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The best natural candidates for the realization of color superconductivity are quark stars—not yet
confirmed by observation—and the extremely dense cores of compact stars, many of which have very
large magnetic fields. To reliably predict astrophysical signatures of color superconductivity, a better
understanding of the role of the star’s magnetic field in the color-superconducting phase that is realized in
the core is required. This paper is an initial step in that direction. The field scales at which the different
magnetic phases of a color superconductor with three quark flavors can be realized are investigated. Going
from weak to strong fields, the system first undergoes a symmetry transmutation from a color-flavor-
locked (CFL) phase to a magnetic-CFL (MCFL) phase, and then a phase transition from the MCFL phase
to the paramagnetic-CFL (PCFL) phase. The low-energy effective theory for the excitations of the diquark
condensate in the presence of a magnetic field is derived using a covariant representation that takes into
account all the Lorentz structures contributing at low energy. The field-induced masses of the charged
mesons and the threshold field at which the CFL! MCFL symmetry transmutation occurs are obtained
in the framework of this low-energy effective theory. The relevance of the different magnetic phases for
the physics of compact stars is discussed.
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I. INTRODUCTION

At present, the physics community is actively trying to
find ways to differentiate a neutron star made up entirely of
nuclear matter from one with a color-superconducting [1]
quark matter core. Compact stars typically have very large
magnetic fields. Hence any predicted signature of a color-
superconducting core should take into account the pres-
ence of the star’s magnetic field and its effects in the
superconducting state. Given that magnetars can have sur-
face fields as large as 1014–1016 G [2], it is reasonable to
expect that the star’s interior fields can reach even higher
values. Maximum strengths of 1018–1019 G are allowed by
a simple application of the virial theorem [3].

Although a color superconductor (CS) is, in principle, an
electric superconductor, because the diquark condensate
carries nonzero electric charge, in the color-flavor-locked
(CFL) phase [4] (CFL is the color-superconducting phase
that is realized in a system of three-flavor massless quarks
at high densities) there is no Meissner effect for a new in-
medium electromagnetic field ~A�. This in-medium elec-
tromagnetic field—called, in the literature, a ‘‘rotated’’
electromagnetic field, where the ‘‘rotation’’ takes place in
an inner space—is a combination of the regular electro-
magnetic field and the 8th gluon [4,5]. As the quark pairs
are all neutral with respect to the rotated electromagnetic
charge ~Q, the rotated electromagnetic field ~A� remains
long range within the superconductor.

In this paper we are interested in the color-
superconducting magnetic phases that are realized in a
very dense system of three-flavor massless quarks interact-
ing in the background of a rotated magnetic field ~B. As
shown in Ref. [6], the color-superconducting properties of
such a system are substantially affected by the penetrating

~B field and, as a consequence, a new phase, called the
magnetic color-flavor-locked (MCFL) phase [6], takes
place. In the MCFL phase the pairing of (rotated) electri-
cally charged quarks is reinforced by the field. Pairs of this
kind have bounding energies which depend on the
magnetic-field strength and are bigger than the ones exist-
ing at zero field. At field strengths of the order of the
baryon chemical potential, the pairing reinforcement is
sufficient to produce a distinguishable splitting of the gap
in two pieces: one that only gets contributions from pairs of
neutral quarks and one that gets contributions from both
pairs of neutral and pairs of charged quarks.

Although the symmetry breaking patterns of the MCFL
and CFL phases are different, the two phases are hardly
distinguishable at weak magnetic fields. In the CFL phase
the symmetry breaking is given by

 

G � SU�3�C � SU�3�L � SU�3�R �U�1�B �U�1�e:m:

! SU�3�C�L�R � ~U�1�e:m:: (1)

This symmetry reduction leaves nine Goldstone bosons: a
singlet associated with the breaking of the baryonic sym-
metry U�1�B and an octet associated with the axial SU�3�A
group.

Once a magnetic field is switched on, the difference
between the electric charge of the u quark and that of the
d and s quarks reduces the original flavor symmetry of the
theory and, consequently, also the symmetry group remain-
ing after the diquark condensate is formed. Then, the
breaking pattern for the MCFL phase [6] becomes
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GB � SU�3�C � SU�2�L � SU�2�R �U�1�
�1�
A

�U�1�B �U�1�e:m:

! SU�2�C�L�R � ~U�1�e:m:: (2)

The group U�1��1�A [not to be confused with the usual
anomaly U�1�A] is related to the current which is an
anomaly-free linear combination of s, d, and u axial cur-
rents [7]. In this case only five Goldstone bosons remain.
Three of them correspond to the breaking of SU�2�A, one to
the breaking of U�1��1�A , and one to the breaking of U�1�B.
Thus, an applied magnetic field reduces the number of
Goldstone bosons in the superconducting phase, from
nine to five.

