
Casimir-Polder intermolecular forces in minimal length theories

O. Panella
INFN, Sezione di Perugia, Via A. Pascoli, I-06123, Perugia, Italy

(Received 27 February 2007; revised manuscript received 1 June 2007; published 24 August 2007)

Generalized uncertainty relations are known to provide a minimal length @
����
�
p

. The effect of such
minimal length in the Casimir-Polder interactions between neutral atoms (molecules) is studied. The first
order correction term in the minimal uncertainty parameter is derived and found to describe an attractive
potential scaling as r�9, as opposed to the well-known r�7 long range retarded potential.
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I. INTRODUCTION

A complete understanding of the properties of the quan-
tum vacuum is a point of central importance to both
fundamental and applied physics [1]. A celebrated me-
chanical manifestation of the fluctuations of the electro-
magnetic field around its zero point (vacuum)
configuration is the well-known Casimir effect [2] whereby
an attractive force arises between two metallic neutral
plates separated by a distance d.1 The Casimir effect has
recently received a lot of attention, mainly because of the
following reasons: (i) advances in the experimental tech-
niques leading to precision measurements [4,5] and to the
possibility of measuring the dynamic Casimir effect [6];
(ii) increased importance of the Casimir forces in the field
of microelectromechanical systems (MEMS) [7] and nano-
devices [8]; (iii) relevance to physics beyond the standard
model of particle physics, such as, for example, hypotheti-
cal extra-dimensional models [9]. The present work is a
contribution to the last of the above points and tries to
make a connection between the Casimir effect and models
which are generally referred to as minimal length theories.

The concept of a minimal length arises naturally in
quantum gravity. Indeed, when trying to resolve small
distances, higher energies are needed, which eventually
will affect the structure of space-time via their gravitational
effects. Clearly this type of effect should occur at an energy
scale of the order of the Planck mass. While it is generally
stated that the incorporation of gravity within quantum
field theory spoils the renormalizability of the latter, the
fact that quantum gravity could play an important role in
the suppression of infinities in quantum field theories was
pointed out long ago [10].

Other models have been discussed in the literature which
are also related to a minimal length such as, for example,
extra-dimensional theories and/or noncommutative quan-
tum field theories [11–13]. It is hoped that the energy (or
equivalently length) scale associated to these models might
turn out to be accessible experimentally in the next gen-

eration of high-energy accelerators such as the CERN LHC
or the International Linear Collider.

Although not trivial to prove, it is natural to expect that a
minimal distance should correspond at the quantum level
to a minimal uncertainty. On the other hand, string theories
have been shown to predict the existence of a minimal
length in the form of an effective minimal uncertainty
��x�min [14]. This has triggered the study of quantum
mechanical models based on generalized commutation
relations such as

 �x̂; p̂� � i@�1� �p̂2�; (1)

which lead to a generalized uncertainty principle (GUP)
which in turn provides a minimal uncertainty. In particular,
in Ref. [15] a Hilbert space representation of the general-
ized uncertainty relations is constructed explicitly in a one-
dimensional model, as well as in higher dimensions, iden-
tifying the states which realize the maximal localization
(i.e. the minimal uncertainty) in position space. An impor-
tant aspect of these theories is that the eigenstates of the
position operator are no longer physical states, and so one
is forced to introduce the so-called quasiposition represen-
tation, which consists in projecting the states onto the set of
maximally localized states, instead of using the standard
position representation obtained projecting the state vec-
tors on the eigenstates of the position operator. Thus mo-
mentum states which are normally represented by plane
waves �2���3=2 exp��i=@�p � x� � hxjpi are now replaced
by the set of functions  MLp �x� � h MLx jpi, where  MLx are
the maximally localized states (minimal uncertainty)
around an average position x. The particular form of these
states depends on the number of dimensions and on the
specific model considered. These type of models are also
connected to noncommutative quantum field theories.

In Ref. [16] the author studies the standard Casimir
effect of two perfectly conducting plates at a distance d
computing the correction term arising within a model
based on generalized uncertainty relations:

 U Casimir � �
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It is worth noting that the correction term due to the
minimal length ��x�min 	 @

����
�
p

scales with a different

1See, however, Ref. [3] for a different viewpoint which claims
that there is no need to invoke vacuum fluctuations to explain the
Casimir effect.
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power law (d�6), and it is repulsive. This result is used to
obtain an upper bound on the minimal length which turns
out to be ��x�min 
 150 nm.

In this work we take up the above scenario of general-
ized uncertainty relations and compute the correction term
to the intermolecular Casimir-Polder interactions induced
by a minimal length, expecting to find results similar to
those of Ref. [16] [cf. Eq. (2)]. In particular, by performing
a quantization procedure of the electromagnetic field as in
Ref. [16], it will be shown that if a minimal length exists in
nature the retarded Casimir-Polder interactions between
neutral atoms and molecules will acquire, in addition to
the standard r�7 interaction, a corrective term which scales
as r�9. However, as opposed to the plate-plate case,
cf. Eq. (2), the new term has the same sign of the standard
QED result, i.e. it describes an attractive interaction.

The remainder of the paper is organized as follows. In
Sec. II we discuss the generalized uncertainty relations and
define a set of maximally localized states; in Sec. III we
discuss the quantization of the electromagnetic field in the
presence of a minimal length; and in Sec. IV we derive the
corrections to the Casimir-Polder intermolecular interac-
tions due to a minimal length. Finally, in Sec. V we present
the conclusions.

