integration over DI one of the Cartesian components of the
length vector lpr changes and the other two components
are fixed. For example, only the x component varies for
those paths that undergo an odd number of reflections off
walls parallel to the yz-plane and an even number of
reflections off walls parallel to both the xy- and
xz-planes. The x-component lpr increases by 2a each
time that the number of reflections off the yz-planes in-
creases, so that l � �2a�n� 1� � 2��x�; 2bm; 2cl�pr,
where ��x� � x or ��x� � a� x depending on the
direction of the path. The summation over n and the
x-integral

R
a
0 dx together combine to form an integral

over x from �1 to �1. So we introduce lpr�x� ���������������������������������������������������
�2x�2 � �2bm�2 � �2cl�2

p
in terms of which the integra-

tion over the fixed components y and z is trivial,
R
dydz �

bc, and the x-integration is elementary. The above example
singled out the x-component. To include all such paths, the
analysis must be repeated for the other two components
under the cyclic interchange of a, b, and c. Employing
Eq. (5) for fn;mg � f0; 0g and Eq. (7) for fn;mg � f0; 0g,
we obtain
 

EIaper��� �
�

8�
S�3 �

�
64�
�abZ2�a; b; 3� � acZ2�a; c; 3�

� bcZ2�b; c; 3�� (16)

 

�
�

8�
S�3 � �

��3�
64�

P

a2 ���b; c�

�O�e�2�g=a�; as a! 0; (17)

where � does not depend on a, S � 2�ab� ac� bc� �
aP� 2A is the total surface area, and P � 2b� 2c is the
perimeter of the base. The leading cutoff-independent
piece as a! 0 comes from paths that reflect once off a
side wall and off both the base and partition; see paths (e),
(f), etc. in Fig. 1.

Next we calculate the contribution of even reflection
paths which intersect an edge of Region I. Examples
include (b) and (g) in Fig. 1. In this case it is only the
component of lpr parallel to the edge that remains fixed,
while the other 2 components vary as the point of origin
varies over DI. For example, suppose the reflecting edge is
parallel to the z-axis. Then the z-integration is trivial,R
c
0 dz � c, and the path vector is a function of x and y

given by l � �2a�n� 1� � 2��x�; 2b�m� 1� �
2 �y�; 2cl�pr, where ��x� � x or ��x� � a� x,  �y� � y
or  �y� � b� y, depending on the quadrant that lpr lies
in: up or down in x, right or left in y, respectively. In this
case we can replace both the summations over n andm and
the double integral over x and y by an integral over the
whole xy-plane. This integral is most easily performed in
polar coordinates, using a path length that may be written

as lpr�r� �
�������������������������������
�2an�2 � �2r�2

p
. The contribution to the

Casimir energy is found to be

 EIedge��� �
1

32�
L�2 �

��2�
16�

�
1

a
�

1

b
�

1

c

�
; (18)

where L � 4�a� b� c� � 4a� 2P is the total perimeter
length. The cutoff-independent piece �1=a comes from
paths that reflect once off a side edge and off both the base
and partition; see path (g), etc. in Fig. 1.

Finally, we consider the paths which reflect off a corner
(Ecnr). In this case, as the integration variable moves
throughout its domain, all components of the distance
vector lpr vary. Hence, we can incorporate all such paths
by extending our integral over all space in x, y, and z. This
leaves no dependence on the geometry of the parallelepi-
ped (i.e., it is independent of a, b, and c), and only con-
tributes a constant that is of no interest, which we ignore.

Adding together all these contributions, we obtain the
Casimir energy of a scalar field in Region I as

 EI���� �
3

2�2 V�4 �
�

8�
S�3 �

1

32�
L�2 � ~EI�; (19)

where ~EI� gives the cutoff-independent piece, from
Eqs. (13), (16), and (18). We note that the cutoff-dependent
terms agree with the leading terms obtained by integrating
Balian and Bloch’s asymptotic expansion of the density of
states [23].

