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A new kind of delta expansion is applied on the lattice to the d � 2 nonlinear � model at N � 1 and
N � 1 which corresponds to the Ising model. We introduce the parameter � for the dilation of the scaling
region of the model with the replacement of the lattice spacing a to �1� ��1=2a. Then, we demonstrate
that the expansion in � admits an approximation of the scaling behavior of the model at both limits of N
from the information at a large lattice spacing a.
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I. INTRODUCTION

It is an outstanding problem to construct a systematic
computational framework to study nonperturbative aspects
of quantum fields. Lattice field theories initiated by Wilson
[1] allow us to use the strong coupling expansion which is
mathematically equivalent with the high temperature ex-
pansion in condensed matter physics. However, the results
do not necessarily provide us, at least in the quantitative
sense, the corresponding results in continuum space-time
since the strong coupling expansion on the lattice usually
breaks down at small lattice spacings. Nevertheless the fact
that the strong coupling expansion on the lattice clarified
various nonperturbative properties of quantum fields such
as the quark confinement serves us enough motivation to
investigate the possibilities of improving it to be effective
on the approximation of physics in the continuum limit.

As an attempt toward the improvement of the strong
coupling expansion on the lattice, we propose a new com-
putational scheme which may be considered as an alter-
native to the ordinary delta expansion [2,3]. We introduce
� as the parameter to dilate the scaling region of a given
lattice model with the replacement of the lattice spacing a
to �1� ��1=2a. As long as � can be tuned to some values
close to unity, the lattice spacing a may be kept large
enough in calculating physical quantities near the contin-
uum limit. Further we perform the expansion in � to finite
orders and set � � 1 in the end of the calculation. Thus,
our approach has some similarities with the ordinary delta
expansion, and we use the term ‘‘delta expansion’’ to refer
to our method. We emphasize that our delta expansion on
the lattice needs no extra parameter and the principle of
minimum sensitivity [4], both of which play, in the ordi-
nary delta expansion, important but somewhat artificial
roles to produce nontrivial results.

To investigate and explore the above idea, we apply our
method to the d � 2 nonlinear � model on the lattice,
which is also called an N-vector model. In the present
paper, we focus on two extreme cases, N � 1 and N �
1, which correspond to the Ising model. The model can be

exactly solved in the large N limit, so we can examine to
what extent our proposal is effective both in the qualitative
and quantitative sense. The N � 1 case is also of interest,
since the Ising model at d � 2 serves us a good testing
ground of analyzing phase transition at nonzero
temperature.

II. DELTA EXPANSION IN SIMPLE EXAMPLES

To illustrate our strategy, we first study two simple
examples.

A. Example 1

Consider the problem of approximating the value of
��0� where ��x� is given as a finite series in 1=x;

 ��x� �
1

x
�

1

x2 �
1

x3 � � � �

�
�

1

1� x

�
:

We introduce � by the replacement of x to x�1� �� (0 �
� � 1) in ��x�, resulting in a new function of two varia-
bles � and x, ��x�1� ���. Note that we can make the
region around x � 0 of ��x� wider by setting the value of
� as close to 1. Then, if we can construct a truncated series
of ��x�1� ��� in 1=x and � and it is effective at x > x� 	
O�1�, the series would provide us the information on ��0�
as long as �	 1. Here, we stress that for the plan to work
the factor 1� � must be expanded in �. As a systematic
expansion of ��x�1� ��� effective at large x and small �,
we employ the ordinary expansion in both variables around
1=x � � � 0. Then the nth order approximant of ��x�1�
���, denoted as ~�n�x; ��, is written formally by

 

~� n�x; �� � c�
X
�

c�z� � � � �

�
X

�1;�2;���;�n

c�1;�2;���;�n
z�1
z�2
� � � z�n

;

where z1 � 1=x and z2 � �. For example, when n � 3, we
have

 

~� 3�x; �� �
1

x
�1� �� �2� �

1

x2 �1� 2�� �
1

x3 :

In general, it is efficient to obtain the above expansion in*yamada.hirofumi@it-chiba.ac.jp
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the following manner: Consider

 �n�x� �
1

x
�

1

x2 � � � � �
��1�n�1

xn
:

First shift x to x�1� �� and expand �n�x�1� ��� in � to
the relevant order. For example the term x�r should be
expanded to the order �n�r, giving x�r ! x�r�1� r��

� � � � �n�1�!
�r�1�!�n�r�!�

n�r�. Setting � � 1 which means the
infinite dilation, we then have

 

1

xr
!

n!

r!�n� r�!
1

xr
�

n
r

� �
1

xr
� D

�
1

xr

�
: (2.1)

From now on we use the symbolD as the operation of delta
expansion to the relevant order with the setting � � 1
understood. To the order n we therefore obtain

 

~� n�x; 1� � D
�

1

x
�

1

x2 �
1

x3 � � � � �
��1�n�1

xn

�

�
Xn
r�1

��1�r�1 n
r

� �
1

xr
� 1�

�
1�

1

x

�
n
:

It is easy to see that �1� 1
x�
n ! 0�n! 1� for x > 1=2.

Thus, when x > 1=2,

 

~� n�x; 1� ! 1 � ��0�:

Figure 1 shows the function ~�n�x; 1� at n � 2; 3; � � � ; 10.
At those orders, there exists a plateau and the region of the
plateau grows wider as the order increases. The value at a
flat point which is a typical value on the plateau agrees with
the value, ��0� � 1. Thus the result is quite satisfactory.

B. Example 2

The next example deals with the relation of observables
appearing in the d � 1 Ising model. In the model, the
inverse temperature � is related to M, the square of the
screening mass (in lattice units) in the momentum repre-
sentation, by

 � �
1

4
log

�
1�

4

M

�
:

At very low temperature the mass M is very small and we
have the logarithmic relation

 �	
1

4
log

4

M
; (2.2)

while at high temperature, M
 1 and

 � �
1

M
�

2

M2 �
16

3M3 �
16

M4 � � � � : (2.3)

Though the previous example has the limit, limx!0��x� �
1, in the present example, � diverges logarithmically in the
M ! 0 limit. We show, however, that the delta expansion
on the ‘‘high temperature expansion’’ (2.3) recovers nu-
merically the asymptotic behavior of � near M	 0 repre-
sented by (2.2).

The series (2.3) itself breaks down at M � 4 (see Fig. 2)
and it cannot be used for studying the small M behavior of
�. To improve the status, we implement the dilation of the
small M region around M � 0 by shifting M ! �1� ��M
in ��M�. Using (2.1), we then perform delta expansion at
large M to give

 

~�n �
n
1

� �
1

M
�

n
2

� �
2

M2 �
n
3

� �
16

3M3 �
n
4

� �
16

M4 � � � � :

To examine whether the above series captures the scaling
behavior, we study the modification of the small M behav-
ior due to the delta expansion.

At small M, � is expanded as � � 1
4 log 4

M�
1
4 �

�M4 �
M2

32 � � � ��. The leading term changes as

 

1

4
log

4

�1� ��M
�

1

4
log

4

M
�

1

4

�
��

1

2
�2 �

1

3
�3 � � � �

�
:

Truncating at �n and setting � � 1, we have

 

1

4
log

4

�1� ��M
	

1

4
log

4

M
�

1

4

Xn
k�1

1

k
� D

�
1

4
log

4

M

�
:

FIG. 1. Plots of ~�n�x; 1� at n � 2; 3; � � � ; 10. The dotted line
represents the value ��0� � 1.

FIG. 2. Behaviors of the ‘‘high temperature series’’ of � from
3rd to 10th orders. The dotted line represents the leading small
M behavior.
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Note that as n! 1, the constant part
Pn
k�1

1
k diverges as

logn. This reflects the logarithmic divergence of ��M� in
the M ! 0 limit. The corrections by terms of positive
integer powers experience drastic change: When the delta
expansion is performed to a large order, lower order terms
vanish when the value of � is tuned to 1. For example, we
find that m! m�1� ��, m2 ! m2�1� 2�� �2�, and
m3 ! m3�1� 3�� 3�2 � �3�, and these terms vanish
themselves at orders large enough. At small M, however,
the delta expansion has a subtlety on the definition of the
full order that is in accordance with the definition at large
M. Though we do not know a convincing definition, let us
proceed by supposing that we should confine ourselves
with only the leading term at small M and it should be
expanded in � to the same order with the full order at large
M. Thus, at nth order of delta expansion, ~�n behaves at
small M as

 

~� n 	
1

4

�
log

4

M
�
Xn
k�1

1

k

�
: (2.4)

As is obvious from the plot of ~�n (see Fig. 3), the
logarithmic behavior (2.4) is recovered by the
�-expanded 1=M series already at n � 3. Note that the
scaling region develops to larger M as the order of expan-
sion grows. In the scaling region to be seen in Fig. 3, small
M behavior of ��M� represented by (2.2) is well approxi-
mated by subtracting 1

4

P 1
k from ~�. Thus, even the limit of

sequence f ~�ng does not exist for any M as n! 1, we can
reproduce the scaling behavior both in the qualitative and
quantitative respects.