The MCFL phase is not just characterized by a smaller
number of Goldstone fields, but by the fact that all these
bosons are neutral with respect to the rotated electric
charge. Hence, no charged low-energy excitation can be
produced in the MCFL phase. This effect can be relevant
for the low-energy physics of a color-superconducting
star’s core and hence for its transport properties. In par-
ticular, the cooling of a compact star is determined by the
particles with the lowest energy; so a star with a core of
quark matter and sufficiently large magnetic field can have
a distinctive cooling process.

More recently, we have found that the magnetic field can
also influence the gluon dynamics [8]. At field strengths
comparable to the charged gluon Meissner mass, a new
phase can be realized giving rise to an inhomogeneous
condensate of ~Q-charged gluons [8]. The gluon condensate
antiscreens the magnetic field due to the anomalous mag-
netic moment of these spin-1 particles. Because of the
antiscreening, this condensate does not give a mass to the
~Q photon, but instead amplifies the applied rotated mag-
netic field. This means that at such applied fields the CS
behaves as a paramagnet; thus we named this phase the
paramagnetic-CFL (PCFL) phase [9]. This last effect is
also of interest for astrophysics. Compact stars with color-
superconducting cores could have larger magnetic fields
than neutron stars made up entirely of nuclear matter,
thanks to the gluon vortex antiscreening mechanism.

The above state of affairs underlines the need to discern
the scales and field strengths at which one or another
magnetic phase is physically relevant. If one ignores the
quark masses, the main scales of the color superconductor
are the baryon chemical potential �, the dynamically
generated gluon mass mg � g�, and the gap parameter
�� �

g5 e��=g, with � a constant that is dominated by

magnetic gluon exchanges [10]. We can assume that, at
sufficiently high�, the running strong coupling g becomes
g��� � 1, so the hierarchy of the scales is �� mg � �.
The main purpose of this paper is to elucidate how the
different magnetic phases are related to the fundamental
scales of the CS.

The plan of the paper is as follows. In Sec. II we develop
the CFL low-energy effective theory in a magnetic back-
ground using a Lorentz covariant formalism. In this deri-
vation the rotated magnetic field is introduced only through
covariant derivatives, thus preserving the ~U�1�e:m: gauge
invariance. The threshold rotated magnetic field that de-
couples the charged mesons from the low-energy theory is
found in Sec. III. In Sec. IV we discuss how the different
magnetic phases are realized in a hierarchical order deter-
mined by the main energy scales of the CS. In the con-
cluding remarks we state the major outcomes of the paper
and discuss possible astrophysical implications of the real-
ization of a PCFL-like phase at moderate densities.

II. LOW-ENERGY EFFECTIVE THEORY IN A
MAGNETIC BACKGROUND

The physics at energies below the lower scale � can be
explored by constructing the effective low-energy theory in
the presence of a rotated magnetic field. Since in the CFL
phase all the fermions are gapped and all the gluons have
dynamically generated masses, the low-energy theory of
the CS is governed by the Goldstone modes arising from
the breaking of the global symmetries in the presence of a
magnetic field.

As discussed in the Introduction, once a magnetic field is
present, the original symmetry group G is reduced, due to
the different electric charges of the quarks, to GB. One
would think that the low-energy theory should correspond
to the breaking pattern (2), and hence be described by five
neutral Goldstone bosons. However, it is clear that at very
weak magnetic fields the symmetry of the CFL phase can
be treated as a good approximated symmetry, meaning that
at weak fields the low-energy excitations are essentially
governed by nine approximately massless scalars [those of
the breaking pattern (1)] instead of five.

A question of order here is the following: what do we
exactly understand as a very weak magnetic field? In other
words, what is the threshold-field strength that effectively
separates the CFL low-energy behavior from the MCFL
one? A fundamental clue in this direction will come from
the determination of the term in the low-energy CFL
Lagrangian that can generate a field-induced mass for the
charged Goldstone fields, disconnecting them from the
low-energy dynamics at some field strength and thereby
effectively reducing the number of Goldstone bosons from
the nine of the CFL phase to the five of the MCFL phase. A
similar approach was previously followed in Ref. [11].
Nevertheless, as it will become clear below, our treatment
and results will differ from those previously obtained.

Our strategy will consist of writing the effective low-
energy Lagrangian for the Goldstone bosons correspond-
ing to the CFL breaking pattern (1), but in the presence of
an external ~B field, that is, ignoring the explicit breaking
introduced by the electromagnetic interaction. To ensure
that this Lagrangian is ‘‘invariant’’ with respect to the
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original group of the CFL case, one treats the charge
operator as a spurion field [11] and assume it transforms
conveniently under left/right flavor symmetries, as well as
under the color symmetries, depending on whether the
operator appears with flavor or color indices, as it will be
shown below.