We obtain the Casimir energy for the entire piston by
adding to Eq. (19) the analogous expression for Region II
obtained by the replacements: a! h� a, V ! hA, S!
hP� 4A, and L! 4h� 4P. It is easy to see that after
including Region II the sum of all cutoff-dependent terms
is independent of partition height a. Therefore the force on
the partition is well defined and finite in the limit �! 1.
Also, of course, the contribution to the Casimir energy
from the region outside the piston is independent of a
and can be ignored entirely. The force on the partition is
given by the partial derivative with respect to a of the
cutoff-independent terms as

 F� � �
@
@a
� ~E��a; b; c� � ~E��h� a; b; c��; (20)

where we have defined ~EI� � ~E��a; b; c�.
We focus on the h! 1 limit in which the expression for

the contribution from Region II simplifies. Consider the
periodic, aperiodic, and edge paths whose cutoff-
independent contribution to the energy is given in
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Eqs. (13), (16), and (18). Replacing a! h� a, taking
h! 1, and using Eq. (A3) of the appendix in these
equations gives

 

~E II
per !�

h� a

32�2A
Z2�b=c; c=b; 4�;

~EIIaper ! ��
h� a
32�

�
1

b2 �
1

c2

�
��3�;

~EIIedge ! 0;

(21)

where we have not reported terms independent of a, since
they do not affect the force. Also, we reexpress the Region
I energy ~E��a; b; c� in a fashion that is useful for a� b, c,
using Eq. (A2) of the appendix. The net force on the
partition due to quantum fluctuations of the scalar field is
then
 

F� � �
3��4�

16�2

A

a4 � �
��3�
32�

P

a3 �
��2�

16�a2 �
J��b=c�

32�2A

� �
�

2a3

X1
m;n�1

n2�K0�2�mnb=a�b� �b$ c��

�
�2

32

A

a4

X0

m;n

coth�fmn�b=a; c=a��

fmn�b=a; c=a�sinh2�fmn�b=a; c=a��
;

(22)

where the primed summation is over fm; ng 2 Z2 n f0; 0g
and K0 is the zeroth order modified Bessel function of the
second kind. Here we have defined J��x� 
Z2�x1=2; x�1=2; 4� � ���x� x�1���3� and fmn�x; y�  ������������������������������
�mx�2 � �ny�2

p
. The first four terms of Eq. (22) dominate

for a� b, c, while the following terms are exponentially
small in this regime. The first term arises from periodic
orbits reflecting off walls [see Eq. (14)], the second term
from aperiodic tours bouncing off walls [see Eq. (17)], the
third term from reflections off edges [see Eq. (18)], the
fourth term from Region II paths [see Eq. (21)]. Note that
the infinite series, involving exponentially small terms, is
convergent for any a, b, c.

The electromagnetic case is closely related to the scalar
Dirichlet and Neumann cases, which we discussed in detail
in Section II C. According to Eq. (12), the EM Casimir
energy in Region I is related to the Dirichlet energy ED and
the Neumann energy EN by

 EIC��� � EID��� � E
I
N��� �

X
d�a;b;c

E1�d;��; (23)

where E1�d;�� � d�2=2�� ��2�=�4�d� is the energy of
a scalar field in 1 dimension obeying Dirichlet boundary
conditions in a region of length d. The contribution from
Region II follows from replacing a! h� a. Combining
previous results, the electromagnetic Casimir force is
found to be

 FC � �
3��4�

8�2

A

a4 �
��2�

8�a2 �
JC�b=c�

32�2A
�
�2

16

�
A

a4

X0

m;n

coth�fmn�b=a; c=a��

fmn�b=a; c=a�sinh2�fmn�b=a; c=a��
;

(24)

where JC�x�  J�1�x� � J�1�x� � 2Z2�x
1=2; x�1=2; 4�.

B. Discussion

Here we address the implications of Eqs. (22) and (24)
for the force on the partition in more detail. To begin, we
discuss the important issue of attraction versus repulsion.
We are interested in comparing the force on the partition
(F�, where � � D, N, or C for Dirichlet, Neumann, or EM
boundary conditions, respectively) to the force reported in
the literature for a single cavity, which we denote F�;box

[17]. The latter is obtained by the following prescription:
calculate the energy in a single rectilinear cavity, drop the
cutoff-dependent (‘‘divergent’’) terms, ignore contribu-
tions from the region exterior to the cavity, and differ-
entiate with respect to a to obtain a force. We emphasize
that there is no justification for dropping the cutoff-
dependent terms, so although we refer to this result, for
convenience, as Fbox, it does not apply to the physical case
of a rectilinear box.