III. THE NONLINEAR � MODEL AT LARGE N

A. Brief review of the model

The nonlinear � model at two-dimensional Euclidean
space is defined by the action

 L �
1

2f

X
�

�@� ~��
2;

where the fields �i�x��i � 1; 2; � � � ; N� obey the constraint

 ~� 2�x� �
XN
i�1

�i�x��i�x� � N:

The discretized space we work with is the periodic square
lattice of the lattice spacing a where sites are numbered by
two integers, �n1; n2� � n. On the lattice the action may be
written as

 S � 2�
X
n
~�2

n � �
X
n

X
��1;2

~�n � ~�n�e�; (3.1)

where � is defined as the inverse of the bare coupling
constant f,

 � :�
1

f

and ~�n�e� stands for the nearest neighbor spin of ~�n with
e1 � �1; 0� and e2 � �0; 1�. The constraint is the same as
that in the continuum case, ~�2

n � N, and the first term in
(3.1) is actually a constant that can be omitted.

Consider the correlation of fields,

 �h ~�0 � ~�ri � N
Z �=a

��=a

d2p
�2��2

exp��ip � ra�G�p; �; a�:

By the use of the Fourier transform method, one can
calculate G�p; �; a� to higher orders in �. In particular,
two moments

P
nh�0�ni and

P
nn2h�0�ni are calculated

to 21st order [5]. One can use the result to obtain the
correlation length � as a series in �. In the large N limit,
however, it is more convenient for us to utilize the con-
straint and the fact that the structure of G becomes simple
due to the absence of the wave function renormalization.
Namely, taking the constraint ~�2 � N into account and
setting r � 0 in the correlation h ~�0 � ~�ri, we have

 � �
Z �

��

d2p
�2��2

1

M� 2
P

��1;2
�1� cosp��

: (3.2)

Here we have rescaled the momentum by p! p=a and
defined M by

 M � m2a2;

where m represents the physical mass. Note that M is

FIG. 3. Behaviors of the �-expanded 1=M series of ~� at 3rd and 10th orders. The dotted lines represent the leading small M
behaviors at respective orders.
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related to � by M � ��2. Since we consider in the next
subsection the dilation of the region of M around M � 0,
we express the inverse coupling � as a function of M.

When the lattice spacing is small enough where M� 1,
we find from (3.2)

 � � �
1

4�
log

M
32
�

M
32�

�
log

M
32
� 1

�
�O�M2 logM�:

(3.3)

Keeping only the first term, we have

 m2 � 32a�2 exp
�
�

4�
f

�
� 32�2

L:

This represents the dynamical mass in terms of the mass
scale �L defined on the lattice. On the other hand, when the
lattice spacing is large where M
 1, straightforward
expansion of the right-hand side of (3.2) in M�1 gives
the following:

 

� �
1

M
�

4

M2 �
20

M3 �
112

M4 �
676

M5
�

4304

M6
�

28 496

M7

�O�M�8�: (3.4)

From Fig. 4, it is apparent that the series (3.4) breaks down
around logM	 2 and the scaling behavior, �	� 1

4� �

logM32 , is not observed.

B. Delta expansion

We perform the delta expansion of ��M� with respect to
a2 or M following the manner adopted in example 2
studied in Sec. II. We shall see the asymptotically free
behavior in the large M expansion of ~� and estimate the
value of the nonperturbative dynamical mass m in units of
the lattice lambda parameter.