II. GENERALIZED UNCERTAINTY PRINCIPLE

Let us consider the generalized commutation relations of
Eq. (1), for simplicity, in one dimension. From these
modified commutation relations, one derives the general-
ized uncertainty principle (GUP) [15]

 4x4p �
@

2
�1� ��4p�2 � hp̂i2� �> 0; (3)

which is found to be related to a minimal length [15,16].
Indeed, with a simple minimization procedure it is easily
verified [15] that Eq. (3) implies an absolute minimal
uncertainty �4x�min � @

����
�
p

, which is obtained for those
states such that hp̂i � 0 and ��p�2 � hp̂2i � 1=�. A
Heisenberg algebra that satisfies the generalized commu-
tation relations of Eq. (1) is represented on momentum
space wave functions by

 p̂ �p� � p �p�; (4)

 x̂ �p� � i@�1� �p2�@p �p�: (5)

In Ref. [15] the eigenstates of the position operator have
been shown to be nonphysical because their uncertainty in
the position (which vanishes) is smaller than the absolute
minimal uncertainty (or minimal length). One then can
look for a set of maximally localized states for which the
uncertainty in the position is minimal (i.e. equal to the
minimal length) [17]. The procedure proposed by Kempf,
Mangano, and Mann (KMM) [15] to find the maximally
localized states consists in minimizing the value ��x�2 
between those states which realize the generalized uncer-

tainty principle in Eq. (3) with the equality sign (i.e. a
squeezed state):

 ��x� ��p� �
1
2jh�x̂; p̂�i j: (6)

In the adopted momentum space representation Eq. (6)
takes the form of a differential equation:
 

�i@�1� �p2�@p � hx̂i � i@
1� ���p�2 � �hpi

2��p�2

� �p̂� hp̂i�� �p� � 0; (7)

which admits the normalized solution �hx̂i � �; hp̂i �
0;�p � 1=

����
�
p
�:
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As opposed to ordinary quantum mechanics it turns out
that such states, in addition to being normalizable, are of
finite energy and no longer ‘‘orthogonal’’ i.e. their closure
relation involves a finite function instead of a Dirac-�
distribution [���� �0�]:

 h ML�0 j 
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�
:

(9)

Extension to higher dimensions.—In Ref. [17] the above
ideas have been extended to a number n of arbitrary
(spatial) dimensions. An important fact to recall is that
there is no unique extension of Eq. (1) in more than one
dimension. Indeed in order to preserve translational and
rotational invariance, generalized commutation relations
must take the form [15]

 �x̂i; p̂j� � i@�f�p̂2��ij � g�p̂2�p̂ip̂j�; i; j � 1; . . . ; n:

(10)

The functions f�p̂2� and g�p̂2� are not completely arbitrary.
Relations between them can be found by imposing trans-
lational and rotational invariance. In the following we take
up the standard choice of Ref. [17] which has become
rather popular and has been the object of many phenome-
nological studies:

 f�p̂2� �
�p̂2���������������������

1� 2�p̂2
p

� 1
; g�p̂2� � �: (11)

A spectral representation can then be found such that

 �x̂i; ẑj� � i@�ij; x̂i � i@@zi : (12)

The KMM procedure consists in minimizing the posi-
tion uncertainty within the set of squeezed states, see
Ref. [15,17] for details, and yields the following maximally
localized states around a mean position � (in the spectral
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representation):

  ML� �z� � N
�
1� �

z2

2

�
�=2

exp
�
�
i
@
z � �

�
; (13)

where � � 1�
�����������������
1� n=2

p
	 2:58 (in three spatial dimen-

sions) is a numerical constant that characterizes the maxi-
mally localized states in the KMM approach. On the other
hand, when the number of dimensions n � 1 the general-
ized uncertainty relations are not unique and different
models (actually an infinite number of them) may be
implemented [17] by choosing different functions f�p2�
and/or g�p2� [cf. Eq. (11)] which will yield, in general,
different maximally localized states which will not contain
at all the numerical constant �. The minimal position
uncertainty for the KMM maximally localized states is
[18]
 

��x�min � @
����
�

p �
n
8

�
1�

������������
1�

n
2

r ��
n� 2�����������������
1� n=2

p � 2
��

1=2

� @
����
�

p ���
n
4

r
�; (14)

which in the case of three spatial dimensions gives
��x�min � 2:23533 @

����
�
p

.
The states given in Eq. (13) are normalizable states

whose closure relation reads
 

h ML
��� j 

ML
�� 0�i �

~�n�� � � 0�

� N2
Z
jzj


��
2
�

p dnz
�
1� �

z2

2

�
�

� exp
�
�
i
@
z � �� � � 0�

�
; (15)

which turns out be a finite function for finite �. The
normalization constant N can be chosen so that ~�n�� �
� 0� reduces to the Dirac-� distribution �n�� � � 0� in the
limit of zero minimal length (�! 0), i.e. N � �2�@��n=2.
Explicitly one has (for three spatial dimensions, n � 3)
 

~�3�� � �
0� � ��1� ��

2�

�3=2�@
����
�
p
�3

� ���
2
p
j� � � 0j
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����
�
p

�
��3=2���

� J3=2��

� ���
2
p
j� � � 0j

@
����
�
p

�
: (16)

In Fig. 1 the closure function ~�3 is plotted against its
dimensionless argument. It can be easily verified that it
satisfies the relation

R
d3� ~�3�� � �

0� � 1.
For the purpose of deriving the first order correction in

the minimal length of the Casimir-Polder forces, it will
prove useful to expand the closure function, cf. Eq. (15), in
powers of � and in terms of the Dirac-� distribution. In
order to properly do this, one must go to the momentum
representation (see the Appendix for details), and one finds
for the present model and within the KMM approach

 

~� n�r� r
0� 	

�
1� �@

����
�

p
�2
�
2
r2
r � . . .

