
Effect of virtual pairs for relativistic bound-state problems

Mohsen Emami-Razavi1 and Marian Kowalski2
1Centre for Research in Earth Space Science, York University, Toronto, Ontario M3J 1P3, Canada

2University of Ontario, Institute of Technology, Department of Science, Oshawa, Ontario, L1H 7K4 Canada
(Received 23 April 2007; published 14 August 2007)

We use the variational method within the Hamiltonian formalism of quantum field theory to derive
relativistic two-, (four)-, and (six)-body wave equations for scalar particles interacting via a massive or
massless mediating scalar field (the scalar Yukawa model). Fock-space variational trial states [2� �4� �
�6�] are used to derive the relativistic two-body system. The equations are shown to have the Schrödinger
nonrelativistic limit, with Coulombic interparticle potentials in the case of a massless mediating field and
Yukawa interparticle potentials in the case of a massive mediating field. The results show that the
inclusion of virtual pairs has a large effect for the binding energy of the system at strong coupling. In the
case of the discovery of a scalar Higgs particle in upcoming experiments, we may apply the present results
to real, physical systems.
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I. INTRODUCTION

The study of few-body systems in relativistic quantum
field theory (QFT) has played an important role in the
development of modern physics. It provides a stringent
test of our idea about the nature of particle interactions.
For example, the spectrum of the hydrogen atom was an
early test of quantum electrodynamics. The problem of
describing relativistic bound states in QFT was solved in
1951 by Bethe and Salpeter [1], at least in principle. Its
practical implementation, particularly for strongly coupled
systems, is another matter.

In earlier works by Darewych [2], a modified variational
method in the Hamiltonian formalism of QFT was pro-
posed for deriving relativistic few-body wave equations.
The variational method in Hamiltonian QFT is close to the
traditional Schrödinger type of description of few-body
systems and is straightforwardly generalizable to systems
of more than two particles [3]. In principle, the variational
approach does not depend on the magnitude of the cou-
pling strength, in contrast to perturbation theory, which
generally relies on an expansion in a small parameter. In
practice, the variational approach is only as good as the
trial states that are used in its implementation. The varia-
tional method has been used sparingly in QFT, perhaps due
to the difficulty of constructing realistic, yet tractable, trial
states. The construction of realistic yet tractable trial states,
suitable at strong coupling, is a key task in the variational
approach.

In a paper by Ding and Darewych [4], the variational
method was used to derive relativistic two-body (particle-
antiparticle) wave equations for the scalar Yukawa theory
with a simple trial state jN �Ni, in which scalar particles,
which we shall term ‘‘nucleons,’’ interact through a medi-
ating scalar field (‘‘pions’’), which may be massive or
massless (as in the original Wick-Cutkosky model [5]).
The results obtained in [4] were based on the simplest
possible nucleon-antinucleon Fock-space trial state that

can be written. Such an approximation is acceptable at
weak coupling, but it is increasingly less reliable as the
coupling increases.

In a recent paper by Emami-Razavi and Darewych [6],
the efficiency of the variational method was demonstrated
(especially at strong coupling) using a trial state comprised
of two and four Fock-space states (jN �Ni � jN �NN �Ni). The
main purpose of that paper was to study the importance of
the effect of virtual pairs on the two-body energy, particu-
larly for strong coupling. Approximate variational two-
body ground-state solutions of the relativistic equations
were obtained for various strengths of coupling, for both
massive and massless mediating fields. A comparison of
the two-body binding energies with other calculations (for
example, [7] or [8]) was presented.

In this paper, we study the effect of additional virtual
pairs on the two-body ground-state energy using a trial
state comprised of two, four, and six Fock-space states
(jN �Ni � jN �NN �Ni � jN �NN �NN �Ni). The novelty of the
present work is to use the additional six-body
jN �NN �NN �Ni Fock-space states in the calculation of the
two-body ground-state energy. We will see that it is a very
challenging problem, since not only is it extremely difficult
to derive the relativistic 2� �4� � �6�-body wave equa-
tions, but also it is computationally demanding to find
the two-body binding energies for different coupling
constants.

The presentation of this paper is as following. We recall
the model, its reformulation, the quantized theory, and the
variational method in Sec. II and summarize previous
results obtained using the simplest jN �Ni trial state (and a
short reminder of the jN �Ni � jN �NN �Ni case [6]) in
Sec. III. Section IV contains the derivation of the coupled,
relativistic, momentum-space equations, using an im-
proved trial state of the type jN �Ni � jN �NN �Ni �
jN �NN �NN �Ni. These equations, along with their approxi-
mate solutions, are our principal results. The nonrelativis-
tic limit of the equations is also considered in that section.

PHYSICAL REVIEW D 76, 045006 (2007)

1550-7998=2007=76(4)=045006(14) 045006-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.045006


Approximate, variational solutions for the two-body
ground-state energies and wave functions at various
strengths of the coupling are presented in Sec. V, and a
comparison with other calculations is presented.
Discussions and concluding remarks are given in Sec. VI.

II. SCALAR YUKAWA MODEL

The Hamiltonian density in the reformulated model
[2,6] is given by

 H �x� �H��x� �H ��x� �H I1�x� �H I2�x�; (2.1)

where

 H ��x� � p�� �x�p��x� � r�
��x� � r��x�

�m2���x���x�; (2.2)

 H ��x� �
1
2p

2
�0
� 1

2�r�0�
2 � 1

2�
2�2

0; (2.3)

p�� � @L=@ _� � _��, p� � @L=@ _�� � _�, and p�0
�

@L=@ _�0 � _�0 are conjugate momenta,

 H I1�x� � g���x���x��0�x�; (2.4)

 H I2�x� � �
g2

2

Z
dx0���x���x�D�x� x0����x0���x0�;

(2.5)

where dx � dNxdt in N spatial plus time dimensions, and

 D�x� x0� �
Z dk

�2��N�1 e
�ik��x�x0� 1

�2 � k2 � i�
; (2.6)

where dk � dN�1k and k2 � k�k�.
Scalar mass m nucleons are interacting via a mediating

real scalar (pion) field. ��x� is the field corresponding to
the nucleon (or antinucleon). The mediating field ��x� can
be massless (i.e., � � 0) or massive (� � 0). �0�x� is a
solution of the free field equation, while D�x� x0� is a
covariant Green function. g is the coupling constant, and
we use the unit @ � c � 1.

We construct a quantum field theory, based on the re-
formulated Hamiltonian (2.1). Our notation is

 ��x� �
Z
dNq

1

��2��N2!q	
1=2
�A�q�e�iq�x � By�q�eiq�x	;

(2.7)

 �0�x� �
Z
dNp

1

��2��N2�p	
1=2
�d�p�e�ip�x � dy�p�eip�x	;

(2.8)

where !q � �q2 �m2�1=2, �p � �p2 ��2�1=2, q � x �
q�x�, and q� � �q0 � !q;q�.

The momentum-space operators Ay, A, By, B describe
the creation �Ay; By� and annihilation �A;B� of free nucle-

ons and antinucleons, respectively, while d, dy describe the
annihilation and creation of the free mediating-field pions.
They satisfy the usual commutation relations; the nonvan-
ishing ones are

 �A�p�; Ay�q�	 � �B�p�; By�q�	 � �N�p� q�; (2.9)

 �d�p�; dy�q�	 � �N�p� q�: (2.10)

We normal order the Hamiltonian (now denoted by :Ĥ:),
since we are not concerned with vacuum-energy questions
in this work. The vacuum state j0i is defined by Apj0i �
Bpj0i � dkj0i � 0.

In the Hamiltonian formalism of QFT, we seek solutions
of the equation

 P̂ �j�i � Q�j�i; (2.11)

where P̂� � �Ĥ; P̂� is the energy-momentum operator of
the QFT, and Q� � �E;Q� is the energy-momentum ei-
genvalue. Since the � � 0 component of Eq. (2.11) is
generally impossible to solve, one needs to resort to ap-
proximation schemes. The variational approximation cor-
responds to finding approximate solutions to (2.11) by
using the variational principle

 �h�trialjĤ � Ej�trialit�0 � 0; (2.12)

where j�triali is a suitably chosen trial state containing
adjustable features (parameters, functions).