There are two important points that separate our treat-
ment from previous works. One is that we give the general
form of the low-energy Lagrangian in an arbitrary refer-
ence frame; that is, we introduce all the possible covariant
structures that can be formed at finite density and in the
presence of an external magnetic field. When taken in the
rest frame, the Lagrangian naturally reproduces the differ-
ent Lorentz structures that characterize the problem with
an external magnetic field at finite density. The other is
that, when proposing the allowed terms of the low-energy
Lagrangian, we take into account that the coupling of the
charged mesons with a rotated electromagnetic field can be
traced back to the coupling of the fermions with the field.
This coupling only occurs within a covariant derivative to
preserve the gauge invariance of the theory under the ~U�1�
group. Then, the coupling between the Goldstone bosons
and the rotated electromagnetic field always occurs within
a covariant derivative too. We will show that, in this ~U�1�
gauge invariant approach, the charged Goldstone bosons
acquire field-induced masses that appear at the leading
order of the low-energy theory.

To find the effective low-energy theory, we can follow a
similar method to that used at zero field in Refs. [12,13].
We start by introducing two scalar fields which describe
the fluctuations of the diquark condensates, and are asso-
ciated with left and right order parameters:

 Xai � �abc�ijkh bjL  
ck
L i
y; Yai � �abc�ijkh bjR  

ck
R i
y

(3)

where i, j, k denote flavor indices, a, b, c denote color
indices, and L=R denote left/right chirality, respectively.
Under an SU�3�C � SU�3�L � SU�3�R rotation, the above
fields transform as

 X ! gCXg�
L ; Y ! gCYg�

R ; (4)

with gC 2 SU�3�C and gR=L 2 SU�3�R=L. The expectation
values of the X and Y fields define the ground state of the
CFL phase which produces the symmetry breaking
SU�3�C � SU�3�L � SU�3�R ! SU�3�C�L�R.

We are interested in the fluctuations of the phases of the
order parameters. Therefore, we can factor out the norm of
the order parameters in (4) and work with unitary X and Y
scalar fields. Although the axial group U�1�A is anomalous
at low densities, it becomes an approximate symmetry at
high densities due to the suppression of the instanton
interactions that produce the anomaly. Nevertheless, in
our derivations neither the pseudo Goldstone mode asso-
ciated with the breaking of this group, nor the Goldstone
mode associated with the U�1�-baryon symmetry breaking

will be considered, as these bosons are both neutral with
respect to the rotated electromagnetic charge, and therefore
irrelevant for the analysis of the present paper (we refer the
interested reader to Ref. [13] to find out the contributions
of these modes to the low-energy theory; see also Ref. [14]
for the diquark excitations of the CFL ground state at zero
magnetic field in the framework of a Nambu-Jona-Lasinio
model).

We can introduce the Goldstone canonical fields

 X � ei�
a
XTa ; Y � ei�

a
YTa ; a � 1; . . . ; 8 (5)

with Ta being the SU�3� generators normalized to satisfy

 Tr 	Ta; Tb
 �
1
2�ab: (6)

Thus, X and Y together contain a total of 16 scalar fields.
Strictly speaking, only eight of them are genuine
Goldstone bosons, that is, massless scalar fields associated
with the breaking of global symmetries. The other eight are
Higgs fields related to the spontaneous breaking of the
color gauge group SU�3� that gives mass to the gluons
and therefore can always be eliminated from the theory by
choosing a convenient (unitary) gauge [13]. Since these
considerations remain valid in the presence of the external
magnetic field, we will work in the unitary gauge and
concentrate our analysis on the derivation of the low-
energy theory for the genuine Goldstone bosons.

At zero magnetic field, the low-energy theory of the
Goldstone bosons associated with the global symmetries
can be written [12] as

 L � �
f2
�

4
Tr	�J�X � J

�
Y �

2
 (7)

with currents J�X and J�Y defined by

 J�X � X@�Xy; J�Y � Y@�Yy: (8)

Notice that (7) does not take into account the breaking of
the Lorentz invariance due to the finite density. The lack of
Lorentz invariance was later incorporated in Ref. [12] by
manually assigning different coefficients in front of the
temporal and spatial derivative terms.

Using (4), we can verify that the currents JX and JY
transform as

 J�X ! gCJ
�
Xg
y
C; J�Y ! gCJ

�
Y g
y
C: (9)

The Lagrangian density (7) contains the leading (sec-
ond) order in derivative terms invariant under the
SU�3�C � SU�3�L � SU�3�R rotations.

Two important changes occur when a ~B field is switch
on. First, the derivatives should be replaced by covariant
derivatives containing the rotated electromagnetic poten-
tial ~A� associated with the magnetic field ~B. Second, the
number of fundamental tensors available in the theory
increases, because of the extra tensor ~F��. As a conse-
quence, we can construct an effective theory containing a
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larger number of independent terms which are quadratic in
the (covariant) derivative.