�
�n�r� r0�; (17)

where � � 2� �. We take the previous equation as the
definition of the numerical constant � whose value will, in
general, depend on the model considered.2 It should be
noted that the KMM procedure to construct maximal lo-
calization states works properly only for the generalized
commutation relations of Eq. (1). Detournay, Gabriel, and
Spindel (DGS) [18] have proposed a better definition of
maximally localized states, which is based on a minimiza-
tion procedure on the subset of all physical states, and not
just on the subset of squeezed states, and turns out to be
suitable for more general commutation relations than those
considered in Eq. (1). It should be realized that adopting
this method (Ref. [18]) would only slightly affect our
conclusions, namely, Eq. (17). The maximally localized
states are in this approach given by Bessel functions. In the
end result, cf. Eq. (17), we can anticipate that expanding
the closure function in powers of the minimal length �@

����
�
p
�
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5 01510 1515

FIG. 1. Plot of the regular closure function �@
����
�
p
�3 ~�3�� � �

0�
along an arbitrary direction of the vector � � � 0 (both positive
and negative), versus the dimensionless quantity x �

���
2
p
j� �

�0j=�@
����
�
p
�; (a) the dashed line is the result obtained [Eq. (16)]

within the KMM procedure of Ref. [17], with � �
1�

�����������������
1� 3=2

p
corresponding to three spatial dimensions (n �

3); (b) the solid line is the result [Eq. (24) of this work] of the
calculation performed with the (DGS) approach of Ref. [18].
This plot should not mislead the reader. Both functions satisfy
the integral relation

R
d3�0 ~�3�� � �

0� � 1. The importance of
numerical difference between the two functions, apparently
inconsistent with this constraint, is reduced, when doing the
integral, by the x2 factor from the differential d3�� � �0�, and
indeed both closure functions do integrate to 1, as has been
checked both analytically and numerically.

2We emphasize that � is a numerical constant and not a free
parameter. Within the KMM procedure for obtaining the maxi-
mally localized states, its numerical value (within the model
considered here) is fixed by the number of spatial dimensions
only.
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would merely amount to a change in the value of the
numerical constant �, which can, however, be expected
to be always of order unity.

Let us discuss in further detail this point. In particular,
we would like to show that adopting the DGS procedure,
see Ref. [18], the resulting regular closure function ~�3�r�
r0�, although represented by a different analytic expression,
is numerically very close to that computed in the KMM
procedure. Furthermore, its expansion in powers of � is as
given in Eq. (17) but with a slightly lower value of the
numerical constant �. In Ref. [18] the authors show that the
maximally localized states corresponding to the particular
model being discussed here [cf. Eq. (11)] are given (in the
spectral representation) in terms of Bessel functions:

  ML� �z� � Cn
J���z�
z�

exp
�
�
i
@
� � z

�
; (18)

where z � jzj; � � n
2� 1, � � �

����
�
p

=
���
2
p

and the normal-
ization constant Cn depends again on the number of di-
mensions that we are considering. These states are
characterized by a minimal uncertainty which is given by

 ��x�min � @� �
j�;1���

2
p @

����
�

p
; (19)

j�;1 being the first zero of the Bessel function J��x�. For
n � 3 we have � � 1=2 and j�;1 � � so that the minimal
length derived in the DGS procedure is ��x�min �
2:22144 @

����
�
p

which is indeed smaller than the minimal
length derived in the KMM approach.3 With these states
the closure function becomes
 

h ML
��� j 

ML
��0�i �

~�n�� � �
0�

� C2
n

Z
jzj


�������
2=�
p dnz

�J���z��
2

z2�

� exp
�
�
i
@
z � �� � � 0�

�
: (20)

Using the well-known expansion for the Bessel functions,

 J��t� �
1

���� 1�

�
t
2

�
�
�

1�
1

�� 1

�
t
2

�
2
� . . . :

�
; (21)

the constant Cn can be chosen so that in the limit of a
vanishing minimal length �! 0 (or �! 0) the regular
closure function ~�n�� � �

0� reduces to the Dirac-� distri-
bution �n�� � � 0�:

 Cn �
��n=2�

�2�@�n=2

�
2

�

�
n=2�1

: (22)

In addition it is possible to derive an expansion of the
closure function of the type in Eq. (17) also within the

DGS procedure. One derives the following expansion in
powers of � (see the Appendix for details):
 

h ML
��� j 

ML
��0�i �

~�n�� � � 0�

	

�
1�

2� �j�;1�2=n
2

�@
����
�

p
�2r2

� � . . .
�

� �3�� � � 0�; (23)

thereby defining, also in the DGS procedure, a numerical
constant �, namely, � � 2� �j�;1�

2=n.
On the other hand, by analytically carrying through the

integration in Eq. (20), one finds the closed expression
(when n � 3)

 

~� 3�� � �
0� �

���
2
p

4�4

1

�@
����
�
p
�3

�
2Si�x� � Si�x� 2�� � Si�x� 2��

x
;

(24)

where again x �
���
2
p
j� � � 0j=�@

����
�
p
� and Si�x� �R

x
0 dt sin�t�=t is the sine-integral function. One can again

verify that ~�3�� � �
0� satisfies the relation

R
d3� ~�3�� �

� 0� � 1. Figure 1 shows a comparison of the closure func-
tions derived in the KMM and DGS procedures. Table I
summarizes some results within the two approaches for the
model of the present work (model I).