A slightly simpler model, in which � is real, is often
considered. In that case, there are only particles and no
antiparticles. These models (� complex, i.e., two-
component field, or � real) are closely related, since the
forces among particles (and/or antiparticles) are only at-
tractive (i.e., in the scalar Yukawa theory, they are gravity-
like rather than electromagneticlike). The virtual-
annihilation interaction (which arises in the particle-
antiparticle case) is a contactlike interaction that has only
a small effect on the total energy, as is pointed out in [4].

III. SIMPLE VARIATIONAL TWO-PARTICLE
TRIAL STATE AND 2� �4�WAVE EQUATIONS

We shall quote some results from the earlier work of
Ding and Darewych [4] to make it easier to follow the
present paper. The simplest nucleon-antinucleon trial state
that can be chosen is

 j  2i �
Z
dNp1d

Np2F�p1;p2�A
y�p1�B

y�p2�j0i; (3.1)

where F is a normalizable, adjustable function, i.e., such
that h 2j 2i �

R
dNp1d

Np2jF�p1;p2�j
2 is finite (it will be

taken to be unity). The matrix elements needed to imple-
ment the variational principle (2.12) are
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 h 2 j :Ĥ� � E: j  2i �
Z
dNp1d

Np2F
��p1;p2�F�p1;p2��!p1

�!p2
� E	; (3.2)

and

 h 2 j :ĤI: j  2it�0 � h 2 j :ĤI2 : j  2it�0 � �
Z
dNp1d

Np2d
Np01d

Np02F
��p01;p

0
2�F�p1;p2�K2;2

� �
g2

8�2��N
Z
dNp1d

Np2d
Np01d

Np02F
��p01;p

0
2�F�p1;p2��

N�p1 � p2 � p01 � p02�
1��������������������������������!p1

!p2
!p01

!p02
p




�
1

�2 � �p01 � p1�
2 �

1

�2 � �p02 � p2�
2 �

1

�2 � �p1 � p2�
2 �

1

�2 � �p01 � p
0
2�

2

�
; (3.3)

where we call K2;2�p01;p
0
2;p1;p2� the kernel in Eq. (3.3),

and we will use it in Sec. IV. K2;2 is the following
expression:

 K 2;2 �
g2

8�2��N
�N�p01 � p02 � p1 � p2�



1��������������������������������!p1

!p2
!p01

!p02
p

�
1

�2 � �p01 � p1�
2

�
1

�2 � �p02 � p2�
2 �

1

�2 � �p1 � p2�
2

�
1

�2 � �p01 � p
0
2�

2

�
: (3.4)

We see that in Eq. (3.3) the kernel (momentum-space
potential) contains all tree-level Feynman diagrams,
namely, one-pion exchange [the first two terms inside the
brackets under the integral of (3.3)] and virtual annihilation
(the last two terms inside these brackets).

In the rest frame Q � 0 and F�p1;p2� � f�p1��N�p1 �
p2�, the relativistic momentum-space particle-antiparticle
wave equation is
 

�2!p � E	f�p� �
g2

8�2��N
Z
dNp0f�p0�

1

!p!p0




�
2

�2 � �p0 � p�2 � �!p �!p0 �
2

�
1

4!2
p ��2 �

1

4!2
p0 ��

2

�
: (3.5)

In the nonrelativistic limit jpj2 � m2, Eq. (3.5) becomes
 �

p2

m
� �

�
f�p� �

g2

4�2��Nm2

Z
dNp0f�p0�




�
1

�2 � �p0 � p�2
�

1

4m2 ��2

�
; (3.6)

where � � E� 2m. In coordinate space, the Fourier trans-
form of Eq. (3.6) is just the usual time-independent
Schrödinger equation for the relative motion of the
particle-antiparticle system:

 �
@

2

m
r2 �r� � V�r� �r� � � �r�; (3.7)

where the potential is

 V�r� � �	
e��r

r
�

4�	

4m2 ��2 �
3�r�; (3.8)

and 	 � g2=16�m2 is the effective dimensionless cou-
pling constant. This potential is a sum of an attractive
Yukawa potential, due to one-pion exchange, and a repul-
sive (if �< 2m) contact potential, due to virtual
annihilation.

The simplest two-body trial state (3.1) considered above
is a reasonable approximation for the case of weak cou-
pling (	� 1), but it becomes increasingly inadequate as
	 increases. More flexible and elaborate trial states would
include terms that account for two (and more) pion ex-
change effects and additional (virtual) nucleon-antinucleon
pair effects.

Hwang and Karmanov [9] have recently calculated the
two-body rest mass in the Wick-Cutkosky model using
light-front dynamics, in which they study the contributions
of Fock sectors with increasing numbers of exchanged
quanta. Their results show that the two-body ground-state
binding energy increases with the inclusion of multipion
exchanges but not dramatically.

In a recent paper [6], the effects on the binding energy
(particularly at strong coupling) of using trial states that
allow for additional (virtual) particle-antiparticle pairs
were examined by Emami-Razavi and Darewych, namely,

 j ti � j 2i � j 4i; (3.9)

where j 2i is the trial state (3.1), while
 

j 4i � jA
yByAyByi

�
Z
dNp1dNp2dNp3dNp4G�p1;p2;p3;p4�


 Ay�p1�B
y�p2�A

y�p3�B
y�p4�j0i; (3.10)

and G�p1;p2;p3;p4� is another adjustable function.
For F � 0, we see that j ti � j 4i is the simplest

possible trial state suitable for describing a four-body
bound system of two particles and two antiparticles

EFFECT OF VIRTUAL PAIRS FOR RELATIVISTIC . . . PHYSICAL REVIEW D 76, 045006 (2007)

045006-3



(‘‘quadronium’’) of rest energy (mass) E � 4m, as was
considered in Ref. [3]. However, for F, G both nonzero,
the trial state (3.9) is suitable for describing two-body
bound states of rest energy (mass) E � 2m, with the ac-
commodation of a virtual particle-antiparticle Fock state.
[For E � 4m, the trial state (3.9) is suitable for describing
the bound states of quadronium with an allowance for
virtual pair annihilation.] Approximate numerical solu-
tions obtained with the 2� �4� trial states (3.9) are pre-
sented in Ref. [6]. The results show that the two-body
ground-state binding energy increases dramatically with
the inclusion of virtual pairs [especially at strong coupling
compared to the case of simple trial state (3.1)].

IV. 2� �4� � �6�WAVE EQUATIONS

In this paper, our focus shall be to examine the effects on
the two-body binding energy (particularly at strong cou-
pling) of using trial states that allow for additional (virtual)
particle-antiparticle pairs. Therefore, we shall use a trial
state that contains two-pair (i.e., four-body) and three-pair
(i.e., six-body) Fock-state components, namely,

 j ti � j 2i � j 4i � j 6i; (4.1)

where j 2i is the simple trial state (3.1), while j 4i is that
given in Eq. (3.10) and
 

j 6i � jA
yByAyByAyByi

�
Z
dNp1d

Np2 . . . dNp6S�p1; . . . ;p6�A
y�p1�B

y�p2�


 Ay�p3�By�p4�Ay�p5�By�p6�j0i; (4.2)

where S�p1; . . . ;p6� is another adjustable function.

For F � 0 and S � 0, we see that j ti � j 4i is the
simplest possible trial state suitable for describing a four-
body bound system of two particles and two antiparticles
(quadronium) of rest energy (mass) E � 4m, as was con-
sidered by Emami-Razavi and Darewych [3]. Moreover,
for G � 0 and S � 0, we see that j ti � j 2i is the sim-
plest possible trial state suitable for describing a two-body
bound system as was considered in ref. [4]. However, for
F, G, and S all nonzero, the trial state (4.1) is suitable for
describing two-body bound states of rest energy (mass)
E � 2m, with the accommodation of two and three virtual
particle-antiparticle pairs in the trial state.

The matrix elements

 h ij:Ĥ:j ji; i; j � 2; 4; 6; (4.3)

needed to implement the variational principle (2.12) are
given in the appendix. Note that for the present choice of
our trial state we have

 h ij:ĤI1 :j ji � 0 and h ij:Ĥ�:j ji � 0: (4.4)

This means that the trial state (4.1) is incapable of
describing a process involving the emission or absorption
of physical (as opposed to virtual) pions.