From (2.1), we find
 

~�n �
n

1

 !
1

M
�

n

2

 !
4

M2 �
n

3

 !
20

M3 � � � �

�
n

n

 !
const

Mn : (3.5)

At small M, the leading term is transformed to

 

~�n 	D
�
�

1

4�
log

M
32

�
� �

1

4�

�
log

M
32
�
Xn
k�1

1

k

�
:

We examine whether the scaling behavior written above
is seen in (3.5) or not. Figure 5 shows the plots of ~�n at
n � 4, 9, 15, and 20. Dashed lines represent the leading
small M behaviors at respective orders. We see that ~�n�M�
in 1=M expansion is effective to logM	 1. In addition, we
find that the logarithmic scaling behavior, ~�n 	�

1
4� �

logM, is seen at several and higher orders around logM	
2. Because of the dilation, the scaling region realized in
1=M expansion (3.5) may develop toward the larger M
region. The tendency is confirmed from Fig. 5.

Having observed the asymptotic scaling behavior in the
1=M expansion, we can estimate the massm in terms of �L
even when the knowledge on the details of the small M
behavior such as the information of the constant log32 is
absent. Let us write the scaling behavior as

 �	�
1

4�
�logM� C�: (3.6)

Note that (3.6) is derived only from the ultraviolet structure
of the model. The value of the constant C�� � log32� is,
however, not obtained by the renormalization group argu-
ment alone. Then we like to show that our approach
enables one to obtain the approximate value of the
constant.

We look for the matching point where the asymptotic
behavior is supposed to begin and from there extrapolate
~��M� (at large M) to the small M region. The matching
point may be fixed by requiring the agreement of the
derivative of ~� at large M with that of the leading term
at small M which comes from the renormalization group
argument:

 

@ ~��M�jlarge M

@ logM
�
@ ~��M�jscaling

@ logM
� �

1

4�
:

Up to 20th orders, the solutions, M � 4:888; 4:7539;
4:6479; � � � ; 4:3597 exist at n � 4; 6; 8; � � � ; 20, respec-
tively. The value of C can be estimated by

 �
C

4�
�

�
~�n�M�jlarge M �

1

4�

�
logM�

Xn
k�1

1

k

��
M�M�

;

where M� denotes the solution. The result is
�3:3066;�3:3643;�3:3918; � � � ;�3:4383 at n �
4; 6; 8; � � � ; 20. Then, the extrapolated asymptotic behav-

FIG. 4. The graphs of ��� 1=f� as the function of logM. The
dashed line represents the asymptotic behavior at small enough
M, � � � 1

4� logM32 . Solid curves represent the graphs in the
large M expansion from 2nd to 9th orders.
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ior, for example, at n � 4, predicts

 �jscaling 	�
1

4�
�logM� log27:29�: (3.7)

Comparison of (3.7) to (3.6) with C � � log32 tells us that
we have log M

27:29 for logM32 . Now the approximation of the
logarithmic constant leads us to the approximation of the
dynamical mass. The result is m2  27:29�2

L at 4th order.
In the same manner, we obtain the ratio m2=�2

L �
28:91; 29:72; 30:20; � � � ; 31:13 at n � 6; 8; 10; � � � ; 20.
Better values are obtained at higher orders and the se-
quence implies the convergence to the exact value.

C. Symanzik improvement

In this subsection, we consider how to accelerate the
speed of the approach to the asymptotic scaling and raise
the accuracy of estimating the dynamical mass.

The clue to the resolution is to note the presence of the
subleading logarithmic terms, Mk logM, in ��M� at small
M (see (3.3)). The second and higher order contributions in
(3.3) may prevent the dominance of the leading term as we
can see below: Consider the effect of these subleading logs
in the application of the delta expansion to ��M� at small
M. If we expand powers and logarithms ofM to �n, we find

 D�1� � 1; D�Mr� � 0 �1 � r � n�

and

 D�logM� � logM�
Xn
k�1

1

k
; D�M logM� � �

M
n
;

D�M2 logM� � 2!
M2

n2 ; � � � :

It is important to note that, though the terms of positive
integer powers vanish, the logarithmic corrections survive
after the delta expansion. Then suppose that M is large
enough that we can neglect the problem of to which order
the first few terms should be expanded in �. We then have

 

~��M�jsmall M 	�
1

4�

�
log

M
32
�
Xn
k�1

1

k
�
M
8n
�O�M2�

�
:

The third term of order M delays the scaling of ~� at finite
n.