For the piston geometry, we note that the sole contribu-
tion from Region II is the a-independent term denoted by
J. In fact this is the only term that distinguishes F from
Fbox, i.e.,

 F� � F�;box � J��b=c�=�32�2A�: (25)

Naively, the difference by a constant may not seem im-
portant. Indeed it is not too important for small values of
the ratio a=�b; c�. However it is very important for
a * �b; c�. In Fig. 2 we plot both these forces for a square
cross section (b � c) as a function of a=b. (The plots
include scalar as well as EM cases.) Note that in all cases
F ! 0, while Fbox ! J�1�=�32�2A� (a constant) as a=b!
1. For this geometry JD�1� � �1:5259, JN�1� � 13:579,
and JC�1� � 12:053, so J is negative for Dirichlet and
positive for both Neumann and EM. We see that F is
always attractive, while Fbox can change sign. It is always
attractive for Dirichlet, but becomes repulsive for
Neumann when a=b > 1:745 and for EM when a=b >
0:785. This is the consequence of ignoring Region II and
the cutoff dependence. Indeed, it is easy to show that the
piston force is attractive for any choice of a, b, c, h. A final
comment is that for h finite and a � h=2, the partition sits
at an unstable equilibrium position. This comment was
made in Ref. [28], although the above detailed results
were not derived there.

With the explicit form for F, we can more closely
compare the piston with Casimir’s original parallel plate
geometry. For better comparison in Figs. 3 and 4, we have

HERTZBERG, JAFFE, KARDAR, AND SCARDICCHIO PHYSICAL REVIEW D 76, 045016 (2007)

045016-6



plotted the forces for the scalar and EM fields, after divid-
ing by the parallel plates results, F�D;N�k �
�3��4�A=�16�2a4� or FCk � �3��4�A=�8�2a4�. First,
note that for the EM case not only does FC ! 0 as a=b!
1 but it does so rather quickly. Since FCk vanishes as 1=a4,
it is clear from Fig. 4 that FC vanishes even more rapidly.
In fact it vanishes exponentially fast, as e�2�a=b for a� b.
We can understand this as follows: In this limit the most
important paths are those that reflect off the top and bottom
plates once, and therefore travel a distance 2a. The trans-

verse wave number k � �=b due to the finite cross section
acts as an effective mass for the system, and damps the
contribution of these paths exponentially. In fact for any
rectangular cross section we find

 FC � �
�
2

�
1��������
ab3
p e�2�a=b �

1��������
ac3
p e�2�a=c

�
; as a! 1:

(26)

Experimentally, values of a=b� 1 are not yet realizable.
Instead, typical experimental studies of Casimir forces

FIG. 3 (color online). The force F on a square partition (b � c) due to quantum fluctuations of a scalar field as a function of a=b,
normalized to the parallel plates force Fk. Left figure is Dirichlet; solid middle line � FD (piston), dashed line � FD;box (box),
solid upper line � f1=a4; 1=a3; 1=a2g terms, solid lower line � f1=a4; 1=a3; 1=a2; 1g terms. Right figure is Neumann;
solid middle line � FN (piston), dashed line � FN;box (box), solid lower line � f1=a4; 1=a3; 1=a2g terms, solid upper line �
f1=a4; 1=a3; 1=a2; 1g terms.

FIG. 4 (color online). The force F on a square partition (b �
c) due to quantum fluctuations of the EM field as a function of
a=b, normalized to the parallel plates result Fk.
Solid middle line � FC (piston), dashed line � FC;box (box),
solid lower line � f1=a4; 1=a2g terms, solid upper line �
f1=a4; 1=a2; 1g terms.

FIG. 2 (color online). The force F on a square piston (b � c)
due to quantum fluctuations of a field subject to Dirichlet,
Neumann, or conducting boundary conditions, as a function of
a=b, rescaled as F0  16�2AF=�3��4�� (F0  8�2AF=�3��4��)
for scalar (EM) fields. The solid lines are for the piston,
solid middle line � FC, solid upper line � FD, and
solid lower line � FN , while their dashed counterparts are for
the box.
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have transverse dimensions that are roughly 100 times the
separation between the ‘‘plates.’’ This means that the lead-
ing order corrections to FCk are more likely to be detected
experimentally. In Figs. 3 and 4 we show the result of
including successive corrections to Fk for scalar and EM
cases, respectively; we plot the curve which includes
f1=a4; 1=a3; 1=a2g terms and another curve that includes
f1=a4; 1=a3; 1=a2; 1g terms. In the EM case we note that the
1=a3 term that appears in the expansion for Dirichlet and
Neumann boundary conditions is canceled. In the next
section, we will demonstrate that this is a general phe-
nomenon for any cross section (see ahead to Eq. (37)).
Hence the first correction to the EM result scales as 1=a2,
which is O�a2=A� compared to FCk. We see that this
correction is quite accurate up to a=b� 0:3. We suspect
this regime of accuracy to be roughly valid for any cross
section.