The above discussion shows, in particular, that even
within the same model adopting the KMM procedure or
the more appropriate DGS method (where the minimiza-
tion of the uncertainty is done over all physical states) will
produce slightly different values of the numerical constant
�, thereby justifying the use of the widespread KMM
approach at least within this particular model.

III. QED IN THE TEMPORAL GAUGE

In order to approach the quantization procedure in the
presence of a minimal length, we review briefly the deri-
vation of the temporal gauge �A0�r; t� � c’�r; t� � 0�
propagator in standard QED. The defining equation for
the photon propagator in QED is

 Dij�r; t; r0; t0� �
i
@
h0jT�Ai�r; t�Aj�r0; t0��j0i; (25)

from which, applying through the classical equation of
motion for the fields Ai�r; t� (Maxwell equations) in the
temporal gauge, it is easily verified that

 

��
1

c2

@2

@t2
�r2

�
�‘m �r

‘rm

�
Dmk�r; t; r0; t0�

� �
i
@c
��t� t0�h0j�E‘�r; t�; Ak�r0; t0��j0i; (26)

where the electric field operator has been introduced by
E�r; t� � ��1=c�@A�r; t�=@t. Canonical quantization then

3Recall that the minimization in the DGS procedure is carried
through within the set of all physical states, while in the KMM
approach it is restricted to the squeezed states.
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prescribes the equal-time commutation relations [19]

 �E‘�r; t�; Ak�r0; t�� � 4�i@c�‘k�3�r� r0�; (27)

and the differential equation for the QED photon propa-
gator becomes

 

��
1

c2

@2

@t2
�r2

�
�‘m �r

‘rm

�
Dmk�r� r0; t� t0�

� 4��‘k��t� t0��3�r� r0�: (28)

The solution is found by going into a Fourier representa-
tion

 Drj�k;!� �
Z
dtd3rei!te�ik�rDrj�r; t�; (29)

and is given by the well-known result

 Drj�k; !� � �
4�

�!=c�2 � k2 � i0

�
�rj �

krkj

�!=c�2

�
: (30)

As regards the calculation of the effect of a minimal length
in the Casimir-Polder intermolecular interactions, follow-
ing [20], it will be convenient to use the propagator in the
mixed representation:

 Dij�!; r� �
Z �1
�1

dtei!tDij�t; r�; (31)

which is found upon integrating in k space Eq. (30):

 Dij�!; r� �
Z d3k

�2��3
eik�rDij�k; !�: (32)

It is easily verified that Dij�!; r� satisfies the following
differential equation:

 

�
�

�
!2

c2 �r
2

�
�‘m �r

‘rm

�
Dmk�!; r� � 4��‘k�3�r�;

(33)

which is solved by [20]
 

Dij�!; r� �
�
�ij
�
1�

ic
j!jr

�
c2

!2r2

�

�
xixk

r2

�
3c2

!2r2 �
3ic
j!jr

� 1
��
eij!jr=c

r
: (34)

Quantization in minimal length theories.—Let us now
discuss the quantization procedure of the electromagnetic
field in a quantum world with a minimal length. We shall
proceed following the scheme adopted in [16]. In this case
the procedure of canonical quantization gets modified
because it turns out that the equal-time commutation rela-
tions of the fields, see Eq. (27), are different. Indeed, now
instead of expanding the field operators over plane waves
(position representation wave functions of momentum
states), one is forced to expand the fields over a set of
maximally localized states j MLr i of average position r
(quasiposition representation of momentum states):

 Ai�r; t� �
X
	

Z d3p

�2�@�3

�
2�@c2

!p

�
1=2
�
a�p; 	�"i�p; 	�

� h MLr jpie
�i!pt � ay�p; 	��"i�p; 	��

� hpj MLr ie
�i!pt

�
; (35)

introducing creation and annihilation operators which do
satisfy the usual commutation relations,

 �a�p; 	�; ay�p0; 	0�� � �2��3�	;	
0
�3�p� p0�; (36)

with all other commutators vanishing (recall that momen-
tum coordinates are commuting in the model which is being
discussed here). The equal-time commutation relations for
the fields, cf. Eq. (27), are then easily found to be modified
to

 �E‘�r; t�; Ak�r0; t�� � 4�i@c�‘kh MLr j 
ML
r0 i

� 4�i@c�‘k ~�3�r� r
0�; (37)

so that, comparing with Eq. (33), the photon propagator in
the presence of a minimal length, ~Dij�!; r�, is found from

 

�
�

�
!2

c2 �r
2

�
�‘m �r‘rm

�
~Dmk�!; r� � 4��‘k ~�3�r�:

(38)

This approach to field quantization bears some similarity to
that discussed in Ref. [21], where within a model of non-
commutative space-time the real scalar field is defined as a
mean value over coherent states. The noncommutativity is
reflected by a modification of the Fourier transform replac-

TABLE I. Within the rotationally invariant model (model I) of Eq. (11) (see Refs. [15,17]), we compare the numerical constant � and
the minimal uncertainty as discussed in the text for both the KMM and DGS procedures of obtaining the maximally localized states.
Recall that the constant � � 1�

�����������������
1� n=2

p
appears in the maximally localized states of the KMM procedure. We also give the same

details for the direct product model (model II) used in Ref. [16], which is reviewed for the reader’s benefit in the Appendix.