For arbitrary variations of the functions F, G, and S, the
variational principle (2.12), taking time t � 0, leads to the
following coupled integral equations for the wave-function
coefficients F, G, and S:

 F�p1;p2��!p1
�!p2

� E	 �
Z
dNp01d

Np02F�p
0
1;p

0
2�K2;2�p01;p

0
2;p1;p2�

�
Z
dNp01d

Np02d
Np03d

Np04G�p
0
1;p

0
2;p

0
3;p

0
4�K2;4�p01;p

0
2;p

0
3;p

0
4;p1;p2�

�
Z
dNp01d

Np02 . . . dNp06S�p
0
1;p

0
2;p

0
3;p

0
4;p

0
5;p

0
6�K2;6�p01;p

0
2;p

0
3;p

0
4;p

0
5;p

0
6;p1;p2�; (4.5)

 

G�p1;p2;p3;p4��!p1
�!p2

�!p3
�!p4

� E	 �
Z
dNp01d

Np02F�p
0
1;p

0
2�K4;2�p01;p

0
2;p1;p2;p3;p4�

�
Z
dNp01d

Np02d
Np03d

Np04G�p
0
1;p

0
2;p

0
3;p

0
4�


K4;4�p01;p
0
2;p

0
3;p

0
4;p1;p2;p3;p4�

�
Z
dNp01d

Np02 . . .dNp06S�p
0
1;p

0
2;p

0
3;p

0
4;p

0
5;p

0
6�


K4;6�p01;p
0
2;p

0
3;p

0
4;p

0
5;p

0
6;p1;p2;p3;p4�; (4.6)

and
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 S�p1;p2;p3;p4;p5;p6��!p1
�!p2

�!p3
�!p4

�!p5
�!p6

� E	

�
Z
dNp01d

Np02F�p
0
1;p

0
2�K6;2�p01;p

0
2;p1;p2;p3;p4;p5;p6�

�
Z
dNp01d

Np02d
Np03d

Np04G�p
0
1;p

0
2;p

0
3;p

0
4�K6;4�p01;p

0
2;p

0
3;p

0
4;p1;p2;p3;p4;p5;p6�

�
Z
dNp01d

Np02 . . . dNp06S�p
0
1;p

0
2;p

0
3;p

0
4;p

0
5;p

0
6�K6;6�p01;p

0
2;p

0
3;p

0
4;p

0
5;p

0
6;p1;p2;p3;p4;p5;p6�; (4.7)

respectively, where the kernels K2;2, K2;4, K2;6, K4;4, K4;2, K6;4, K6;2, K4;6, and K6;6 are given in the appendix.
It is instructive to consider the nonrelativistic limit (p2=m2 � 1) of Eqs. (4.5), (4.6), and (4.7). These are, respectively,

 F�p1;p2�

�
p2

1 � p2
2

2m
� �2

�
�
Z
dNp01d

Np02F�p
0
1;p

0
2�

~K2;2�p01;p
0
2;p1;p2�

�
Z
dNp01d

Np02d
Np03d

Np04G�p
0
1;p

0
2;p

0
3;p

0
4�

~K2;4�p01;p
0
2;p

0
3;p

0
4;p1;p2�

�
Z
dNp01d

Np02 . . . dNp06S�p
0
1;p

0
2;p

0
3;p

0
4;p

0
5;p

0
6�

~K2;6�p01;p
0
2;p

0
3;p

0
4;p

0
5;p

0
6;p1;p2�; (4.8)

 

G�p1;p2;p3;p4�

�
p2

1 � p2
2 � p2

3 � p2
4

2m
� �4

�

�
Z
dNp01d

Np02F�p
0
1;p

0
2�

~K4;2�p01;p
0
2;p1;p2;p3;p4�

�
Z
dNp01d

Np02d
Np03d

Np04G�p
0
1;p

0
2;p

0
3;p

0
4�

~K4;4�p01;p
0
2;p

0
3;p

0
4;p1;p2;p3;p4�

�
Z
dNp01d

Np02 . . . dNp06S�p
0
1;p

0
2;p

0
3;p

0
4;p

0
5;p

0
6�

~K4;6�p01;p
0
2;p

0
3;p

0
4;p

0
5;p

0
6;p1;p2;p3;p4�; (4.9)

and

 S�p1;p2;p3;p4;p5;p6�

�
p2

1 � p2
2 � p2

3 � p2
4 � p2

5 � p2
6

2m
� �6

�

�
Z
dNp01d

Np02F�p
0
1;p

0
2�

~K6;2�p01;p
0
2;p1;p2;p3;p4;p5;p6�

�
Z
dNp01d

Np02d
Np03d

Np04G�p
0
1;p

0
2;p

0
3;p

0
4�

~K6;4�p01;p
0
2;p

0
3;p

0
4;p1;p2;p3;p4;p5;p6�

�
Z
dNp01d

Np02 . . . dNp06S�p
0
1;p

0
2;p

0
3;p

0
4;p

0
5;p

0
6�

~K6;6�p01;p
0
2;p

0
3;p

0
4;p

0
5;p

0
6;p1;p2;p3;p4;p5;p6�; (4.10)

where �2 � E� 2m, �4 � E� 4m, and �6 � E� 6m. The nonrelativistic kernels are denoted by ~K2;2, ~K2;4, ~K2;6, ~K4;4,
~K4;2, ~K6;4, ~K6;2, ~K4;6, and ~K6;6. The (more familiar) coordinate-space representation of (4.8), (4.9), and (4.10) inN � 3

spatial dimensions is

 �
1

2m

�X2

i�1

r2
i

�
��r1; r2� � �V2;2�r1; r2� � �2���r1; r2� � �

Z
d3r3d3r4��r1; r2; r3; r4�V2;4�r1; r2; r3; r4�

�
Z
d3r3d

3r4d
3r5d

3r6��r1; r2; r3; r4; r5; r6�V2;6�r3; r4; r5; r6�;

(4.11)

 �
1

2m

�X4

i�1

r2
i

�
��r1; r2; r3; r4� � �V4;4�r1; r2; r3; r4� � �4���r1; r2; r3; r4�

� ���r1; r2�V4;2�r1; r2; r3; r4� �
Z
d3r5d3r6��r1; r2; r3; r4; r5; r6�V4;6�r1; r2; r3; r4; r5; r6�; (4.12)

and
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 �
1

2m

�X6

i�1

r2
i

�
��r1; r2; r3; r4; r5; r6� � �V6;6�r1; r2; r3; r4; r5; r6� � �6���r1; r2; r3; r4; r5; r6�

� ���r1; r2�V6;2�r3; r4; r5; r6� ���r1; r2; r3; r4�V6;4�r1; r2; r3; r4; r5; r6�; (4.13)

where ��r1; r2�, ��r1; r2; r3; r4�, and ��r1; r2; r3;
r4; r5; r6� are Fourier transforms of F�p1;p2�,
G�p1;p2;p3;p4�, and S�p1;p2;p3;p4;p5;p6�, respectively.
We denote the diagonal and off-diagonal potentials by Vi;j
(i; j � 2; 4; 6). Explicitly, in N � 3 spatial dimensions,
they are the following:

 V2;2 � �	
e��jr1�r2j

jr1 � r2j
� 	

4�

4m2 ��2 �
3�r1 � r2�; (4.14)

 

V2;4� V4;2

��	
e��jr1�r3j

jr1� r3j
�3�r3� r4��	

e��jr2�r3j

jr2� r3j
�3�r3� r4�

�	
4�

4m2��2�
3�r1� r3��

3�r1� r4�

�	
4�

4m2��2�
3�r2� r3��3�r2� r4�; (4.15)

 

V2;6 � V6;2

� 3
 	
4�

4m2 ��2 �
3�r3 � r4��

3�r3 � r5�


 �3�r3 � r6�; (4.16)
 

V4;4 � �	
X3

j�1

X4

k�j�1

e��jrj�rkj

jrj � rkj

�
X3

j�1

X4

k�j�1

0

	
4�

4m2 ��2 ��rj � rk� for j < k;

(4.17)

where
P0
k�a
uk means ua � ua�2 � ua�4 � � � � .

This means that V4;4 is composed of two types of terms.
The first ones are corresponding to pairwise Yukawa inter-
actions among particles and antiparticles, and the second
terms correspond to repulsive virtual-annihilation interac-
tions among odd-even or even-odd indices of j and k

among particles and antiparticles.
 