IV. GENERAL CROSS SECTIONS

The piston for arbitrary cross section cannot be solved
exactly, but we can obtain much useful information from
an asymptotic expansion for small separation a. The gen-
eralized piston maintains symmetry along the vertical axis,
and its geometry is the product of I 
 S of the interval I �
�0; a� and some 2-dimensional cross section S � R2. Let
us denote by E � k2 the eigenvalues of the Laplacian on
the piston base S and the interval I, separately, with
appropriate boundary conditions

 � �S;I S;I � E S;I: (27)

The corresponding densities of states are denoted by �I and
�S, respectively. Then the density of states (per unit ‘‘en-
ergy,’’ E) of the problem in the 3-dimensional region I 
 S
is ��E� and can be written as the convolution

 ��E� �
Z 1

0
dE0�S�E � E0��I�E

0�: (28)

The 2-dimensional density �S is not known in general,
since the wave equation cannot be solved in full generality
in an arbitrary domain S. However, for small height to
width ratios, the smallness of a translates to high energies
E, and we will see that the asymptotic behavior of �S is
sufficient for extracting an asymptotic expansion for the
force in powers of 1=a.

The number of eigenstates with energy less than E in S
has the asymptotic expansion at large E [29],

 NS�E� �

�
A

4�
E � �

P
4�

���
E
p
� 	� rN�E�

�
��E�: (29)

Here, 	 is related to the shape of the domain S through

 	 �
X
i

1

24

�
�

i
�

i
�

�
�
X
j

1

12�

Z
�j
���j�d�j; (30)

where 
i is the interior angle of each sharp corner and

���j� is the curvature of each smooth section. It is easy to
check that 	 � 1=4 for a rectangle and 	 � 1=6 for any
smooth shape (for example a circle). Note that we have
included the step function ��E� in the expression for
NS�E�, ensuring that only E > 0 contributes. Here rN�E�
is a function which designates lower order terms (remain-
der) in an E ! 1 asymptotic expansion. For any polygonal
shape rN is exponentially small, rN�E� � O�e�cE� (c > 0
is a constant) [30]. However, we are aware of only a much
weaker estimate for smooth shapes, as rN�E� � O�1=

���
E
p
�

[29]. The derivative of NS�E� is the density of states3

 �S�E� �

�
A

4�
� �

P
8�

1���
E
p

�
��E� � 	��E� � r��E�; (31)

where we have used �0�E� � ��E�, and E��E� ����
E
p
��E� � 0 for all E.

The other function in the convolution, the 1-dimensional
density of states, is known exactly: it is simply a sum over
delta functions, which we rewrite in terms of its Poisson
summation

 �I�E� �
X1
n�1

�
�
E �

n2�2

a2

�
(32)

 �
a

2�
��E����

E
p � 2

X1
m�1

Z 1
0
dx cos�2�mx��

�
E �

x2�2

a2

�
:

(33)

The first term in Eq. (33) is the smooth contribution to the
density of states, and the second is the oscillatory compo-
nent. The leading contributions (as a! 0) to the 3-
dimensional density of states come from convolving the
smooth part of �S with �I, giving
 

��E� � a
�

1

4�2 A
���
E
p
�

�
16�

P�
1

2�
	���
E
p � r1�E�

�

�
X1
m�1

�
A

4�2m
sin�2ma

���
E
p
� � �

aP
8�

J0�2ma
���
E
p
�

�
a	

�
���
E
p cos�2ma

���
E
p
� � r2�E�

�
: (34)

The first line agrees precisely with the Balian and Bloch
theory of the density of states [23] and gives the cutoff-
dependent terms in the Casimir energy,

 E��� �
1

2

Z 1
0
dE��E�

���
E
p
e�

���
E
p
=�: (35)

The cutoff-dependent contributions have no effect on the
Casimir force when Region II is included, since they are
linear in a, as explained earlier. The second line in Eq. (34)
gives the leading three terms in an asymptotic expansion of

3In Eqs. (31) and (34) we have denoted the various remainders
by r��E�, r1�E�, r2�E�. We discuss the size of the remainders in
the expansion of the forces F� and FC following Eq. (37).
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the force,

 F� � �
3��4�

16�2a4 A� �
��3�

32�a3 P�
��2�	

4�a2 � r��a�: (36)

Also, even for these general cross sections, the EM energy
can be related using Eq. (12) to Dirichlet and Neumann
energies, as

 FC � �
3��4�

8�2a4 A�
��2��1� 2	�

4�a2 � rC�a�: (37)

In Eqs. (36) and (37) we have written the remainder terms
as r��a� and rC�a� ( � r�1�a� � r�1�a�), respectively.
Following our earlier estimates for rN�E� that appears in
NS�E�, and noting that there is always an O�1� term that
comes from Region II, we have r�;C�a� � O�1� for po-
lygonal shapes and r�;C�a� � O�1=a� for smooth shapes,
as a! 0.