� ��n � 3� ��x�min

@

���
�
p �n� ��x�min

@

���
�
p �n � 3�

Model I (KMM) 2� � 2� 1�
��������
5=2

p
	 4:581 14

��n
4

p
�

��
3
4

q
� 	 2:2353

Model I (DGS) 2�
�jn=2�1;1�

2

n 2� �2

3 	 5:289 87
jn=2�1;1��

2
p ���

2
p 	 2:221 44

Model II 10=3 10=3
���
n
p ���

3
p
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ing ordinary plane waves by Gaussian wave packets. We
remark that in Ref. [21] the authors derive for the Green
function a differential equation which is similar to our
Eq. (38), where the three-dimensional Dirac � function is
replaced by a Gaussian dumped by the noncommutative
parameter which plays the role of the parameter � of this
work. ~�3�r� being a regular function, it turns out that the
standard QED photon propagatorDrj�!; r� [from Eq. (33)]
is the Green function of Eq. (38), the differential equation
describing the photon propagator in minimal length QED,
~Dij�!; r�. Therefore, it follows the central result of this
work. In minimal length QED the photon propagator in the
mixed representation is given by a convolution of the
regular closure function ~�3�r� with the standard QED
photon propagator:

 

~D ik�!; r� �
Z
d3r0Dik�!; r� r0�~�3�r

0�: (39)

From Eq. (17) one can obtain, by means of partial integra-
tion, an expansion of the photon propagator in terms of the
minimal length @

����
�
p

:

 

~D ik�!; r� 	 Dik�!; r� � �@
����
�

p
�2
�
2
r2Dik�!; r�: (40)

Using the explicit form of the QED temporal gauge propa-
gator given in Eq. (34), it is easily verified that

 r2Dik�!; r� � �
!2

c2 D
ik�!; r�; (41)

so that we finally get

 

~D ik�!; r� 	
�

1�
�
2
�@

����
�

p
�2
!2

c2

�
Dik�!; r�: (42)

A remark is in order at this point. It should be clear to the
reader that the above approach to field quantization within
a minimal length model breaks Lorentz invariance. This
fact appears as well in other extensions of the standard
model (SM) such as noncommutative quantum field theory,
always being one of the major sources of debates between
different authors. It should be noted that in Ref. [21] the
question of Lorentz covariance is discussed and, within
their noncommutative 2D model, successfully addressed.
While completing this study the author became aware of a
recent work [22] where a relativistic generalization of the
Kempf algebra is proposed. Based on this new deformed
algebra, it will probably be possible to define a Lorentz
covariant field quantization which would account for a
fundamental minimal length. Certainly this point deserves
further study, but goes beyond the scope of the present
work.

IV. CASIMIR-POLDER INTERMOLECULAR
INTERACTIONS

The interaction of two neutral atoms (molecules) at rest
in r1 and r2 and with electric dipole moments d1 and d2 is

described by the operator

 V � �E�r1; t� � d1�t� �E�r2; t� � d2�t� (43)

where E�r; t� is the operator describing the electric field. It
is well known that, employing standard perturbation meth-
ods of quantum field theory, the interaction of the neutral
atoms (or molecules) at distances r � jr1 � r2j, which are
large compared to the atomic and/or molecular dimensions
a: r� a,4 is described in terms of (i) the dynamic polar-
izability tensor �ik�!� of the atoms:

 �ik�!� �
i
@

Z �1
�1

d
h0jT�di�
�; dk�0��j0ie�i!
; (44)

and (ii) the photon propagator in the mixed representation
Dik�!; r� [20]. For the photon propagator we will use in the
following the dyadic (tensor) notation D�!; r�. Assuming
that the polarizability tensors of the two atoms are iso-
tropic, �ik

�1;2��!� � �ik��1;2��!�, one obtains

 ��!� �
1

3

X
n

jd0nj
2

�
1

!n0 �!� i0�
�

1

!n0 �!� i0�

�
;

(45)

and the final expression for the interaction potential can be
cast as
 

U�r� �
i@

2c4

Z �1
�1

d!
2�

!4�1�!��2�!�

� Tr�D�!; r� � D�!; r��: (46)

When a minimal length is present in the above expression,
one should replace the photon propagator D�!; r� with the
modified propagator ~D�!; r�. Using the approximate ex-
pression in Eq. (42) one finds
 

Tr�~D�!; r� � ~D�!; r�� 	
�

1� ��@
����
�

p
�2
!2

c2

�
� Tr�D�!; r� � D�!; r��; (47)

so that the interaction potential is given by the usual
standard model result with an additional term describing
the effects of the minimal length:
 

�U�r� � �
i
2

@

c6
�@

����
�

p
�2�

Z �1
�1

d!
2�

�!6�1�!��2�!�Tr�D�!; r� � D�!; r��: (48)

By using the explicit expression in Eq. (34) it is easily
found that

4In this field theoretic approach the distance r can otherwise be
either much smaller (short distances) than the characteristic
wavelength 	0, of the spectra of the interacting atoms (or
molecules), comparable to, or much larger than 	0, (long
distances).
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Tr�D�!; r� � D�!; r�� � 2
�

1�
2ic
j!jr

�
5c2

!2r2 �
6ic3

j!j3r3

�
3c4

!4r4

�
e2ij!jr=c

r2 : (49)

The general expressions in Eqs. (46) and (48) can be
simplified in the limiting cases of short distances (a�
r� 	0) and long distances (r� 	0).