V4;6 � V6;4

� 3	
4�

4m2 ��2 �
3�r3 � r5��3�r3 � r6�

� 3	
4�

4m2 ��2 �
3�r4 � r5��

3�r4 � r6�

� 3	
e��jr3�r5j

jr3 � r5j
�3�r5 � r6�

� 3	
e��jr4�r5j

jr4 � r5j
�3�r5 � r6�; (4.18)

and
 

V6;6 � �	
X5

j�1

X6

k�j�1

e��jrj�rkj

jrj � rkj

�
X5

j�1

X6

k�j�1

0

	
4�

4m2 ��2 ��rj � rk� for j < k;

(4.19)
where

P0
k�a
uk means ua � ua�2 � ua�4 � � � � .

Once again, this means that V6;6 is composed of two
types of terms. Fifteen terms are corresponding to pairwise
Yukawa interactions among particles and antiparticles, and
nine terms correspond to repulsive virtual-annihilation
interactions among odd-even or even-odd indices of j
and k among particles and antiparticles.

We recall that 	 � g2=16�m2 is the effective dimen-
sionless coupling constant.

Note that all of the potentials Vi;j are superpositions of
Yukawa potentials, corresponding to one-meson exchange,
and contact (delta-function) potentials, corresponding to
virtual nucleon-antinucleon annihilation. Of course, if
V2;4 � V4;2 � V2;6 � V6;2 � V4;6 � V6;4 � 0, Eqs. (4.11),
(4.12), and (4.13) reduce to uncoupled two-, four-, and six-
particle Schrödinger equations, respectively.

We note that Eq. (4.11) can be rewritten as

 

�
1

2m

�X2

i�1

r2
i

�
��r1; r2� � �V2;2�r1; r2� � �2���r1; r2� � 	

Z
d3r3

e��jr1�r3j

jr1 � r3j
��r1; r2; r3; r3�

� 	
Z
d3r3

e��jr2�r3j

jr2 � r3j
��r1; r2; r3; r3�

� 	
4�

4m2 ��2 ��r1; r2; r1; r1� � 	
4�

4m2 ��2 ��r1; r2; r2; r2�

� 3	
4�

4m2 ��2

Z
d3r3��r1; r2; r3; r3; r3; r3�: (4.20)
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We see that it has the form of an inhomogeneous two-body
Schrödinger equation, where the inhomogeneous term on
the right-hand side (which would ordinarily be zero in a
two-body Schrödinger equation) is provided by the four-
body and six-body wave functions and the V2;4 and V2;6
potentials.

It is not possible to obtain exact, analytic solutions of the
coupled wave equations, even in the nonrelativistic limit.
Therefore, we shall consider some approximate, varia-
tional solutions.

V. APPROXIMATE, VARIATIONAL SOLUTIONS
FOR THE RELATIVISTIC PARTICLE-

ANTIPARTICLE GROUND STATE

Approximate, variational solutions of the coupled rela-
tivistic equations (4.5), (4.6), and (4.7) can be obtained by
choosing explicit analytic forms with adjustable parame-
ters for the functions F, G, and S, that is, taking the trial
state to be of the form

 j ti � a2j t2i � a4j t4i � a6j t6i; (5.1)

where a2, a4, and a6 are linear parameters, and j t2i, j t4i,
j t6i are  2 [Eq. (3.1)],  4 [Eq. (3.10)], and  6 [Eq. (4.2)],
respectively, but with F, G, and S being explicit analytic
forms containing additional adjustable parameters.

Optimization of the linear parameters a2, a4, and a6

corresponds to diagonalizing the matrix
 

Ht�

h t2 j:Ĥ:j t2i h t2 j:Ĥ:j t4i h t2 j:Ĥ:j t6i

h t4 j:Ĥ:j t2i h t4 j:Ĥ:j t4i h t4 j:Ĥ:j t6i

h t6 j:Ĥ:j t2i h t6 j:Ĥ:j t4i h t6 j:Ĥ:j t6i

2
6664

3
7775; (5.2)

where h tij tii � 1 (i � 2; 4; 6) are taken, and the expres-
sions for the matrix elements are those given in the appen-
dix, evaluated at time t � 0.

For the ground state of the two(plus four and plus six)-
body system, in the rest frame, we choose the simple forms

 F�p1;p2� � f�p1��N�p1 � p2�; (5.3)

 

G�p1;p2;p3;p4� � f�p1�f�p2�f�p3��
N�p1 � p2

� p3 � p4�; (5.4)

and
 

S�p1;p2;p3;p4;p5;p6� � f�p1�f�p2� . . . f�p5��
N�p1 � p2

� � � � � p6�; (5.5)

where

 f�pi� �
1

�p2
i � p

2
0�

 : (5.6)

We note that there are two adjustable parameters p0 and �
in our choice of F, G, and S; hence, the three eigenvalues
Et1 , Et2 , and Et3 (and corresponding eigenvectors) are
functions of these parameters. We keep � fixed at the
hydrogenic ground-state value (� � 2). The occurrence
of minimum of hHi at values of � larger than 1.5 avoids
the domain �3=4; 1� in which the momentum-space integral
equations become singular, so fixing � at 2 also avoids this
problem. For a given value of the coupling constant, the
best approximation to the two-body ground-state energy
(rest mass) for the chosen forms of F,G, and S corresponds
to those values of the parameters for which Et1 [the small-
est of the three eigenvalues of (5.2)] is a minimum.

The computation of E � Et1 requires the evaluation of
troublesome multidimensional integrals. We worked them
out by using the ‘‘Monte Carlo’’ method [10]. The tech-
nique involves a combination of importance sampling and
the adaptive Monte Carlo code. We present the nucleon-
antinucleon ground-state energy E (rest mass of the bound
system) for various values of the coupling constant 	, for
both the massless- (� � 0) and the massive- (�=m �
0:15) exchange cases.

Numerical results are given in Tables I and II. Energies
En and p0 are given in units of m (i.e., m � 1). Note that
the error estimates in the Monte Carlo results grow sig-
nificantly with increasing n (number of particles) and 	
(the coupling constant) of the scalar field theory under
study. We quote the following examples. For the
massless-exchange case (�=m � 0), the error increases
from about 4% for 	
 0:5 to about 10% at 	 � 0:9. For

TABLE I. Nucleon-antinucleon ground-state energy and wave-function parameters for various 	, massless-exchange (� � 0) case.

	 E, j 2i (p0)
(Ref. [4])

Eq. (5.7) E, j 2i � j 4i

(p0) (Ref. [6])
a4=a2

(Ref. [6])
E, j 2i � j 4i � j 6i

(p0) (present results)
a4=a2

(present results)
a6=a2

(present results)

0.1 1:997� 0:002 (0.049) 1.997 1:995� 0:005 (0.070) 10�8 1:993� 0:007 (0.085) 
10�8 
10�11

0.2 1:990� 0:003 (0.094) 1.989 1:981� 0:015 (0.150) 10�6 1:973� 0:025 (0.155) 
10�6 
10�9

0.3 1:979� 0:003 (0.133) 1.977 1:962� 0:030 (0.215) 7
 10�5 1:947� 0:040 (0.220) 
7
 10�5 
10�7

0.4 1:964� 0:003 (0.166) 1.958 1:910� 0:035 (0.255) 0.000 15 1:865� 0:050 (0.260) 0:000 15� �0:000 02� 
10�6

0.5 1:947� 0:003 (0.196) 1.932 1:864� 0:035 (0.325) 0.001 05 1:790� 0:070 (0.335) 0:001 10� �0:000 15� 
10�5

0.6 1:927� 0:003 (0.222) 1.897 1:773� 0:035 (0.465) 0.008 50 1:695� 0:080 (0.475) 0:008 80� �0:000 70� 0:000 25� �0:000 02�
0.7 1:904� 0:004 (0.246) 1.852 1:704� 0:040 (0.535) 0.021 45 1:595� 0:100 (0.535) 0:021 60� �0:001 75� 0:002 05� �0:000 18�
0.8 1:880� 0:004 (0.267) 1.789 1:620� 0:038 (0.605) 0.037 50 1:480� 0:120 (0.610) 0:037 70� �0:002 90� 0:011 25� �0:001 10�
0.9 1:854� 0:005 (0.287) 1.695 1:524� 0:040 (0.640) 0.055 80 1:360� 0:135 (0.650) 0:056 10� �0:004 25� 0:022 30� �0:002 20�
1 1:827� 0:005 (0.305) 1.414 1:381� 0:040 (0.680) 0.072 65
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the massive-exchange case (�=m � 0:15), the error in-
creases from about 2% for	
 0:5 to about 8% at	 � 0:9.

