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We consider N � 1 supersymmetric quantum chromodynamics (SQCD) with the gauge group U�Nc�
and Nc � N quark flavors. Nc flavors are massless; the corresponding squark fields develop (small)
vacuum expectation values (VEVs) on the Higgs branch. Extra N flavors are endowed with small (and
equal) mass terms. We study this theory through its Seiberg’s dual: U�N� gauge theory with Nc � N
flavors of ‘‘dual quark’’ fields plus a gauge-singlet mesonic field M. The original theory is referred to as
‘‘quark theory’’ while the dual one is termed ‘‘monopole theory.’’ The suggested mild deformation of
Seiberg’s procedure changes the dynamical regime of the monopole theory from infrared free to
asymptotically free at large distances. We show that, upon condensation of the dual quarks, the dual
theory supports non-Abelian flux tubes (strings). Seiberg’s duality is extended beyond purely massless
states to include light states on both sides. Being interpreted in terms of the quark theory, the monopole-
theory flux tubes are supposed to carry chromoelectric fields. The string junctions—confined monopole-
theory monopoles—can be viewed as ‘‘constituent quarks’’ of the original quark theory. We interpret
closed strings as glueballs of the original quark theory. Moreover, there are string configurations formed
by two junctions connected by a pair of different non-Abelian strings. These can be considered as
constituent quark mesons of the quark theory.
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I. INTRODUCTION

In the mid-1990s Seiberg argued [1,2] that two distinct
N � 1 Yang-Mills theories with appropriately chosen
matter (usually referred to as electric/magnetic theories)
can be equivalent in the infrared (IR) limit. Seiberg’s dual-
ity was tested in a number of nontrivial ways (it passed all
tests with flying colors), was understood in the framework
of string/D-brane theory, and became an important tool in
the realm of strongly coupled gauge theories. Seiberg’s
duals have different gauge groups, say, SU�Nc� in the
electric theory versus SU�Nf � Nc� in the magnetic one.
The matter sectors of the electric and magnetic theories
from the dual pair are related to each other in a well-
defined manner.

Seiberg’s duality was most extensively used in the so-
called conformal window [3], in which both the original
theory and its dual are conformally invariant. Typically,
while one theory is strongly coupled the other one is at
weak coupling which allows one to perform a fully quan-
titative analysis of the weakly coupled theory, with pre-
dictions for scaling dimensions applicable to the strongly
coupled dual theory in the conformal regime.

Seiberg’s duality holds outside the conformal window
too. It relates to each other massless states of the dual
theories, one of which is infrared free. Moreover, by itself
it does not provide us with a confinement mechanism based
on formation of confining strings (flux tubes). The ques-
tions we address are: can Seiberg’s duality be generalized
to include theories which at large distances exhibit non-
Abelian string-based confinement? Can this duality con-

nect with each other not only massless states but also
massive ones?

Below we will argue that the answers to these two
questions are positive. To construct dual pairs with the
above properties we will need a modest extension of ideas
developed in connection with Seiberg’s duality previously
[3–5]. As is well known [1– 4], large vacuum expectation
values (VEVs) of the squark fields in the electric theory
translate into large mass terms of the dual quarks in the
magnetic theory and vice versa. With large VEVs we
Higgs a part of the gauge group. The corresponding gauge
bosons become heavy and can be integrated out. On the
other side of duality the corresponding dual quarks become
heavy and can be integrated out. This procedure changes
the IR behavior of each theory from the given dual pair, but
their IR equivalence remains intact.

We want to change the conformal (or IR free regime) in
the infrared limit into a confining regime. To this end the
above procedure must be modified. The modification we
suggest is as follows. We start from an N � 1 SQCD with
a certain number of the quark fields. The dynamical scale
of this theory is �Q. Quark fields from a judiciously chosen
subset are assumed to develop VEVs which are small on
the scale of �Q. The remaining quark fields are endowed
with a common mass term mq which is also small com-
pared to �Q, so that all ‘‘hadrons’’ are dynamical; none can
be integrated out. We argue that within the framework of
this deformation of Seiberg’s procedure, on the other side
of duality, the IR free regime is deformed to give rise to a
theory which supports flux tubes (strings) at weak coupling
and confines non-Abelian (dual) monopoles. A number of
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states in this theory are light in the sense that their mass
tends to zero in the limit mq ! 0. We argue that via duality
these light states are in one-to-one correspondence with the
light states of the original theory. Thus, duality gets ex-
tended to include (in addition to massless moduli) a part of
the spectrum which is light compared to the natural dy-
namical scale �Q but not massless. We refer to such dual
pairs as quark/monopole theories to distinguish them from
Seiberg’s electric/magnetic theories.