The generalization to arbitrary cross sections in Eq. (37)
has interesting features. The correction to the parallel
plates result depends on geometry through the parameter
	, which depends sensitively on whether the cross section
is smooth or has sharp corners. For example, 	 � 1

6 for all
smooth shapes and 	 � 1

6
n�1
n�2 for an n-sided polygon of

equal interior angles. Given unavoidable imperfections in
any experimental realization, one may wonder what pre-
cisely constitutes ‘‘smooth’’ or ‘‘sharp.’’ Note that for any
deformation with local radius of curvature R (R � 0 for
perfectly sharp corners), we have the dimensionless quan-
tity R=a, where a is the base-partition height. Given that
our expansion is valid for small a, we conclude that R� a
is a smooth deformation, while R� a can be regarded as a
sharp corner. As a simple example, consider a shape that is
roughly square (4-sided polygon) if viewed from large
distances, but is in fact rounded with radius R at the
‘‘corners’’ if examined closely. Let us also imagine that
the overall width (b) is much larger than R. Then, since the
corresponding term in the Casimir force goes as 1� 2	
[see Eq. (37)], we expect the correction to be ��2�=�6�a2�
for a=R� 1 and decrease to ��2�=�8�a2� for a=R� 1. A
more interesting example would be a self-similar (fractal or
self-affine) perimeter, in which the number of sharp cor-
ners deceases as a power of the resolution a. For such a
case, we expect a correction scaling as a nontrivial power
of 1=a, reminiscent of results in Ref. [31]. It would be
interesting to see if such corrections are experimentally
accessible.

Another noteworthy feature of Eq. (37) is that the lead-
ing correction to the EM force (compared to parallel
plates) is smaller by order of a2=A. By contrast the correc-
tions are only of order a=

����
A
p

for scalar fields with either
Dirichlet or Neumann boundary conditions. However, the
latter corrections are exactly equal and opposite in sign,
and cancel for the EM force. It is interesting to inquire if
this precise cancellation applies only to perfect metallic
boundary conditions, or remains when the effects of finite

conductivity are taken into account. More work is neces-
sary to understand the finite conducting piston. Yet another
case is for side walls made of dielectrics, where a simple
modification of the optical path method, which replaces the
sign factor �with the reflection coefficients for TM and TE
modes, suggests that the cancellation does not occur. A
piston that is made entirely of a uniform dielectric is
examined in Ref. [32]

V. THERMAL CORRECTIONS

The question of the leading corrections to the Casimir
force at finite temperatures T has generated recent interest,
both from the practical need to evaluate the accuracy of
experiments, and due to fundamental issues. In particular,
there is controversy pertaining to the appropriate model for
the metallic walls, which we shall ignore in this chapter.
Instead, we shall compute corrections to the Casimir force
due to finite temperature excitations of the modes in the
piston, while continuing to treat its walls as perfect metals
[33].

A. Rectangular piston

We first answer this question for the piston with rectan-
gular cross section. In units with @ � c � kB � 1, the
inverse temperature  � 1=T introduces a new length
scale whose size relative to the dimensions a, b, and c of
the piston (we imagine, as earlier, that h! 1) sets the
importance of thermal corrections. (More precisely, � is
the appropriate length scale.) In typical experiments a�
1 �m, b, c� 100 �m, and at room temperature ��
20 �m. Thus the regime of most experimental interest is
where the length scales satisfy a� � & b, c. In light of
this we focus on thermal lengths much larger than the base-
partition height, i.e. a� �. To fully investigate the low
temperature regime, we assume a� �, b, c� h, but
will allow � to be less than or greater than b or c.

Each mode of the field can be regarded as an indepen-
dent harmonic oscillator, and by summing the correspond-
ing contributions, we find the free energy

 F tot �
�1



X
m

ln
�
e��1=2�!m

1� e�!m

�
� E� �F : (38)

We have separated out the zero-temperature Casimir en-
ergy E, from the finite temperature ‘‘correction’’ �F �
�E� T�S, and focus on the latter for calculating finite
temperature effects.