The covariant derivative should be consistent with the
fact that the vacuum expectation values of the diquark
fields, which only get contribution from the diagonal ele-
ments of the order parameter matrix, are all neutral in the
rotated charge. We can generically denote the 3� 3 order
parameter matrix by �. Taking into account that a rotated
electromagnetic field is a combination of the 8th-gluon
field and the conventional electromagnetic field and that
each element of the order parameter matrix carries an
electric charge equal to the sum of the electric charges of
the quarks forming the corresponding pair, we can write
the covariant derivative as

 	@� � igG8
��T8 � 1� � ieA��1�Q��
�

�

�
@� �

i
���
3
p

2
gG8

��Q� 1� � ieA��1�Q�
�

� (10)

where the direct products denote �color� flavor�. Q� is
the conventional electromagnetic charge operator of the
quark pairs in the quark representation �s; d; u�. In this
representation the first column of � will have �d; u� pairs,
the second �s; u� pairs, and the third �s; d� pairs. Hence
Q� � diag�1=3; 1=3;�2=3�. Both the T8 generator of the
SU�3� group and the usual quark charge operator Q �
diag��1=3;�1=3; 2=3� are connected to Q� through the
relations T8 � �

���
3
p
=2�Q� � ��

���
3
p
=2�Q.

Taking into account that ~A� � A� cos��G8
� sin�,

where � is the mixing angle [4], Eq. (10) can be rewritten
as

 �@� � i~e ~A� ~Q�� (11)

where ~e � e cos� � �
���
3
p
=2�g sin�, and ~Q � �1�Q�

Q� 1� is the rotated electric charge operator. As expected,
the charge operator ~Q assigns zero rotated charge to the
diagonal elements of �. Notice that we do not keep the
orthogonal combination ~G8

� � A� sin��G8
� cos�, as the

field ~G8
� acquires a mass larger than �CFL, so it decouples

from the low-energy theory.
The straightforward generalization of the currents (8) to

the case with nonzero rotated magnetic field should be
done by substituting the derivative in (8) by the covariant
derivative (11). Taking into account that XXy � 1, one can
write the left current as

 �~J�X �ab � Xai�@
��ij � i~e ~A�Qij�X

y
jb � i~e ~A�Qab

� X�@�Xy � i~e ~A�QLXy� � i~e ~A�QC (12)

where we introduced the notationsQC andQL to keep track
of whether the operator Q is an operator in color or (left)
flavor space. A similar expression can be found for the
right current ~J�Y , with the obvious substitution X ! Y and
QL ! QR.

As mentioned above, once a magnetic field is present
one has an extra tensor in the system that allows one to
create new structures in Lorentz space. Working in a co-
variant way, the leading order low-energy Lagrangian den-
sity can be written as

 L � �
f2
�

4
Tr	�~J�X � ~J�Y ��~J

�
X � ~J�Y����
 (13)

with

 ��� � C1g�� � C2u�u� � C3F̂��F̂�� (14)

being the most general Lorentz structure that can be
formed with the vectors and tensors available at low en-
ergies. In (14) we considered the normalized electromag-
netic tensor F̂�� �

1
j ~Bj

~F��, in addition to the usual metric
tensor g�� and the vector four-velocity of the center of
mass of the dense medium u�. The Ci’s are just constant
coefficients. In this covariant representation the magnetic
field can be expressed as ~B� �

1
2"���	u

� ~F�	. In the rest
frame, u� � �1; 0; 0; 0�, and the electromagnetic tensor
becomes ~F�� � ~B��1��2 if we assume a magnetic field
pointing along the third spatial direction. In the absence of
a magnetic field, the coefficient C3 is taken equal to zero
and the Lagrangian density (13) reduces in the rest frame to
that introduced in Refs. [12,13], where the system was not
Lorentz invariant due to the finite density (u� � 0), but it
kept the rotational symmetry. In the presence of a magnetic
field the structure associated with C3 naturally separates
between modes longitudinal and transverse to the field. A
linear term in F̂�� is forbidden, since it would violate the
theory CP invariance. Notice that in the leading (second)
order in derivatives we do not need to introduce the mo-
mentum k� in the structures contributing to (14).

Notice that the flavor symmetry SU�3�L � SU�3�R is
explicitly broken by the electromagnetic coupling in
(13). So, strictly speaking, (13) is invariant under GB but
not under G. However, one can make the theory invariant
under the original group G if we treat the charge operators
as spurion fields and assume that they transform as

 QL ! g�LQ
Lg�

L ; QR ! g�RQ
Rg�

R ;

QC ! gCQCgyC:
(15)

Using these transformations, one can show that the new
currents transform under G in the same way as the currents
at zero field:

 

~J �X ! gC~J�Xg
y
C; ~J�Y ! gC~J�Y g

y
C (16)

yielding to the invariance of (13) under G.
Following Ref. [12], we now introduce the color singlet

 � � YyX; (17)

which transforms under SU�3�C � SU�3�L � SU�3�R as
�! g�R�g>L . In terms of � the Lagrangian density (13)
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can be written as

 L �
f2
�

4
Tr	�D����D���y���
 (18)

where the covariant derivative acting on � is

 D�� � @��� i~e ~A��Q
R�� �QL�: (19)