Short distances.—When r� 	0, in the integral of
Eq. (48) the values of !�!0 � c=	0 are important so
that !r=c� 1 and in Eq. (49) one is allowed to keep only
the last term and to approximate the exponential with 1.
Performing the straightforward computations one then
finds an interaction:

 U�r� � �
2

3r6

X
n;n0

jdn0j
2jdn00j2

@�!n0 �!n00�

�
1� ��@

����
�

p
�2

�

�!2
n0 �!

2
n00

c2

��
; (50)

which scales as r�6 and is composed of two terms: the
well-known London-type potential [20] and the correction
term which is due to the minimal length. In this regime of
short distances the minimal length correction affects only
the strength of the interaction and does not change its
power law.

Long distances.—In the limit of long distances r� 	0

in the integral of Eq. (48) only the values of ! & c=r�
!0 are important. When ! * !0, the strongly oscillating
complex exponential will suppress the integral. It is then
possible to substitute the dynamic polarizabilities �1;2�!�
with their static values �1�0� and �2�0�. We then find a
correction of order �@

����
�
p

=r�2 to the well-known r�7

Casimir-Polder interaction:

 �U�r� � �
129

8�
�
�
@
����
�
p

r

�
2 @c�1�0��2�0�

r7 : (51)

Thus, in theories with a minimal length, a correction term
arises in the Casimir-Polder atomic and molecular inter-
actions at large distances. The correction has the same sign
(attractive potential) but scales with a different power law
(r�9) relative to the QED result:
 

UCasimir-Polder�r� 	 �
23

4�
@c�1�0��2�0�

r7

�

�
1�

129

56
�
�
@
����
�
p

r

�
2
�
: (52)

This might be compared with the result of Ref. [16],
cf. Eq. (2), which describes the Casimir energy of the
plate-plate system. One can notice that, while in the
plate-plate case the minimal length correction derived in
Ref. [16] is repulsive and opposite to the standard result, in
the case treated here of the interaction of two neutral atoms
or molecules, the minimal length correction is attractive

i.e. of the same sign of the standard Casimir-Polder result.
We should, however, be very careful in comparing the
calculation of the Casimir effect of Ref. [16] with the
present one. Indeed in Ref. [16] a different model of
generalized uncertainty relations is explicitly taken up.
As opposed to our Eq. (11) the model proposed in
Ref. [16] given by f�p2� � 1� �p2 and g�p2� � 0 is
the naive generalization of the one-dimensional model.
Such a model is known [23] to be inconsistent with the
KMM construction of maximally localized states. Because
of the resulting noncommutativity of the coordinates, the
resulting n differential equations [corresponding to Eq. (7)]
of the squeezed states cannot be solved simultaneously
[23]. A different way of extending the one-dimensional
GUP of Eq. (1) is to take a direct product of it. This so-
called direct product model (model II) clearly breaks rota-
tional invariance as opposed to the model of this paper
(model I). The maximally localized states are obtained by
taking the product of the one-dimensional states, see
Eq. (8), along the different dimensions. This model is
therefore characterized by different maximally localized
states, which will in turn produce different closure func-
tions which, when expanded in powers of �, will provide
different values for the numerical constant � as defined by
Eq. (17) (though we expect it to be always of order unity).
In the Appendix we provide details of the closure function
within this model and deduce the corresponding value of �
which turns out to be � � 10=3. We may therefore con-
clude that the Casimir-Polder minimal length correction
within the direct product model is also attractive. That the
Casimir effect for parallel plates within the direct product
model (model II) as calculated in Ref. [16] turns out to be
repulsive may be due to the fact that the closure function
there appears to have been computed, not with the maxi-
mally localized states, but with the formal position eigen-
states which are not physical states. Setting this point
definitively calls for a detailed analysis of the Casimir
effect using the proper maximally localized states within
either model I or II and goes beyond the scope of the
present work.

The so-called Casimir-Polder force, for the atom-atom
configuration, was first derived in 1948 [24], but it was not
measured definitively until 1993 [25], by looking at the
deflection of an atomic beam passing through two parallel
plates. For earlier measurements related to the atom-plane
configuration, see [26]. There has then been a consistent
renewal of interest with an increase of the measurement’s
precision as in Ref. [27] where this tiny interaction be-
tween a neutral system and a surface is reported. The
authors employed a cloud of ultracold atoms in a Bose-
Einstein condensate (BEC) state. The range of distances
explored was between 6 and 10 microns. See the recent
review [28] for more details about the first generation of
experiments, both in the Casimir effect and the related
Casimir-Polder interactions, and for later developments
and future directions.
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It seems that a better direction to explore the Casimir-
Polder interactions experimentally is to consider the plate-
sphere (plate-atom) configuration. All the experimental
advances have been achieved for this case [28]. This
suggests the direction where the present theoretical work
could develop: the calculation of the Casimir-Polder
(plate-atom) interaction corrective term within a minimal
length theory.