Figure 1 is a plot of E=m versus 	 for the massless-
exchange case�=m � 0 (the Wick-Cutkosky model). This
figure also contains results obtained using the simplest
form of trial state (i.e., G � 0 and S � 0), by Ding and
Darewych [4], and the trial state (i.e., G � 0 and S � 0)
that had been calculated by Emami-Razavi and Darewych
[6].

We also include calculations of the two-body bound
states for the present model in the Feshbach-Villars formal-
ism, using an ‘‘empty’’ vacuum state j~0i annihilated by the
full field operator, i.e., �j~0i � 0, which yield two-body
Klein-Gordon-like equations that have analytic solutions

with the energy spectrum [11]

 En � m

����������������������������������������
2
�
1�

��������������������
1�

�
	
n

�
2

s �vuut
; (5.7)

where n � 1; 2; 3; . . . is the principal quantum number. For
the ground state, this predicts a critical value 	c � 1, at
which E1=m �

���
2
p

.
There are a number various other calculations of the

two-body binding energy for this model, beginning with
the original ladder Bethe-Salpeter calculations of Wick and
Cutkosky [5] and corresponding light-front-dynamics lad-
der results, for example, Ji and Furnstahl [12], Mangin-
Brinet and Carbonell [13], and Bakker, van Iersel, and
Piljman [14]. We do not plot them in Fig. 1, as they lie
above our simplest (G � 0 and S � 0) results. We believe
that the relatively low binding energies predicted in all of
these cases are a reflection of the inadequacy of the ladder
approximation (except at very low values 	� 1 of the
coupling constant). There are also other approaches for the
relativistic bound-state problems. For example, one can see
the work of Todorov and his quasipotential approach in
Ref. [15].

Numerical values corresponding to Fig. 1 are listed in
Table I, along with the associated optimal values of the
parameters a2, a4, a6, and p0, which specify the approxi-
mate ground-state wave functions (we keep � fixed at the
hydrogenic ground-state value � � 2). Note that theG � 0
and S � 0 results and S � 0 only (G � 0) in Table I are
taken from Refs. [4,6]. They are included here for com-
parison purposes.

The present results indicate that the simplest (G � 0 and
S � 0, Ref. [4]) approximation and the improved ones
(G � 0 and S � 0, Ref. [6], or G � 0 and S � 0, present
results) are similar ‘‘to within numerical uncertainties’’ in
the domain of weak coupling (0 � 	 & 0:2), where rela-
tivistic effects are small. However, the simplest (G � 0 and
S � 0) approximation underestimates the binding energy
considerably for larger values of 	, showing that the
simplest approximation is not reliable except at low 	.
We note that the linear parameters a4 and a6 of the trial
state [cf. Eq. (5.1)] are small (relative to a2) at low 	 and
increase steadily as 	 increases. This indicates that the

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 0.2 0.4 0.6 0.8 1

E/m

DD

Eq. (5.7)

2+(4)

2+(4)+(6)

UP_2+4+6

Low_2+4+6

FIG. 1 (color online). Two-body ground-state energy (rest
mass) E=m as a function of the dimensionless coupling constant
	 � g2=16�m2 for the massless-exchange case (� � 0). Curves
from top to bottom: Variational with  t �  2 [Ding and
Darewych (DD) [4], Eq. (3.5)]; ‘‘empty vacuum’’ Feshbach-
Villars formulation [Eq. (5.7) with n � 1]; variational results
with  t �  2 �  4 [Eqs. (5.2), (5.3), (5.4), (5.5), and (5.6) [6]];
present variational results with  t �  2 �  4 �  6 [Eqs. (5.2),
(5.3), (5.4), (5.5), and (5.6)].

TABLE II. Nucleon-antinucleon ground-state energy and wave-function parameters for various 	, massive-exchange (� � 0:15 m)
case.

	 E, j 2i (p0)
(Ref. [4])

E, j 2i � j 4i

(p0) (Ref. [6])
a4=a2

(Ref. [6])
E, j 2i � j 4i � j 6i

(p0) (present results)
a4=a2

(present results)
a6=a2

(present results)

0.3 1:999� 0:001 (0.010) 1:997� 0:003 (0.070) 10�7 1:995� 0:005 (0.080) 
10�7 
10�10

0.4 1:997� 0:001 (0.120) 1:990� 0:005 (0.220) 4
 10�5 1:985� 0:015 (0.225) 4
 10�5 ��5
 10�6� 
10�7

0.5 1:991� 0:002 (0.159) 1:967� 0:035 (0.315) 5:4
 10�4 1:947� 0:045 (0.320) 5:5
 10�4 ��5
 10�5� 
10�6

0.6 1:983� 0:002 (0.192) 1:915� 0:035 (0.440) 0.003 95 1:865� 0:070 (0.445) 0:004 00� �0:000 25� 3:5
 10�5 ��0:3� 
 10�5

0.7 1:973� 0:002 (0.220) 1:848� 0:035 (0.525) 0.011 50 1:755� 0:095 (0.530) 0:012 00� �0:001 05� 0:000 17� �0:15� 
 10�4

0.8 1:960� 0:003 (0.245) 1:746� 0:035 (0.585) 0.025 07 1:625� 0:110 (0.590) 0:025 00� �0:002 10� 0:001 55� �0:000 15�
0.9 1:946� 0:003 (0.267) 1:627� 0:035 (0.620) 0.041 60 1:485� 0:125 (0.635) 0:041 75� �0:003 60� 0:013 75� �0:001 35�
1 1:930� 0:004 (0.287) 1:487� 0:035 (0.645) 0.058 05
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four-body and six-body Fock-space components  4 and  6

of the trial state (5.1) become increasingly important with
increasing 	.

We could not obtain meaningful numerical results
for 	�1. This likely indicates that the Wick-Cutkosky
model (massless case, ��0) has no two-body bound-state
solutions for 	 larger than some critical value 	c, as
happens in the one-body Klein-Gordon case (the one-
body Klein-Gordon equation with a scalar Coulombic
potential �	

r has the bound-state energy spectrum E
m �

�
����������������������������
1� �	2=4n2�

p
, which has no real 1s eigenvalues for

	>2 [16]).
Our present variational solutions with F, G, and S all �

0 [i.e., 2� �4� � �6�] predict stronger binding than any of
the other calculations. However, we cannot predict a pre-
cise value of 	c since our numerical Monte Carlo results
become unreliable for 	 * 0:8.

Table II contains variational results analogous to those
of Table I for the �=m � 0:15 case in numerical form. We
also list in Table II the corresponding optimal values of the
adjustable parameters p0, a4=a2, and a6=a2 (with � � 2),
at which the expectation value of the Hamiltonian is a
minimum. These parameters specify the ground-state
wave-function components  2,  4, and  6. Note that the
variation of these parameters with 	 is qualitatively similar
to the � � 0 case.

We have also plotted the ground-state ‘‘nucleon-
antinucleon’’ energy as a function of 	 for the massive
‘‘pion’’ exchange case (with �=m � 0:15) in Fig. 2, along
with results of some other workers, obtained by various
approaches. There are many such results. It would not be
possible to plot all of them in one figure, since it would
become too cluttered and illegible. We therefore include a
selection of results in the figure. Most of the results in
Fig. 2 have been taken from the paper of Nieuwenhuis and
Tjon [7] (corresponding numerical values are given in [4]).
Note that, for this massive-exchange case, the interaction is
short range, and binding sets in for 	 at about 0.3.

The top curve, indicating weakest binding, is the ladder
Bethe-Salpeter approximation [5]. The one below it corre-
sponds to the simplest variational results (G � 0 and S �
0, Ref. [4]) in the present formalism. The next curve below
that is a one-time reduction of the Bethe-Salpeter equation
due to Gross [17]. It contains one-quantum exchange and
relativistic retardation effects.

Results obtained using the ‘‘empty vacuum’’ Feshbach-
Villars formalism [11] lie very close to the Gross results;
hence, they are also not plotted in Fig. 2. Both predict a
critical value 	c beyond which there are no two-body
bound states. Indeed, the Gross equation with retardation
gives 	c ’ 1:3, where E=m ’ 1:4, whereas the Feshbach-
Villars result is 	c � 1:2087 and E=m � 1:483 86 [11].