First, a note of caution is in order regarding the scalar
field with Neumann boundary conditions. In any cavity,
there is a trivial solution to the Neumann problem, namely,
a constant field with! � 0. This means that whenever  is
finite (T > 0) then �F � �1, which signals condensation
of the scalar field into the ground state. We note that this
phenomenon occurs for closed geometries where the spec-
trum is discrete and not in general for open geometries in
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which the region near ! � 0 is integrable due to phase
space suppression. We will proceed by calculating the free
energy of a scalar field with both Dirichlet and Neumann
boundary conditions, ignoring the mode with! � 0 for the
latter. We then use Eq. (12) to obtain the EM force. This
procedure is valid since the offending Neumann mode is
specifically excluded from the EM spectrum.

For a Dirichlet scalar field in Region I, since all modes
satisfy !m > �=a, their Boltzmann weights are small in
the limit of a� �, and

 �F I � O�e��=a� (39)

is exponentially small. Similarly, the a-dependent terms of
the electromagnetic free energy in region I are exponen-
tially small. This is true for any cross section and reflects
the fact that thermal wavelengths �� are excluded from
Region I [34]. However, a power law contribution to the
free energy and force will come from Region II. We use the
optical expansion, which remains exact for the free energy
in rectilinear geometries, to compute this contribution for
scalar fields [34], as

 �F II � �
1

2�2

X
pr

��pr; ��
X0

q

Z
D
dx

1

�lpr�x�
2 � �q�2�2

:

(40)

Note that here the sum ranges over q 2 Z n f0g—the q �
0 term is just the Casimir energy [see Eq. (7)].

It is natural to break the energy up into the familiar four
classes of paths: periodic orbits, aperiodic tours off faces,
reflections off edges, and reflections off corners. However,
summing each set separately gives a logarithmic diver-
gence (that cancels among the different classes for
Dirichlet boundary conditions). Fortunately, this problem
can be ignored in the h! 1 limit, as can be seen, for
example, by considering the contribution from the sum
over periodic orbits [paths (c), (d), etc. in Fig. 1]. Noting
that h� a is the height of the piston in Region II, we have
 

�F II
per � �

1

16�2

X1
q�1

X1
n;m;l��1

�
�h� a�bc

��n�h� a��2 � �mb�2 � �lc�2 � �q=2�2�2
:

(41)

This expression is logarithmically divergent, but if we take
h! 1, only the n � 0 term contributes and the remaining
summation over fq;m; lg is finite. Strictly speaking, the
interchange of the limit h! 1 with the summations,
which eliminates the logarithmic divergence, is formally
problematic. However a more rigorous analysis justifies
this step for the Dirichlet case through the cancellation
among the different classes, but always gives �1 for the
Neumann case as anticipated. Performing this interchange
gives the following result for the contribution of periodic

orbits:

 �F II
per � �

��4��Vp � Aa�

�24 �
�h� a�A

32�
Z2�b; c; 3�

�
�h� a�A

32�2 Z2�b; c; 4� �O�e�4�g=�; (42)

with g  min�b; c� and Vp as the total piston volume. Here
we have expanded for small  relative to g � min�b; c�.
We note that although the third term is independent of ,
this really is part of �F . The reader that is interested in the
opposite limit of ! 1, i.e., the low temperature limit,
should look ahead to Section V C.

Proceeding in a similar fashion for all contributions to
the free energy of a scalar field we find (ignoring the
exponentially small contribution of Region I)
 

�F � � �
��4��Vp � Aa�

�24 � �
��3��Sp � Pa�

8�3

�
��2��h� a�

4�2 �
M��b=c��h� a�

32�
����
A
p

�
J��b=c��h� a�

32�2A
�
�2�Vp � Aa�

84

�
X0

m;n

1� 2fmn� �b; �c� � e�fmn� �b; �c�

f3
mn� �b; �c�sinh2�fmn� �b; �c��

� �
�h� a�

2

�
X1
m;n�1

n
m
�K1�2�mn �b� � K1�2�mn �c��; (43)

where we have defined M��x�  Z2�x
3=2; x�3=2; 3� �

4��x1=2 � x�1=2���2�, �b  2b=, �c  2c=, and Sp is
the total surface area of the piston. It is important to note
that while �F�1 � �FD, �F�1 � �F N is not strictly
correct as we have ignored the ! � 0 Neumann mode.
Although �F N � �1, as stated earlier, this expression
correctly gives the a-dependence in �F N .