In the rest frame, (18) becomes

 L �
f2
�

4
	Tr�D0���D0�y� � v2

? Tr�D?���D?�y�

� v2
k

Tr�Dk���Dk�y�
; (20)

showing the expected separation between longitudinal Dk
and transverse D? (to the field) components of the cova-
riant derivatives, a direct consequence of the partial break-
ing of the rotational symmetry in the presence of the
magnetic field. The decay constant f� and the meson
maximum velocities v? and vk are parameters to be com-
puted from the microscopic theory. They can, in general,
depend on the baryonic chemical potential and the applied
magnetic field. In the weak-field limit (eB� �2), at
asymptotically large values of the chemical potential �,
they can be approximated by their zero-field values [13]

 f2
� �

21� 8 ln2

18

�2

2�2 ; v? � vk �
1���
3
p : (21)

As we shall see in the next section, the low-energy
theory (20) supports the generation of field-dependent
masses for the charged mesons at fields larger than a
threshold value, even though no quadratic-in- ~B term, like
the one proposed in Ref. [11] [Eq. (2.16)], is present at the
leading order. To understand this, one should keep in mind
that the interaction between � and the electromagnetic
field always occurs through the covariant derivative. To
generate a quadratic-in- ~B (and quadratic-in-Q) term, one
needs to consider a higher order contribution involving
four covariant derivatives,

 

Z
d4xTr	�D����D���y�D����D	��yF̂��F̂�	
: (22)

Using (we dropped total derivatives)
 

D���D���yF̂�� �
1

2
F̂��	i~e ~F���QR � �QL�y�

� 2i~e ~A��QR�@��y ��@��yQR�

� 2��@��y�@�
; (23)

it can be straightforwardly shown that the term proposed in
[11],

 

Z
d4x~e2 ~B2 Tr	QR�QL�y
; (24)

is just one of the several terms coming out of (22).
However, as proved below, the threshold field for the

decoupling of the charged mesons will be determined by
a contribution more relevant than (24).

III. CFL-MCFL THRESHOLD FIELD

The unitary matrix � can be parametrized in terms of the
elementary Goldstone bosons 
A as

 � � exp
�
i

ATA

f�

�
; A � 1; . . . ; 8; (25)

where TA are the SU�3� generators. Expanding (25) up to
linear terms in the fields, we can write (19) as a sum of
covariant derivatives for the 
A fields,

 D�� �
i
f�

�X3

A�1

TA@�
A � T8@�
8 �
X


��@�

 i~e ~A���
 �

X


��@�  i~e ~A���


�
(26)

where

 � �
1���
2
p 	
4 � i
5
; � �

1���
2
p 	
6 � i
7
; (27)

 � �
1���
2
p 	T4  iT5
; � �

1���
2
p 	T6  iT7
 (28)

and the rotated electromagnetic potential is taken in the
Landau gauge

 

~A� � �0; 0; ~Bx; 0�: (29)

From (20), the low-energy Lagrangian for the Goldstone
bosons can be written
 

L �
Z
d4x

�
1

4

�X3;8
A�1

j@0
Aj2 � j@0�j2
�

�
v2
k

4

�X3;8
A�1

j@k
Aj2 � j@k�j2
�

�
v2
?

4

�X3;8
A�1

j@?

Aj2 � j�@? � i~e ~A?��j

2

��
(30)

where we introduced the charged meson doublet

 � �
��

��

� �
: (31)

The Lagrangian (29) represents the CFL low-energy
theory in the presence of a weak (k2 � ~e ~B� �2) constant
magnetic field. Now we are ready to determine the strength
of the threshold field for which the effective symmetry
transmutation from CFL to MCFL occurs.

For that aim, it is convenient to work in momentum
space. Transforming to momentum space in the presence
of the magnetic field can be done by applying to the scalar
fields the same method originally developed for fermions
in [15] and later extended to vector fields in [16]. In this
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approach the transformation to momentum space can be
carried out using the wave functions Sk�x� of the asymp-
totic states of the charged mesons in a uniform magnetic
field. These functions play the role in the magnetized
medium of the usual plane-wave (Fourier) functions eipx

at zero field. Then, for the charged field � we have

 ��k� �
Z
d4xSk�x���x� (32)

where

 Sk�x� �N exp�ik0x
0 � ik2x

2 � ik3x
3�Dn��� (33)

with Dn��� being the parabolic cylinder functions with the

argument % �
�������������
2j~e ~B j

p
�x1 � k2=~e ~B�, N the normaliza-

tion constant [N � �4�j~e ~B j�1=4=
�����
n!
p

], and n � 0; 1; . . .
denoting the Landau levels. It is easy to check that the
transformation functions (32) satisfy the orthonormality
condition

 

Z 1
�1

d4xSk�x�Sk0 �x� � �2��
4�̂�k0 � k� (34)

where �̂�k0 � k� � ��k00 � k0���k
0
2 � k2���k

0
3 � k3��n0n.