The curve below the Gross results in Fig. 2 is from the
numerical calculation by Nieuwenhuis and Tjon [7] using
the Feynman-Schwinger representation. It does not include
loop effects.

The curve below Nieuwenhuis and Tjon [7] corresponds
to the improved (G � 0) relativistic variational approxi-
mation [6], which contains tree-level effects and retarda-
tion in the two-body sector, as well as virtual nucleon-
antinucleon pairs from the four-body sector (and coupling
between these sectors). As in the massless-exchange case,
no meaningful result is presented in Ref. [6] for 	c > 1,
which may be suggestive of the existence of a critical value
of the coupling constant with 	c ’ 1.

The lowest curve corresponds to the present results
(G � 0 and S � 0) relativistic variational approximation,
which contains tree-level effects and retardation in the two-
body sector, as well as virtual nucleon-antinucleon pairs
from the four-body and six-body sectors (and coupling
between these sectors).

VI. DISCUSSIONS AND CONCLUDING REMARKS

We have used the variational method in a reformulated
version of the Hamiltonian formalism of quantum field
theory to derive relativistic wave equations for two-body
bound states in the scalar Yukawa model, in which mas-
sive, scalar nucleons N and ‘‘antinucleons’’ �N of mass
m interact via scalar meson exchange, which may be
massive (� � 0) or massless (� � 0). The novel feature
of the present work is the use of a trial state of the form

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E/m
BS

DD

Gross

FS

2+(4)

2+(4)+(6)

Up_2+(4)+(6)

Low_2+(4)+(6)

FIG. 2 (color online). Two-body ground-state energy (rest
mass) E=m as a function of the dimensionless coupling constant
	 � g2=16�m2 for the massive-exchange case (�=m � 0:15).
Curves from top to bottom: Bethe-Salpeter (BS) in ladder
approximation; variational with  t �  2 [Ding and Darewych
(DD) [4], Eq. (3.5)]; Gross equation with retardation [17];
Feynman-Schwinger (FS) formulation (Nieuwenhuis and Tjon
[7]); variational results with  t �  2 �  4 [Eqs. (5.2), (5.3),
(5.4), (5.5), and (5.6)] [6]; present variational results with  t �
 2 �  4 �  6 [Eqs. (5.2), (5.3), (5.4), (5.5), and (5.6)].
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j ti � j 2i � j 4i � j 6i, where j 2i, j 4i, and j 6i rep-
resent, respectively, two-, four-, and six-body Fock-state
components of the form j 2i � jF�N �N�i, j 4i �
jG�N �NN �N�i, and j 6i � jS�N �NN �NN �N�i, respectively,
where F, G, and S represent, respectively, adjustable
two-, four-, and six-body wave-function coefficients. For
purposes of describing two-body bound states of rest en-
ergy E< 2m, the four- and six-body components allow for
virtual nucleon-antinucleon effects.

The variational principle leads to three coupled, multi-
dimensional momentum-space relativistic integral wave
equations for the two-, four-, and six-body coefficient func-
tions F, G, and S. The interaction kernels (momentum-
space potentials) in these equations contain one-meson
exchange and virtual pair annihilation diagrams, along
with retardation effects. These equations are Salpeter-like
(rather than Klein-Gordon-like); that is, they admit only
positive-energy solutions. We have also presented the non-
relativistic limit of these equations. In the coordinate-space
representation, they are coupled two-, four-, and six-body
Schrödinger equations, with attractive Yukawa interpar-
ticle potentials (or Coulombic, if � � 0) corresponding
to one-pion exchange and contact (delta-function) poten-
tials corresponding to virtual-annihilation effects.

We determine the two-body ground-state energy (rest
mass) E�	� and wave-function parameters for both the
massless- (� � 0) and the massive- (�=m � 0:15) ex-
change cases, in the domains 0<	< 1 and 0:3 � 	<
1, respectively. The ground-state energy is found to de-
crease steadily from 2m with increasing strength of the
coupling. It was shown previously by Emami-Razavi and
Darewych [6] that the  4 component of the trial state  t �
 2 �  4 becomes increasingly important as 	 increases,
and the binding energy at high 	 is much larger than that
obtained with  t �  2 only. Our present results show that
the  6 component of the trial state  t �  2 �  4 �  6

also becomes increasingly important as 	 increases, and
the binding energy at high 	 is much larger than that
obtained with  t �  2 �  4 (especially after the value of
	 * 0:7). No meaningful solutions were found for 	 * 1.

In order to explain the present numerical results ade-
quately with respect to our Monte Carlo methods, we
divide the scale of different 	 on three different categories.
The first one corresponds to 0:1 � 	 � 0:3 (� � 0,
massless-exchange case) and 0:3 � 	 � 0:4 (� � 0:15,
massive-exchange case). In the scale of 0:1 � 	 � 0:9,
we call the first case ‘‘low’’ coupling. The second case
corresponds to 0:4 � 	 � 0:6 (� � 0, massless-exchange
case) and 0:5 � 	 � 0:6 (� � 0:15, massive-exchange
case). We call the second case ‘‘high’’ coupling. Finally,
the last case (the third one) corresponds to 0:7 � 	 � 0:9
(� � 0, massless-exchange case) and 0:7 � 	 � 0:9
(� � 0:15, massive-exchange case). We call the third
case ‘‘very high’’ coupling.

In all cases, the binding energy increases with the addi-
tion of consecutive virtual pairs. The numerical results of

E=m versus 	 for all the cases are as the following. The
results of  t� 2� 4� 6 are below  t �  2 �  4 and
the results of  t �  2 �  4 are below  t �  2 only. Also,
the binding energy of the massless-exchange case (� � 0)
is bigger than the massive-exchange case (� � 0:15).

Within numerical uncertainties, the numerical results for
the first case (low coupling) are close to each other for the
trial states  t �  2 �  4 �  6,  t �  2 �  4, and  t �
 2. For the case of high coupling, we see that in both cases
( t �  2 �  4 or the present results  t �  2 �  4 �  6)
the inclusion of virtual pairs has a large effect for the
binding energy of the system. One should note that, due
to the extremely difficult calculations for the additional
six-body case in this work, we have a relatively large error
estimate for the ground-state energy solutions. Neverthe-
less, the present results confirm that the addition of a six-
body Fock state increases again the binding energy of the
system at high coupling. For the last case, namely, very
high coupling, once again, our numerical results confirm
that the additional virtual pairs increase the binding energy
of the system notably. Our numerical Monte Carlo results
become unreliable for 	 * 0:8 as mentioned before.
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APPENDIX

We recall that the total Hamiltonian of this scalar QFT is

Ĥ�t� �
R
dNxĤ �x�, where the Hamiltonian density Ĥ �x�

is given in Eqs. (2.1), (2.2), (2.3), (2.4), (2.5), and (2.6).
The Hamiltonian matrix corresponding to the general-

ized particle-antiparticle trial state (5.1) can be written as

 

Ht�

h t2 j:Ĥ:j t2i h t2 j:Ĥ:j t4i h t2 j:Ĥ:j t6i

h t4 j:Ĥ:j t2i h t4 j:Ĥ:j t4i h t4 j:Ĥ:j t6i

h t6 j:Ĥ:j t2i h t6 j:Ĥ:j t4i h t6 j:Ĥ:j t6i

26664
37775: (A1)

For the two-particle sector, the matrix elements and the
kernel K2;2 are given in Eqs. (3.2), (3.3), and (3.4).