The EM case can be handled in a similar fashion.
Repeating our earlier decomposition, we note that
�F EM � �F�1 � �F�1 � ��2��h� a�=2, since the
spectral decomposition in Eq. (11) correctly leaves out
the ! � 0 mode of the Neumann spectrum. We thus find
(again ignoring the exponentially small contribution of
Region I)

 �F EM � �
2��4��Vp � Aa�

�24 �
��2��h� a�

2�2

�
MC�b=c��h� a�

32�
����
A
p �

JC�b=c��h� a�

32�2A

�
�2�Vp � Aa�

44

X0

m;n

1� 2fmn� �b; �c� � e�2fmn� �b; �c�

f3
mn� �b; �c�sinh2�fmn� �b; �c��

;

(44)

where MC�x�  M�1�x� �M�1�x� � 2Z2�x3=2; x�3=2; 3�.
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In Eqs. (43) and (44) we have written the expansion as a
series in increasing powers of . The result, though, is
correct (up to exponentially small terms in a=�) for any
ratio of  to b or c, and for h much larger than any of the
other scales. The infinite summations that appear are con-
vergent for all finite values of f; b; cg. The leading term in
Eq. (44) is the Stefan-Boltzmann energy, and the following
terms are corrections due to geometry. The term indepen-
dent of  is equal to but opposite in sign to that appearing
in the Casimir energy. Note that the appearance of a term
independent of  is an artifact of performing a small 
expansion. All terms depend linearly on a and provide a
constant force on the partition. Note that the first five terms
in �F � and the first four terms in �F EM have power law
dependences on , while the remaining terms (summa-
tions) are exponentially small for �< �b; c�.

B. General cross section

If we consider general I 
 S geometries, as in
Section IV, we may use the smooth 3-dimensional Balian
and Bloch density of states in Region II to obtain the
leading terms in the free energy. Specifically, we use the
first line of Eq. (34) with the replacement a! h� a for
��E�, and calculate the free energy from

 �F �
1



Z 1
0
dE��E� ln�1� exp��

���
E
p
��: (45)

Since we only know the first three terms in the expansion
for the density of states, we will obtain contributions
proportional to the volume, surface, and perimeter of the
piston, but nothing at O�1=�. It is fairly straightforward to
get

 �FD � �
��4��Vp � Aa�

�24 �
��3��Sp � Pa�

8�3

�
��2�	�h� a�

�2 �O

�
1



�
; (46)

 

�F EM � �
2��4��Vp � Aa�

�24 �
��2��1� 2	��h� a�

�2

�O

�
1



�
: (47)

We again see the effect of the modes excluded from
Region I due to a� �, in the factors Vp � Aa, Sp �
Pa, and h� a. These leading terms provide thermal con-
tributions to the quantum force on the partition, given in
Eqs. (36) and (37).

Let us comment on the relationship between the Casimir
and thermal contributions to the force. We begin by focus-
ing on the regime that is perhaps of most experimental
interest: a� ��

����
A
p

. If we include both Casimir and
thermal contributions to the force, as given in Eqs. (37) and
(47),

 

FEM � �
3��4�

8�2

�
1

a4 �
1

�=2�4

�
A

�
��2��1� 2	�

4�

�
1

a2 �
1

�=2�2

�
� 	 	 	 : (48)

Note that the leading contributions are related to terms in
the Casimir energy by the interchange a$ =2, but this
connection ceases for higher order corrections. We have
only calculated further terms for the parallelepiped and we
can compare them in this limit. In particular, Eq. (44)
includes a contribution of order 1=which has no counter-
part (i.e. a term of order 1=a) in the Casimir force. A term
of order 1=a can only come from the derivative of � lna,
which is absent from the EM Casimir energy.

C. Low temperature limit

Equation (48) provides the leading terms in the Casimir
force in the limit a� �� b, c(or more generally a�
��

����
A
p

for nonrectangular cross sections). We may
more accurately refer to this as a ‘‘medium temperature’’
regime, as opposite to a lower temperature regime with
��

����
A
p

. In fact, for the rectangular piston we obtained
in Eqs. (43) and (44) results that are valid for a�
f�; b; cg for any ratio of  to b or c, and will now
examine their lower temperature limit. A naive application
of the proximity-force approximation gives always a ther-
mal correction to the force that vanishes as�1=4 � T4 in
the T ! 0 limit [16]. However, in Ref. [34] it is argued that
for open geometries this limit is quite subtle and is sensi-
tive to the detailed shape of each surface. In fact it is
reasonable to argue that for the cases relevant to experi-
ments there may be weaker power laws, i.e., 1=
 with

< 4. But in our closed geometry another scenario is
natural: If T ! 0, so that � a,

����
A
p

, modes are excluded
from both regions due to a gap in the spectrum, resulting in
an exponentially small free energy, which (for the rectan-
gular piston) is