V. DISCUSSION AND CONCLUSIONS

We have studied the implications of models based on
generalized commutation relations i.e. with a minimal
length in the Casimir-Polder intermolecular interactions.
The calculation is done following standard perturbation
theoretical methods of quantum field theory and, in par-
ticular, the approach of I. E. Dzjalos̆inskij as illustrated in
quantum field theory textbooks [20]. Here the interaction
energy of two neutral atoms and/or molecules is related to
the dynamic polarizability tensors of the two neutral bodies
and to the photon Green function (propagator). The com-
putation of the correction term due to the minimal length is
thus carried out by discussing the QED photon propagator
in the presence of a minimal length. Quantization of the
electromagnetic field in the temporal gauge is performed in
analogy to the canonical quantization procedure, the es-
sential point being that the field operators Ai�r; t�, instead
of being decomposed over a complete set of plane waves
(momentum eigenfunctions), are now decomposed over a
complete set of maximally localized states. This approach
has also been followed by the author of Ref. [16] in
deriving the Casimir potential energy of the plate-plate
system in the presence of a minimal length, cf. Eq. (2).
The main point is that the equal-time commutation rela-
tions of the field operators, instead of being given in terms
of a Dirac � function, cf. Eq. (27), are now expressed by a
finite regular function, cf. Eq. (37), and the photon propa-
gator in minimal length QED is given by a convolution of
the standard QED propagator with the regular function
~�3�r� r

0�. In order to compute the lowest order correction
term, the minimal length QED propagator is related to that
of standard QED by performing an expansion in the mini-
mal length parameter @

����
�
p

.
We have derived a corrective term to the (long distance)

retarded Casimir-Polder interaction of two neutral atoms
separated by a distance r� 	0, finding, cf. Eq. (52), a new
interaction term whose potential scales like r�9 as opposed
to the standard r�7 result.

Clearly, should the minimal length ��x�min � @
����
�
p

be of
the order of the Planck length LP, the observability of this
effect would be out of the question. In Ref. [29] the study
of the harmonic oscillator and the hydrogen atom allowed
one to derive an upper bound on the minimal length by
comparing with precision measurements on hydrogenic
atoms and for electrons trapped in strong magnetic fields.
The upper bound obtained is

 ��x�min � @
����
�

p
< 10�1 fm: (53)

Assuming that the constant � appearing in the deformed
Heisenberg algebra is a universal constant, this upper
bound would presumably preclude a possible observation
with Casimir-Polder interaction measurements with acces-
sible distances r which are typically in the range 80 nm 

r 
 10 �m [28]. Thus we conclude that, taking into ac-
count the upper bound of Ref. [29], the term derived in this
work, cf. Eq. (52), would provide a correction whose
relative strength we expect to be in the range

 10�22 &
�U
U
� O

��
@
����
�
p

r

�
2
�

& 10�18; (54)

which is clearly beyond any foreseeable improvement in
the precision of measurements of Casimir-Polder interac-
tions. As discussed in Ref. [30] the rather strong upper
bound in Eq. (53) could be avoided by assuming that the
parameter � is not a universal constant and could vary
from one system to another depending, for example, on the
energy content of the system (the mass of the particle, for
instance) or the strength of some interaction. Indeed, in
Ref. [30], by making this hypothesis, the authors, through a
comparison with the experimental results for ultracold
neutron energy levels in a gravitational quantum well
(GRANIT experiment) [31–33], derive a relaxed upper
bound to the minimal length which turns out to be of the
order of a few nanometers [��x�min < 2:41 nm]. Even if
this situation should apply, the relative strength of the
corrective term will fall in the range

 10�8 &
�U
U
� O

��
@
����
�
p

r

�
2
�

& 10�4; (55)

which is still out of the reach of current experiments in the
Casimir-Polder interactions, whose precision is typically
of 10�2 or 1% [28]. With an increased experimental sensi-
tivity to smaller length scales, of the order of a few nano-
meters, and better experimental accuracy possible,
perhaps, in the near future, the calculations described in
the present work could find interesting applications and
would provide a valuable tool to study the intimate struc-
ture of space-time.
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APPENDIX: DETAILS OF THE CLOSURE
FUNCTIONS

In this appendix we give details of the series expansion
in powers of � of the closure function, both in the model
taken up in this work and in the one considered in Ref. [16].
In particular, we show that in all considered cases the
following relation holds with different values of �:
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~� n�� � �
0� �

�
1�

�
2
�@

����
�

p
�2r2

� � O��2�

�
�n�� � � 0�:

(A1)

It turns out that, in order to get the correct series expansion
in powers of � of the closure function, one must resort to
the unbounded momentum representation, while both
Eq. (15) and Eq. (20), based on the spectral representation
(compact space), can only reproduce correctly the first
term of the expansion corresponding to � � 0. Let us
consider this in detail within (i) the rotational invariant
model object of this work, (model I) detailed both within
the KMM and DGS procedure, and (ii) the direct product
model of Ref. [16] (model II).