For the four-particle system, the matrix element corre-
sponding to the rest-plus-kinetic energy is

 

h 4j:Ĥ� � E:j 4i �
Z
dNp1 . . . dNp4G��p1; . . . ;p4�


G�p1; . . . ;p4�


 �!p1
� . . .�!p4

� E	: (A2)

The matrix element corresponding to the interactions has
the structure
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 h 4j:ĤI:j 4i � �G1	 � �G2	 � �G3	 � �G4	 � �G5	

� �G6	 � �A1	 � �A2	 � �A3	 � �A4	;

which means that there are six terms corresponding to the
one-quantum exchange interaction (all of them attractive,
i.e., gravitylike) and four terms corresponding to virtual-
annihilation interaction among the particle and antiparticle

pairs.
 

h 4jĤI:j 4i � �
Z
dNp1 . . . dNp4d

Np01 . . . dNp04


G��p01; . . . ;p04�G�p1; . . . ;p4�


K4;4�p01;p
0
2;p

0
3;p

0
4;p1;p2;p3;p4�; (A3)

where K4;4 is the following expression:

 

K4;4 �
g2

4�2��N

��
�N�p02 � p2��

N�p04 � p4�
�N�p01 � p03 � p1 � p3���������������������������������!p01

!p03
!p1

!p3

p
1

�2 � �p1 � p
0
1�

2

�
G1

�

�
�N�p01 � p1��N�p04 � p4�

�N�p02 � p03 � p2 � p3���������������������������������!p02
!p03

!p2
!p3

p
1

�2 � �p2 � p
0
2�

2

�
G2

�

�
�N�p04 � p4��N�p03 � p3�

�N�p01 � p02 � p1 � p2���������������������������������!p01
!p02

!p1
!p2

p
1

�2 � �p2 � p02�
2

�
G3

�

�
�N�p01 � p1��N�p02 � p2�

�N�p04 � p03 � p3 � p4���������������������������������!p04
!p03

!p3
!p4

p
1

�2 � �p3 � p
0
3�

2

�
G4

�

�
�N�p03 � p3��

N�p02 � p2�
�N�p04 � p01 � p4 � p1���������������������������������!p04

!p01
!p4

!p1

p
1

�2 � �p1 � p01�
2

�
G5

�

�
�N�p03 � p3��N�p01 � p1�

�N�p04 � p02 � p4 � p2���������������������������������!p04
!p02

!p4
!p2

p
1

�2 � �p4 � p04�
2

�
G6

�

�
�N�p01 � p1��N�p02 � p2�

�N�p04 � p03 � p3 � p4���������������������������������!p04
!p03

!p3
!p4

p
1

�2 � �p4 � p3�
2

�
A1

�

�
�N�p03 � p3��N�p02 � p2�

�N�p04 � p01 � p4 � p1���������������������������������!p04
!p01

!p4
!p1

p
1

�2 � �p4 � p1�
2

�
A2

�

�
�N�p01 � p1��N�p04 � p4�

�N�p02 � p03 � p2 � p3���������������������������������!p02
!p03

!p2
!p3

p
1

�2 � �p03 � p
0
2�

2

�
A3

�

�
�N�p04 � p4��

N�p03 � p3�
�N�p01 � p02 � p1 � p2���������������������������������!p01

!p02
!p1

!p2

p
1

�2 � �p01 � p
0
2�

2

�
A4

�
: (A4)

The matrices h 4j:Ĥ:j 2i, h 6j:Ĥ:j 2i, and h 6j:Ĥ:j 4i
are complex conjugates of h 2j:Ĥ:j 4i, h 2j:Ĥ:j 6i, and
h 4j:Ĥ:j 6i, respectively, and we do not write them again.
Note that the expressions of K2;4, K2;6, and K4;6 can be
obtained from K4;2, K6;2, and K6;4, respectively. One has
to change the variables p01 to p1, p02 to p2, etc., and vice
versa p1 to p01, p2 to p02, etc., inside the expressions K4;2,
K6;2, and K6;4 in order to obtain K2;4, K2;6, and K4;6,
respectively. The matrix elements h 2j:Ĥ:j 4i,
h 2j:Ĥ:j 6i, and h 4j:Ĥ:j 6i, which couple the two-,
four-, and six-body sectors, respectively, have the follow-
ing expressions:

 

h 2j:Ĥ:j 4i � h 2j:ĤI:j 4i

� �
Z
dNp1 . . . dNp4dNp01d

Np02


 F��p01;p
0
2�G�p1;p2;p3;p4�


K4;2�p01;p
0
2;p1;p2;p3;p4�; (A5)

where K4;2 is
 

K4;2�
g2

4�2��N

�
�N�p02�p2���������������������������������!p01
!p1

!p3
!p4

p
�N�p01�p1�p3�p4�

�2��p1�p01�
2

�
�N�p01�p1���������������������������������!p02
!p2

!p3
!p4

p
�N�p02�p2�p3�p4�

�2��p2�p02�
2

�
�N�p02�p2���������������������������������!p01
!p1

!p3
!p4

p
�N�p01�p1�p3�p4�

�2��p4�p1�
2

�
�N�p01�p1���������������������������������!p02
!p2

!p3
!p4

p
�N�p02�p2�p3�p4�

�2��p3�p2�
2

�
; (A6)

 

h 2j:Ĥ:j 6i � h 2j:ĤI:j 6i

� �
Z
dNp01d

Np02d
Np1 . . .dNp6


 F��p01;p
0
2�S�p1;p2;p3;p4;p5;p6�


K6;2�p01;p
0
2;p1;p2;p3;p4;p5;p6�; (A7)
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where K6;2 is
 

K6;2 �
g2

4�2��N

�
�N�p01 � p1��

N�p02 � p2�
�N�p3 � p4 � p5 � p6���������������������������������!p3

!p4
!p5

!p6

p
1

�2 � �p5 � p6�
2 � �

N�p01 � p1��
N�p02 � p2�



�N�p3 � p4 � p5 � p6���������������������������������!p3

!p4
!p5

!p6

p
1

�2 � �p4 � p5�
2 � �

N�p01 � p1��N�p02 � p2�



�N�p3 � p4 � p5 � p6���������������������������������!p3

!p4
!p5

!p6

p
1

�2 � �p3 � p6�
2

�
; (A8)

and
 

h 4j:Ĥ:j 6i � h 4j:ĤI:j 6i

� �
Z
dNp01 . . . dNp04d

Np1 . . . dNp6G��p01;p
0
2;p

0
3;p

0
4�S�p1;p2;p3;p4;p5;p6�


K6;4�p01;p
0
2;p

0
3;p

0
4;p1;p2;p3;p4;p5;p6�; (A9)

where K6;4 is
 

K6;4 �
g2

4�2��N

�
�N�p01 � p1��

N�p02 � p2��
N�p04 � p4�

�N�p03 � p3 � p5 � p6���������������������������������!p03
!p3

!p5
!p6

p
1

�2 � �p5 � p6�
2

� �N�p02 � p2��
N�p03 � p3��

N�p04 � p4�
�N�p01 � p1 � p5 � p6���������������������������������!p01

!p1
!p5

!p6

p
1

�2 � �p6 � p1�
2

� �N�p01 � p1��
N�p02 � p2��

N�p04 � p6�
�N�p03 � p5 � p4 � p3���������������������������������!p03

!p5
!p4

!p3

p
1

�2 � �p4 � p3�
2

� �N�p01 � p1��N�p03 � p3��N�p04 � p4�
�N�p02 � p2 � p5 � p6���������������������������������!p02

!p2
!p5

!p6

p
1

�2 � �p2 � p5�
2

� �N�p02 � p2��
N�p03 � p3��

N�p01 � p5�
�N�p04 � p6 � p4 � p1���������������������������������!p04

!p6
!p4

!p1

p
1

�2 � �p4 � p1�
2

� �N�p01 � p1��
N�p02 � p2��

N�p03 � p3�
�N�p04 � p4 � p5 � p6���������������������������������!p04

!p4
!p5

!p6

p
1

�2 � �p4 � p5�
2

� �N�p01 � p1��N�p02 � p2��N�p04 � p4�
�N�p03 � p3 � p5 � p6���������������������������������!p03

!p3
!p5

!p6

p
1

�2 � �p03 � p3�
2

� �N�p02 � p2��
N�p04 � p4��

N�p01 � p3�
�N�p03 � p1 � p5 � p6���������������������������������!p03

!p1
!p5

!p6

p
1

�2 � �p03 � p5�
2

� �N�p02 � p2��N�p03 � p3��N�p04 � p4�
�N�p01 � p1 � p6 � p5���������������������������������!p01

!p1
!p6

!p5

p
1

�2 � �p01 � p1�
2

� �N�p01 � p1��
N�p03 � p3��

N�p04 � p4�
�N�p02 � p2 � p6 � p5���������������������������������!p02

!p2
!p6

!p5

p
1

�2 � �p02 � p2�
2

� �N�p01 � p1��
N�p02 � p2��

N�p03 � p3�
�N�p04 � p4 � p5 � p6���������������������������������!p04

!p4
!p5

!p6

p
1

�2 � �p04 � p4�
2

� �N�p01 � p1��N�p03 � p3��N�p02 � p4�
�N�p04 � p2 � p5 � p6���������������������������������!p04