 �F EM � �
�h� a����

2
p
3=2

�
1���
b
p e��=b �

1���
c
p e��=c

�
;

as ! 1:

(49)

A plot of the force FT�  �d�F �=da (where � � D or
C as for T � 0), derived from Eqs. (43) and (44) is given in
Fig. 5. The force is normalized to the Stefan-Boltzmann
term, FSB � ���4�A=��24� (� 2��4�A=��24�) for
Dirichlet (EM) fields. Having taken a� � in our analy-
sis, the a dependence is ignorable, and we plot the force as
a function of =b (b � c). The high =b asymptotic
curves [Eq. (49) is the EM case] are also included. Note
that from Eq. (48) we can read off the small =

����
A
p

cor-
rections to FSB for arbitrary cross sections.
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VI. CONCLUSIONS

In this work we have obtained an exact, analytic result
for the Casimir force for a piston geometry. Exact, analytic
results are rare in this field but nonetheless particularly
useful for comparison with the approximations needed to
describe real systems and more complicated geometries.

We have obtained analytic expressions for the force
acting on the partition in a piston with perfect metallic
boundaries. The results are exact for the rectangular piston,
and in the form of an asymptotic series in 1=a for arbitrary
cross section. We find that the partition is always attracted
to the (closer) base; consistent with a more general result
obtained in Ref. [18]. Since the piston geometry is closely
related to single cavity for which a repulsive force has been
conjectured, we are able to shed some light on this ques-
tion. In particular, we emphasize that to avoid unphysical
deformations (and closely related issues on cutoffs and
divergences) it is essential to examine contributions to
the force from both sides of the partition. The cutoff-
independent contribution from a single cavity (that we
call Fbox) approaches a constant for large a. However, in
the piston geometry compensating contributions from the
second cavity cancel both the cutoff-dependent terms and
part of the cutoff-independent term, to cause a net
attraction.

For general cross sections we find interesting depen-
dence on geometrical features of the shape, such as its
sharp corners and curved segments. We have obtained the

first three terms for scalar fields and the first two terms for
EM fields (one less due to cancellation) in an expansion in
powers of a. By comparison to our calculated exact result
for a rectangular cross section we estimate that this expan-
sion is valid for a=b � 0:3. This covers the conventional
experimentally accessible regime, and is therefore a useful
result for a large class of geometries. We have also ob-
tained thermal corrections which cover the experimentally
accessible regime.
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APPENDIX

The general Epstein Zeta function is defined as

 Zd�a1; . . . ; ad; s� 
X0

n1;...;nd

��n1a1�
2 � 	 	 	 � �ndad�

2��s=2;

(A1)

where the summation is over fn1; . . . ; ndg 2 Zd n
f0; . . . ; 0g. Note that the Riemann zeta function is a special
case of this, namely ��s� � Z1�1; s�=2.

In Eq. (15) we pointed out that such functions could be
approximated by a term involving the Riemann zeta func-
tion and a power of a1, as a1 ! 0. An exact representation,
as discussed in Ref. [17], is
 

Zd�a1; . . . ;ad;s��
2��s�
as1
�

��s�1
2 �

����
�
p

��s2�a1
Zd�1�a2; . . . ;ad;s�1�

�
4�s=2

��s2�a
s
1

X1
n�1

X0

n2;...;nd

n�s�1�=2K�s�1�=2

�

�
2�n

������������������������������������������������
�a2n2�

2�			��adnd�2
p

a1

�

�

� ������������������������������������������������
�a2n2�

2�			��adnd�2
p

a1

�
�1�s�=2

;

(A2)

where K� is the modified Bessel function of the second
kind. This is useful in Region I where a1 is small (with
a1 ! a).

For Region II it is important to examine the limit in
which one of the lengths is infinite, say a1 ! 1 (with
a1 ! h� a). In this limit the order of the zeta function
is reduced:

 Zd�a1; . . . ; ad; s� ! Zd�1�a2; . . . ; ad; s�: (A3)

FIG. 5 (color online). The force FT from thermal fluctuations
on a square partition (b � c), normalized to the Stefan-
Boltzmann expression FSB � ���4�A=��

24� (�
2��4�A=��24�) for Dirichlet (EM) fields, as a function of
=b. This is valid in the regime: a� f�; b; cg. Starting
from a normalized value of 1, the full result for Dirichlet
(electromagnetic) is the lower (upper) curve. Also, starting
from a normalized value of 0, the exponentially small asymptote
(as =b! 1) for Dirichlet (electromagnetic) is the lower
(upper) curve.
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