Using this transformation in (30) we can derive the
Klein-Gordon equation for the charged mesons in momen-
tum space,

 	k2
0 � ~e ~B�2n� 1�v2

? � k
2
3v

2
k

��k� � 0; (35)

and from it the corresponding dispersion relation

 E2 � ~e ~B�2n� 1�v2
? � k

2
3v

2
k
: (36)

We see that at zero momentum (k3 � 0, n � 0) the rest
energy of the charged mesons is M2

~B
� ~e ~Bv2

?, meaning
they acquire a mass induced by the magnetic field. For a
meson to be stable, its mass should be less than twice the
gap; otherwise it will decay into a quasiparticle-quasihole
pair. Here we are assuming that the interactions between
the Goldstone bosons and the quasiparticles are described
by a Yukawa term that originates within a NJL-type model.
Some authors (see [17] for details) have argued that the
microscopic structure of the NG bosons in the CFL phase
should be that of a quartic-quark state. In the quartic-quark
picture the threshold would presumably be 4 times the gap
energy. Within the NJL approach, the number of Goldstone
bosons effectively changes when the magnetic field
reaches the threshold value

 ~e ~BMCFL �
4

v2
?

�2
CFL ’ 12�2

CFL: (37)

Here we used the weak-field approximation v? ’ 1=
���
3
p

[13]. At fields equal to or larger than this threshold field,
the CFL symmetry can no longer be treated as a good
approximated symmetry. Contrary to the result found in
[11], our threshold field does not depend on the decay
constant f�; therefore it depends on � only through

�CFL. The f� dependence found in [11] is a direct con-
sequence of considering a subleading contribution in the
derivation of the threshold-field value, as previously
shown.

For �CFL � 15 MeV we get ~e ~BMCFL � 1016 G. At these
field strengths, the charged mesons decouple from the low-
energy theory. When this decoupling occurs, the five neu-
tral Goldstone bosons (including the one associated with
the baryon symmetry breaking) that characterize the
MCFL phase will drive the low-energy physics of the
system. Therefore, going from low to higher fields, the
first magnetic phase that effectively shows up in the mag-
netized system will be the MCFL, even though at fields
near the threshold field the splitting of the gaps found at
much stronger fields [6] may still be negligible.

We underline that the phenomenon occurring at the
threshold field (37) is not a phase transition, as no symme-
try is broken there. At any nonzero magnetic-field strength,
below or above the threshold field (37), the symmetry of
the system is, strictly speaking, that of the MCFL.
However, at ~B< ~BMCFL the charged Goldstone bosons
are so light that the observable impact of the smaller
symmetry of the MCFL phase, compared to that of the
CFL phase, is irrelevant and the nine Goldstone bosons of
the CFL phase provide a good approximated description of
the low-energy physics. Based on these considerations we
choose to call the CFL-MCFL transition a symmetry
transmutation.

On the other hand, it is worth calling attention to the
analogy between the CFL-MCFL transmutation and what
could be called a ‘‘field-induced’’ Mott transition. Mott
transitions were originally considered in condensed matter
in the context of metal-insulator transitions in strongly
correlated systems [18]. Later on, Mott transitions were
also discussed in QCD to describe delocalization of bound
states into their constituents at a temperature defined as the
Mott temperature [19]. By definition, the Mott temperature
TM is the temperature at which the mass of the bound state
equals the mass of its constituents, so the bound state
becomes a resonance at T > TM. In the present work, the
role of the Mott temperature is played by the threshold field
~BMCFL. Mott transitions typically lead to the appearance of
singularities at T � TM in a number of physically relevant
observables. It is an open question worth investigating
whether similar singularities are or are not present in the
CFL-MCFL transmutation at ~BMCFL.

IV. ~B VS � PHASES IN A COLOR
SUPERCONDUCTOR WITH THREE QUARK

FLAVORS

What will happen if we keep increasing the magnetic
field until it reaches the next energy scale g�? As is known
[8], due to the interaction of the applied magnetic field with
the charged gluon anomalous magnetic moment
(i~e~f��G��G�� ), once ~B � ~BPCFL � m2

M, with mM � g�
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being the magnetic mass of the charged gluons, one of the
modes of the charged gauge field becomes tachyonic (this
is the well-known ‘‘zero-mode problem’’ for spin-1
charged fields in the presence of a magnetic field found
for Yang-Mills fields [20], for the W� bosons in the
electroweak theory [21,22], and even for higher-spin fields
in the context of string theory [23]). Similarly to other spin-
1 theories with magnetic instabilities [20–22], the solution
of the zero-mode problem leads to the restructuring of the
ground state through the formation of an inhomogeneous
gauge-field condensate G, as well as an induced magnetic
field due to the backreaction of the G condensate on the
rotated electromagnetic field. The magnitude of the G
condensate plays the role of the order parameter for the
phase transition occurring at ~B � ~BPCFL. Near the transi-
tion point, the amplitude of the condensate G is very small
[8]. Then, the condensate solution can be found using a
Ginzburg-Landau (GL) approach similar to Abrikosov’s
treatment of type II metal superconductivity near the criti-
cal field Hc2 [24]. As in Abrikosov’s case, the order pa-
rameter jGj continuously increases from zero with the
applied magnetic field, signalizing a second-order phase
transition towards a gluon crystalline vortex state charac-
terized by the formation of flux tubes. Both spatial sym-
metries—the rotational symmetry in the plane
perpendicular to the applied magnetic field and the trans-
lational symmetry—are broken by the vortex state.