The origin of the subleading logarithmic corrections is
the propagator modified on the lattice. Actually, the ex-
pansion of the propagator at small p2 reads
 

1

M�
P
�
p2
��

1
12

P
�
p4� �� �

�
1

M�
P
�
p2
�
�

1

12

�

P
�
p4

�M�
P
�
p2
��

2� �� � (3.8)

and the momentum integration yields � 1
4� logM from the

first term and 1
32�M logM from the second term. In general,

the kth term gives const:Mk�1 logM� regular terms inM.
Thus, it is highly expected that Symanzik improvement [6]

FIG. 5. Graphs of ~�n at 4th, 9th, 15th, and 20th orders as the function of logM. The dashed lines represent the leading asymptotic
behaviors at small M at respective orders.
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accelerates the quick dominance since it subtracts the
higher order p2 corrections in the propagator.

At the first order of the Symanzik improvement scheme,
the coupling of spins at the next-to-the nearest neighbor
sites in both directions are introduced. It is well known that
the resulting action becomes

 S � �
X

n

�
5

2
~�2

n �
4

3

X
�

~�n � ~�n�e� �
1

12

X
�

~�n � ~�n�2e�

�
:

Also in the improved action, we have the following result
of the constraint at large N,

 � �
Z �

��

d2p
�2��2

1

M� 5� 8
3

P
�

cosp� �
1
6

P
�

cos2p�
:

(3.9)

Expansion of the denominator of the propagator for small
p� gives

 M�
X
�

p2
� �O�p

6�

which has no p4 contribution and thus the M logM term is
absent in � at small M. From (3.9), we find that � behaves
at small M as

 � � �
1

4�
�logM� C0� �O�M�;

where C0 � �2:872 98. This should be compared with
(3.6). Though logM is invariant, the constant part which
is not of universal nature is modified from C to C0 � C�
0:592 754. The next-to-leading logarithmic term, M logM,
is absent and the approach to the asymptotic scaling would
become faster than before because the correction to the
scaling of ~� is at most O�M2�.

From (3.9) we find the large M expansion of �,

 � �
1

M
�

5

M2 �
1157

36M3 �
8419

36M4 �
3 190 499

1728M5
�O�M�6�:

(3.10)

As is clear from Fig. 6, the above series is valid only for
largeM as in the case of the previous series (3.4). However,
once delta expansion is applied, we find that the large M
series exhibits the correct logarithmic scaling behavior also
for the improved action (see Fig. 7). Moreover, the ex-
trapolated scaling function produces the following good
approximate values for C0 � �2:872 98,

 � 2:8359;�2:8555;�2:8629; � � � ;�2:8713;

for orders n � 4; 6; 8; � � � ; 20, respectively. The accuracy
is much improved from those of the original action.

To study further the results of Symanzik’s improvement,
we proceed to the second order. By introducing the spin-
spin coupling of the form ~�n � ~�n�3e� with the suitable
weight, we can eliminate the second logarithmic correction
M2 logM in the small M expansion of �. The constraint

equation becomes

 ��
Z �

��

d2p
�2��2

�
1

M� 49
9 �

4
3

P
�

cosp� �
3
10

P
�

cos2p��
1
45

P
�

cos3p�

and the scaling behavior of � is obtained as

 � � �
1

4�
�logM� C00� �O�M�;

where C00 � �2:721 21 � C� 0:744 526.
Now the large M expansion of ��M� gives

 � �
1

M
�

49

9M2 �
313 733

8100M3 �
2 288 857

7290M4

�
727 664 156 617

262 440 000M5
�O�M�6�:

As in the case of the first order improvement, the scaling
behavior is observed in the �-expanded large M series and
the extrapolation gives the approximation of the constant
C00 � �2:721 21. At n � 4; 6; 8; � � � ; 20, the results are as
follows:

 � 2:704 58;�2:714 98;�2:718 23;�2:719 56; � � � ;

� 2:720 97:

The accuracy was further improved. We conclude that
Symanzik’s action plays a crucial role in the quantitative
improvement on the delta expansion approach.

IV. ISING MODEL AT d � 2

Next we turn to discuss the Ising model at d � 2 which
corresponds to theN � 1 case of theN-vector model. As is
well known, the second order phase transition at nonzero
temperature is driven by the correlation length grown to
infinitely large. Therefore the transition may be analyzed
by dilation and delta expansion around the massless limit.