Rotational invariant model (model I).—In Eq. (15) we
first perform a change of variables from the spectral rep-
resentation to the momentum representation:

 zi � pi

���������������������
1� 2�p2

p
� 1

�p2 ; with p2 � p � p �
Xn
i

�pi�2:

(A2)

The Jacobian matrix is

 

@zi
@pj

� �ija� 2pipjb;

where

 a �

���������������������
1� 2�p2

p
� 1

�p2 ;

b �
�1� �p2 �

���������������������
1� 2�p2

p
�p4

���������������������
1� 2�p2

p :

The Jacobian of the transformation J turns out to be given
by

 J � detj
@zi
@pj
j � an�1�a� 2bp2�

�

� ���������������������
1� 2�p2

p
� 1

�p2

�
n 1���������������������

1� 2�p2
p :

(a) The KMM procedure for the maximally localized
states.
Equation (15) becomes

 

~�n�� � �
0� �

Z dnp
�2�@�n

� ���������������������
1� 2�p2

p
� 1

�p2

�
n�� 1���������������������

1� 2�p2
p exp

�
�
i
@
�� � � 0� � p

���������������������
1� 2�p2

p
� 1

�p2

�
: (A3)

We remark that the integration is unbounded. The integrand can be expanded in a power series around � � 0:
 

~�n�� � � 0� �
Z dnp
�2�@�n

�
1� �

�
n� 2� �

2
p2 �

i
2@
�� � � 0� � pp2

�
� O��2�

�
exp

�
�
i
@
�� � � 0� � p

�
: (A4)

In the above expression one can make the substitution p! i@r� and thereby perform the momentum integration
obtaining

 

~� n�� � �
0� �

�
1�

2� �
2
�@

����
�

p
�2r2

� � O��2�

�
�n�� � � 0�; (A5)

thus defining for this case the value of the numerical constant � to be given by � � 2� �. We note that the last
expression has been obtained after using identities (due to partial integration) valid for distributions such as

 ��� � � 0� � r��r
2
��

n�� � � 0� � �nr2
��

n�� � � 0�: (A6)

(b) The DGS procedure for the maximally localized states.
Using the maximally localized states of the DGS procedure, one finds in the momentum representation
 

~�n�� � � 0� � C2
n

Z
dnp

� ���������������������
1� 2�p2

p
� 1

�p2

�
n 1���������������������

1� 2�p2
p �J���z��2

z2�

��������z�
������
z�z
p

��
�������������
1�2�p2
p

�1�=�
����
p2
p

� exp
�
�
i
@
�� � � 0� � p

���������������������
1� 2�p2

p
� 1

�p2

�
; (A7)

where again the momentum integration is unbounded and the integrand admits a well-defined series expansion in
powers of �. Using Eq. (21) one finds, similarly to Eq. (A4),

 

~�n�� � �
0� �

Z dnp
�2�@�n

�
1��

�
n� 2� �j�;1�2=n

2
p2�

i
2@
�� � � 0� �pp2

�
�O��2�

�
exp

�
�
i
@
�� � � 0� �p

�
; (A8)
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and performing the momentum integration as before
we end up with
 

~�n�� � �
0� �

�
1�

2� �j�;1�2=n
2

�@
����
�

p
�2r2

�

� O��2�

�
�n�� � � 0�; (A9)

therefore defining for the DGS procedure a value of
the numerical constant � given by � � 2�
�j�;1�2=n.

Direct product model (model II).—We note that while in
Ref. [16] the author announces to study the model

 �x̂i; p̂j� � i@�1� �p̂2��ij; i � 1; . . . ; n;

p̂2 � p̂ � p̂ �
Xn
i

�p̂i�
2;

(A10)

then he uses, as maximally localized states, the direct
product of the one-dimensional states.

More precisely, the proper definition of the direct prod-
uct model (model II) is [23]

 �x̂i; p̂j� � i@�1� �p̂2
i ��ij; i � 1; . . . ; n: (A11)

In this model the closure function is given by
 

~�n����
0� �

Z dnp
�2�@�n

Yn
j�1

1

�1��p2
j �

2

� exp
�
�
i
@
��j��

0
j�

arctan�
����
�
p

pj�����
�
p

�
; (A12)

which factorizes in the product of n, identical, integrals
 

~�n�� � �
0� �

Yn
j�1

Z �1
�1

dp
2�@

1

�1� �p2�2

� exp
�
�
i
@
��j � �

0
j�

arctan�
����
�
p

p�����
�
p

�
(A13)

 �
Yn
j�1

1

@
����
�
p

1

4

sin�xj�

xj � x
3
j=�

2 ; (A14)

with xj � ���j � �
0
j�=�2@

����
�
p
�, while in Ref. [16] it is

found that

 

~� n�� � �
0� �

Yn
i�1

sin�
���j��0j�

2@
���
�
p �

���j � �0j�
�
Yn
i�1

1

@
����
�
p

1

2

sin�xj�

xj
:

We remark that in Ref. [16], in addition to some notational
inconsistencies, the closure function appears to have been
calculated improperly, as the �1� �p2� factor appears in
the denominator only with one power, while it should be
squared, as one such factor is due to the change in the
momentum measure and the other is from the square of the
wave functions of the maximally localized states, see
Ref. [15]. By performing a series expansion in powers of
� of the integrand in Eq. (A12), we end up with the
following:

 

~� n�� � �
0� � �1� 5

3�@
����
�

p
�2r2

� � O��2���n�� � �
0�;

(A15)

which defines for this model � � 10=3, as reported in
Table I.

Let us remark that within this model, given by the direct
product of the one-dimensional algebra discussed in
Sec. II, the KMM procedure gives the exact maximally
localized states and so there is no need to distinguish
between the KMM and DGS procedures [18].

It was, however, important to check that the sign of the
constant � is the same as in model I. Thus, even within the
direct product model, the Casimir-Polder correction due to
the minimal length turns out to be attractive.
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