It turns out that, contrary to what occurs in conventional
type-II superconductors, where the applied magnetic field
only penetrates through flux tubes and with a smaller
strength than that of the applied field, the gluon vortex
state exhibits a paramagnetic behavior. That is, outside the
flux tube the applied field ~B totally penetrates the sample,
while inside the tubes the magnetic field becomes larger
than ~B. This antiscreening behavior is similar to that found
in the electroweak system at a high magnetic field [22].
Hence, since the ~Q photons remain long range in the
presence of the condensate G, the ~U�1�e:m: symmetry re-
mains unbroken. At asymptotically large densities, be-
cause �CFL � mM, we have ~BMCFL � ~BPCFL for each �
value.

At fields ~B * �2 the density of states on the Fermi
surface of the charged quarks will be larger than that of
neutral quarks [6]. Because of the different density of
states, the magnitude of the gap receiving contributions
from pairs of rotated charged quarks will split from the
magnitude of the gap receiving contributions only from
pairs of rotated neutral quarks, as is shown to happen,
without taking into account the vortex state, in Ref. [6].
The splitting of the gaps at this scale, however, would not
break any new symmetry that has not already been broken
at much lower scales. Hence, no new phase transition
occurs at fields of order �2.

For fields much larger than �2, i.e. sufficiently strong as
to surpass all the energy scales of the system, the quark

infrared dynamics will become predominant, and the phe-
nomenon of magnetic catalysis of chiral symmetry break-
ing [25] will be activated, producing a phase that favors
quark-antiquark condensates over quark-quark conden-
sates. However, the exploration of this region goes beyond
the scope of this paper.

Figure 1 provides a qualitative sketch of the magnetic
phases that exist at asymptotically high densities in the
framework of a three-flavor color superconductor. In that
region, at very weak magnetic fields, the color-
superconducting state is practically described by the CFL
phase, because the charged mesons, although massive, are
so light that they cannot decay in pairs of quasiparticle-
quasihole. When the field strength is of the order of the
quarks’ energy gap, the charged mesons become heavy
enough to decouple and the low-energy physics is indeed
that of the MCFL phase, where five neutral massless
bosons drive the low-energy behavior. At fields compa-
rable to the magnetic masses of the charged gluons, a
chromomagnetic instability is developed for these gluons,
leading to the formation of a vortex state and the antiscre-
ening of the magnetic field [8,9]. The vortex state breaks
the translational symmetry, as well as the remaining rota-
tional symmetry in the plane perpendicular to the applied
magnetic field; hence the vortex formation corresponds to a
phase transition from the MCFL to a PCFL phase.

FIG. 1 (color online). Qualitative sketch in the ~B vs �2 plane
of the different phases of a color superconductor with three
quark flavors in the presence of an external magnetic field at
asymptotically high densities. The CFL phase appears here as an
approximate symmetry at the weak field. Thus, the line between
the CFL and MCFL phases does not denote a real phase
transition, but the boundary separating the approximated CFL
phase from the MCFL phase. This symmetry-transmutation line
is reached at field values of the order of the CFL gap square. The
line between the MCFL and PCFL phases indicates a second-
order phase transition curve occurring at field strengths of the
order of the square of the magnetic mass of the charged gluons.
The rectangular region to the left corresponds to moderately high
densities in the presence of a magnetic field. Since the ground
state at moderately high densities has not yet been investigated in
the presence of a magnetic field, this region is indicated by
question marks.
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The chemical potential �CFL in Fig. 1 is used to sche-
matically separate the regions where the effects of an
s-quark mass Ms can (right of �CFL) or cannot (left of
�CFL) be neglected. The region of moderately high den-
sities to the left of �CFL along the zero-magnetic-field line
has been subjected to intense scrutiny in the literature [26–
32], as this is the most important region for applications of
CS in realistic systems such as compact stars. A main
problem has been to find the stable phase at these moder-
ately high densities. Despite many clever propositions that
include a modified CFL phase with a condensate of kaons
[29], a LOFF phase on which the quarks pair with nonzero
total momentum [30], as well as homogeneous [31] and
inhomogeneous [32] gluon condensate phases, it is still
unclear which of these phases produces the lowest free
energy. Given that nobody has yet studied this question at a
finite magnetic field, we choose to indicate it in the figure
with question marks.