!p2
!p5

!p6

p
1

�2 � �p04 � p6�
2

�
: (A10)

For the six-particle system (n � 6), the matrix element corresponding to the rest-plus-kinetic energy is
 

h 6j:Ĥ� � E:j 6i �
Z
dNp1dNp2 . . . dNp6S��p1;p2; . . . ;p6�S�p1;p2; . . . ;p6�


 �!p1
�!p2

�!p3
�!p4

�!p5
�!p6

� E	: (A11)
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The matrix element corresponding to the interactions has the structure

 h 6j:ĤI:j 6i � �G1	 � �G2	 � � � � � �G14	 � �G15	 � �A1	 � �A2	 � � � � � �A8	 � �A9	; (A12)

which means that there are 15 terms [n�n� 1�=2 � 15] corresponding to the one-quantum exchange interaction (all of
them attractive, i.e., gravitylike) and 9 terms (n2=4 � 9) corresponding to virtual-annihilation interaction among the
particle and antiparticle pairs.

 h 6j:ĤI:j 6i ��
Z
dNp1 . . .dNp6d

Np01 . . .dNp06S
��p01; . . . ;p

0
6�S�p1; . . . ;p6�K6;6�p01;p

0
2;p

0
3;p

0
4;p

0
5;p

0
6;p1;p2;p3;p4;p5;p6�:

(A13)

The expression of K6;6 is a long expression. We divide it in two parts. The first one is the corresponding Yukawa
interactions (all of them attractive, i.e., gravitylike), and the second part is the corresponding virtual-annihilation
interactions. Hence, we can write K6;6 �KG

6;6 �KA
6;6; KG

6;6 and KA
6;6 are the following expressions, respectively:

 

KG
6;6 �

g2

4�2��N

��
�N�p03 � p3��

N�p04 � p4�
�N�p01 � p02 � p1 � p2���������������������������������!p01

!p02
!p1

!p2

p
�N�p05 � p5��

N�p06 � p6�

�2 � �p2 � p
0
2�

2

�
G1

�

�
�N�p02 � p2��N�p04 � p4�

�N�p01 � p03 � p1 � p3���������������������������������!p01
!p03

!p1
!p3

p
�N�p05 � p5��N�p06 � p6�

�2 � �p1 � p
0
1�

2

�
G2

�

�
�N�p02 � p2��N�p03 � p3�

�N�p01 � p04 � p1 � p4���������������������������������!p01
!p04

!p1
!p4

p
�N�p05 � p5��N�p06 � p6�

�2 � �p1 � p
0
1�

2

�
G3

�

�
�N�p02 � p2��N�p03 � p3�

�N�p01 � p05 � p1 � p5���������������������������������!p01
!p05

!p1
!p5

p �N�p04 � p4��N�p06 � p6�

�2 � �p5 � p05�
2

�
G4

�

�
�N�p02 � p2��

N�p03 � p3�
�N�p01 � p06 � p1 � p6���������������������������������!p01

!p06
!p1

!p6

p
�N�p04 � p4��

N�p05 � p5�

�2 � �p6 � p06�
2

�
G5

�

�
�N�p01 � p1��N�p04 � p4�

�N�p02 � p03 � p2 � p3���������������������������������!p02
!p03

!p2
!p3

p
�N�p05 � p5��

N�p06 � p6�

�2 � �p2 � p
0
2�

2

�
G6

�

�
�N�p01 � p1��

N�p03 � p3�
�N�p02 � p04 � p2 � p4���������������������������������!p02

!p04
!p2

!p4

p
�N�p05 � p5��

N�p06 � p6�

�2 � �p4 � p
0
4�

2

�
G7

�

�
�N�p01 � p1��N�p03 � p3�

�N�p02 � p05 � p2 � p5���������������������������������!p02
!p0

5
!p2

!p5

p �N�p04 � p4��
N�p06 � p6�

�2 � �p5 � p
0
5�

2

�
G8

�

�
�N�p01 � p1��N�p03 � p3�

�N�p02 � p06 � p2 � p6���������������������������������!p02
!p06

!p2
!p6

p
�N�p04 � p4��N�p05 � p5�

�2 � �p6 � p06�
2

�
G9

�

�
�N�p01 � p1��

N�p02 � p2�
�N�p03 � p04 � p3 � p4���������������������������������!p03

!p04
!p3

!p4

p
�N�p05 � p5��

N�p06 � p6�

�2 � �p3 � p03�
2

�
G10

�

�
�N�p01 � p1��

N�p02 � p2�
�N�p03 � p05 � p3 � p5���������������������������������!p03

!p0
5
!p3

!p5

p �N�p04 � p4��N�p06 � p6�

�2 � �p3 � p03�
2

�
G11

�

�
�N�p01 � p1��

N�p02 � p2�
�N�p03 � p06 � p3 � p6���������������������������������!p03

!p06
!p3

!p6

p
�N�p04 � p4��

N�p05 � p5�

�2 � �p6 � p
0
6�

2

�
G12

�

�
�N�p01 � p1��N�p02 � p2�

�N�p04 � p05 � p4 � p5���������������������������������!p04
!p05

!p4
!p5

p �N�p03 � p3��
N�p06 � p6�

�2 � �p4 � p
0
4�

2

�
G13

�

�
�N�p01 � p1��N�p02 � p2�

�N�p04 � p06 � p4 � p6���������������������������������!p04
!p06

!p4
!p6

p
�N�p03 � p3��N�p05 � p5�

�2 � �p4 � p04�
2

�
G14

�

�
�N�p01 � p1��

N�p02 � p2�
�N�p05 � p06 � p5 � p6���������������������������������!p0

5
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!p5
!p6

p �N�p03 � p3��N�p04 � p4�

�2 � �p5 � p
0
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g2

4�2��N

��
�N�p03 � p3��

N�p04 � p4�
�N�p01 � p02 � p1 � p2���������������������������������!p01

!p02
!p1

!p2

p
�N�p05 � p5��

N�p06 � p6�

�2 � �p1 � p2�
2

�
A1

�

�
�N�p02 � p2��N�p03 � p3�

�N�p01 � p04 � p1 � p4���������������������������������!p01
!p04

!p1
!p4

p
�N�p05 � p5��N�p06 � p6�

�2 � �p1 � p4�
2

�
A2

�

�
�N�p02 � p2��N�p03 � p3�

�N�p01 � p06 � p1 � p6���������������������������������!p01
!p06

!p1
!p6

p
�N�p04 � p4��N�p05 � p5�

�2 � �p01 � p
0
6�

2

�
A3

�

�
�N�p01 � p1��

N�p04 � p4�
�N�p02 � p03 � p2 � p3���������������������������������!p02

!p03
!p2

!p3

p
�N�p05 � p5��

N�p06 � p6�

�2 � �p02 � p
0
3�

2

�
A4

�

�
�N�p01 � p1��

N�p03 � p3�
�N�p02 � p05 � p2 � p5���������������������������������!p02

!p0
5
!p2

!p5

p �N�p04 � p4��N�p06 � p6�

�2 � �p2 � p5�
2

�
A5

�

�
�N�p01 � p1��

N�p02 � p2�
�N�p03 � p04 � p3 � p4���������������������������������!p03

!p04
!p3

!p4

p
�N�p05 � p5��

N�p06 � p6�

�2 � �p04 � p
0
3�

2

�
A6

�

�
�N�p01 � p1��

N�p02 � p2�
�N�p03 � p06 � p3 � p6���������������������������������!p03

!p06
!p3

!p6

p
�N�p04 � p4��

N�p05 � p5�

�2 � �p3 � p6�
2

�
A7

�

�
�N�p01 � p1��N�p02 � p2�

�N�p04 � p05 � p4 � p5���������������������������������!p04
!p0

5
!p4

!p5

p �N�p03 � p3��
N�p06 � p6�

�2 � �p04 � p
0
5�

2

�
A8

�

�
�N�p01 � p1��N�p02 � p2�

�N�p05 � p06 � p5 � p6���������������������������������!p05
!p06

!p5
!p6

p �N�p03 � p3��
N�p04 � p4�

�2 � �p05 � p
0
6�

2

�
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�
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