FIG. 6. The graphs of the large M series of � in the first order
Symanzik’s improved action from 2nd to 9th orders.
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From the calculation of the correlation function, the
correlation length � or M � ��2 would be obtained as a
function of �, the inverse temperature. In the Ising case,P

nh�0�ni and
P

nn2h�0�ni were calculated in [7] to 25th
order in �. We use the result and find that

 M �
1

2�
� 2�

5�
3
�

67�3

45
�

38�5

189
�

9697�7

4725
� 16�8

�
1 0351 64�9

18 711
�

352�10

3
� � � � :

By inverting M�1 and �, we obtain

 � �
1

2M
�

1

M2 �
29

12M3 �
13

2M4 �
1503

80M5
�

1373

24M6

�
40 581

224M7 �
9461

16M8 �
4 553 741

2304M9 �
4 309 333

640M10 � � � � :

(4.1)

Now, near the transition point, the conventional scaling
form reads that

 �	 const:
�
�c
�
� 1

�
��
;

where the critical exponent � and the inverse of the critical
temperature �c are known to have values, � � 1 and �c �
1
2 log�1�

���
2
p
� [8]. Using �2 � M�1, we then have

 �	 �c � AM
1=2�: (4.2)

From (4.2), we see that the present case has the limit
limM!0��M� � �c. However, the derivative of the first
correction diverges as M ! 0 since the power of M, 1

2� is

smaller than 1. This makes the convergence of ��M� to �c
slow and forces us to have 1=M series of � to very large
orders for the precise evaluation of �c (see Fig. 8). Then,
rather than �c, we turn to the estimation of the critical
exponent �. For this purpose, we consider @

@ logM �

log�� @�
@ logM� which behaves at scaling region as

 ��M� �
@

@ logM
log

�
�

@�
@ logM

�
	

1

2�
: (4.3)

The leading term of ��M� explicitly written in the right-
hand side of (4.3) comes from the second term of (4.2).
Since the leading term of � is independent of M and

invariant under the delta expansion, we expect that ~� �
@

@ logM log�� @ ~�
@ logM� also behaves at small M as ~�	 1

2� .

Here ~� is given by
 

~�n �
n

1

 !
1

2M
�

n

2

 !
1

M2 �
n

3

 !
29

12M3 �
n

4

 !
13

2Mn

� � � � : (4.4)

Figure 9 shows the plots of ��M� and ~��M� in 1=M
expansion at n � 25. The original function � plotted in
the left side is far from the scaling region. On the other
hand, �-expanded series ~� plotted in the right side shows
greatly improved behavior. First we find that, apart from
~��M� where the effects of the corrections to the leading
constant �c are reduced but non-negligible, the corrections
to 1

2� in ~� are suppressed enough by delta expansion and
the stationary behavior is observed. We find that the scaling
roughly starts about M	 10 and abruptly ends around

FIG. 7. Graphs of ~�n at 4th, 9th, 15th, and 20th orders as a function of logM in the first order Symanzik action. The dashed lines
represent the leading asymptotic behaviors at small M at respective orders.
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M	 2:5 which signals the lower end of the region where ~�
in 1=M expansion is valid. We can say that the asymptotic
realm just starts at M	 5 and ~�n in 1=M expansion at n �
25 surely shows the expected behavior and strongly sug-
gests the correct value of �. It is shown that the scaling
region is enlarged as to be captured in the 1=M expansion
of ~�.

V. CONCLUSION

Under dilation of the scaling region by shifting M !
�1� ��M and the associated expansion in �, we have
shown that the 1=M expansion effective at large lattice
spacing recovered the asymptotic scaling behavior in the
nonlinear � model at N � 1. In the large N case,

Symanzik’s improved action played an important role in
the enhancement of the scaling.

At N � 1, the scaling behavior was confirmed and a
rough estimation of the critical exponent � is possible.
However, the precision is not so high even at 25th order.
Symanzik’s improvement scheme would be a promising
candidate to raise the accuracy since, as shown in the N �
1 case, the scheme would reduce the corrections to the
asymptotic scaling.

The present work stimulates us to investigate similar
subjects on the lattice related to the approximation of the
continuum field theories. It is especially of interest to apply
the dilation with the delta expansion to lattice non-Abelian
gauge theories. We hope to report the results in the near
future.
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FIG. 9. Plots of ��M� and ~��M� as functions of M at 25th order. The dotted lines represent 1
2� ��

1
2�.

FIG. 8. � and ~� as functions of M at 25th order. The dotted lines represent �c �
1
2 log�1�
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2
p
�.
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