V. CONCLUDING REMARKS

Summarizing, in a color superconductor with three-
flavor quarks at very high densities, an increasing magnetic
field produces a phase transmutation from CFL to MCFL
first, and then a phase transition from MCFL to PCFL.
During the phase transmutation no symmetry breaking
occurs, since, in principle, once a magnetic field is present
the symmetry is theoretically that of the MCFL, as dis-
cussed above. However, in practice, for ~B< ~BMCFL �
�2

CFL the MCFL phase is almost indistinguishable from
the CFL. Only at fields comparable to �2

CFL do the main
features of the MCFL phase emerge through the low-
energy behavior of the system. At the threshold field
~BMCFL, only five neutral Goldstone bosons remain out of
the original nine characterizing the low-energy behavior of
the CFL phase. These are precisely the five Goldstone
bosons determining the new low-energy behavior of the
genuinely realized MCFL phase. Going from the MCFL to
PCFL phase is, on the other hand, a real phase transition
[8], as the translational symmetry as well as the remaining
rotational symmetry in the plane perpendicular to the
applied magnetic field are broken by the vortex state.

Throughout this paper we have ignored the effects due to
quark masses because we assumed very large baryon den-
sity. However, the densities of interest for most astrophys-
ical applications are just moderately high. At moderate
densities the s-quark mass can and does play an important
role [26]. In this case, the color superconductor develops
chromomagnetic instabilities even in the absence of an
external magnetic field [27]. At even lower densities,
where the s quark decouples due to its larger mass, a
two-flavor color superconductivity—the so-called 2CS
phase—is realized. In this phase, when color neutrality
and  equilibrium conditions are imposed, some chromo-
magnetic instabilities can also develop at certain density
values [28]. Finding the stable superconducting ground

state at moderate densities is one of the main objectives
in the field at the present moment [29–32]. The under-
standing of this problem in the presence of a magnetic
field, which no doubt is another crucial player in the
physical scenario of a compact star, is also an important
open question. In this regard, as discussed in Ref. [32], the
removal of the chromomagnetic instabilities found at mod-
erate densities in the two-flavor system may be related to
the spontaneous generation of an inhomogeneous gluon
condensate with a corresponding induced magnetic field. If
this proposition is proved to be correct also for the three-
flavor case, the star’s core could be in a PCFL-like mag-
netic phase, even if the core’s original magnetic field is
zero or relatively low. That is, the PCFL-like phase will not
be triggered by instabilities produced at a critical value of
some preexisting inner magnetic field, but by instabilities
connected to the interplay of the neutrality conditions and
the s-quark mass at some baryon density. An interesting
consequence of a PCFL core is that a star’s core in this
phase can generate and/or boost its inner magnetic field.
Exploring the magnetic phases that are realized at realistic
densities is an important pending task.

It is plausible that, if compact stars are the natural
playground for color superconductivity, the magnetic
phases described in this paper, or more precisely, the
version of these phases at more realistic densities, may
be relevant for the physics of the core of highly magnetized
compact objects like magnetars [2,33], and the so-called
central compact objects (CCO) [34]. CCO are pointlike
sources located near the center of supernova remnants that
cannot be identified as active radio pulsars or magnetars
[34]. Some of them may have magnetar’s strength B fields
and much smaller radii. For typical neutron star masses
�1:4M�, a smaller radii means a denser star core; the
denser the core, the greater the chance it can be in a
color-superconducting phase. Magnetars’ surface magnetic
fields are typically in the range of 1014 G–1016 G, and the
fields at their much denser cores can probably reach even
larger values. Any of these compact objects could be a
candidate for the realization of a color-superconducting
phase in a highly magnetized background.

Moreover, the standard explanation of the origin of the
magnetars’ large magnetic fields cannot explain all the
features of the supernova remnants surrounding these ob-
jects [35,36]. Magnetars are supposed to be created by a
magnetohydrodynamic-dynamo mechanism that amplifies
a seed magnetic field due to a rapidly rotating (spin period
<3 ms) protoneutron star. Part of this rotating energy is
supposed to power the supernova through rapid magnetic
braking, implying that the supernova remnants associated
with magnetars should be an order of magnitude more
energetic than typical supernova remnants. However, re-
cent calculations [35] indicate that their energies are simi-
lar. In addition, one would expect that, when a magnetar
spins down, the rotational energy output should go into a

EFRAIN J. FERRER AND VIVIAN DE LA INCERA PHYSICAL REVIEW D 76, 045011 (2007)

045011-8



magnetized particle wind of ultrarelativistic electrons and
positrons that radiate via synchrotron emission across the
electromagnetic spectrum. Nevertheless, so far no one has
detected the expected luminous pulsar wind nebulae
around magnetars [37].

Although more observations are needed to confirm the
above, current observations indicate that alternative mod-
els to the standard magnetar model [2] need to be consid-
ered. For example, some authors [35] have suggested that
magnetars could be the outcome of a stellar progenitor with
highly magnetized cores. A progenitor star with a PCFL-
like core would be capable of inducing and/or enhancing
the star’s magnetic field due to the antiscreening mecha-
nism inherent to this color-superconducting phase [8,9],
and as such provides an alternative to the observational
conundrum of the standard magnetar paradigm [2].

Only after the stable color-superconducting phase at
moderate densities is well established with and without
an external magnetic field will we be in a well-grounded
position to investigate and reliably predict observable sig-
natures of color superconductivity in compact stars.
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