Extended duality allows us to analyze the monopole
theory at weak coupling and make a number of highly
nontrivial predictions for the quark-theory light sector
which is at strong coupling. In fact, the monopole theory
we get is close to the so-called M model developed pre-
viously [6] with the purpose of studying non-Abelian
strings and confined non-Abelian monopoles in N � 1
super-Yang-Mills theories. Some distinctions of the mono-
pole theory from the M model (e.g. non-Bogomol’nyi-
Prasad-Sommerfield (BPS) nature of the flux tubes) do
not produce drastic changes of the dynamical pattern we
arrive at compared to the dynamical pattern of the M
model.

As was mentioned, the non-Abelian monopoles must be
important in Seiberg’s duality being related to dual quarks.
We take one step further suggesting that the non-Abelian
monopoles are the dual quarks. The dual quark fields
condense providing (small) masses to all gauge bosons of
the monopole theory. The way the monopole theory is
Higgsed is very peculiar—it corresponds to baryon-
operator dominated vacuum in the quark theory.
Confined monopoles of the monopole theory are to be
interpreted as certain ‘‘constituent quarks’’ of the quark
theory. Both form N-plets of the global unbroken SU�N�
theory which is present in the quark and monopole theo-
ries, on both sides of the extended duality.

To explain how this works we have to be more specific.
What are the non-Abelian monopoles?

Although the full answer is not yet known there are
certain results which were obtained recently and which
have a natural interpretation in the framework of ‘‘the
non-Abelian monopole’’ hypothesis.

Let us start from the Abelian ’t Hooft-Polyakov mono-
pole [7] of which we know everything. Suppose we have a
model with the SU(2) gauge group broken down to U(1) by
condensation of adjoint scalars aa, a � 1, 2, 3. One can
always align the adjoint condensate along the third axis in
the SU(2) space,

 haai � �a3ha3i:

The size of the ’t Hooft-Polyakov monopole is of the order
of ha3i�1 while its mass is of the order of ha3i=g2, where g2

is the gauge coupling constant. In the non-Abelian limit
ha3i ! 0 the size of this state formally tends to infinity and
its mass tends to zero, see [8] for a thorough discussion.
The monopole seems to disappear, at least classically, from
the physical spectrum.

However, from recent supersymmetric studies we
learned that in some cases the monopoles become stabi-
lized in the non-Abelian limit by quantum effects. In
particular, this happens to confined monopoles in N � 2
SQCD [9,10] with the gauge group U�N�, the Fayet-
Iliopoulos (FI) term for the U(1) factor, and Nf � N quark
flavors. This theory supports non-Abelian flux tubes—
strings [9–12]. They are formed upon quark condensation
triggered by the FI term. The string orientational zero
modes are associated with the rotation of their color flux
inside the non-Abelian gauge subgroup SU�N�. Non-
Abelian strings originate from the Abelian ZN strings in
the special regime which ensures vanishing of VEVs of the
adjoint scalars, i.e. exactly in the non-Abelian limit we are
interested in. The internal dynamics of the orientational
modes of the non-Abelian strings are described by the two-
dimensional (2, 2) supersymmetric CP�N � 1� model on
the string world sheet [9–12].

The monopoles are confined by these strings. In fact,
elementary monopoles are nothing but the junctions of
elementary ZN strings [9,13]. It is possible to trace the
fate of the confined monopoles [9]—from the Abelian
regime (with nonvanishing VEVs of the adjoint fields)
where they are just the ’t Hooft-Polyakov monopoles
slightly deformed by confinement effects, deep into the
non-Abelian limit of vanishing VEVs of the adjoint fields.
In this limit confined monopoles are seen as kinks of the
CP�N � 1� model on the string world sheet. They are
stabilized by quantum effects. Their size and mass are
determined by the dynamical scale of the CP�N � 1�
model. Thus, in quantum theory confined monopoles do
not disappear from the physical spectrum in the non-
Abelian limit.1

As was recently shown [6], breaking N � 2 supersym-
metry down to N � 1 we do not necessarily destroy the
above confined non-Abelian monopoles. In particular, they
still exist in the limit when the adjoint fields decouple
altogether and no traces of ‘‘Abelization’’ of the theory
remain.

These results lead us to the following conjecture. Since
the monopoles (stabilized by quantum effects) survive in
the non-Abelian limit in the confining phase it is plausible
to suggest that they can exist also in other phases matching
Seiberg’s notion of dual quarks. It is natural then that the
theory dual to N � 1 SQCD is formulated as a gauge
theory of non-Abelian monopoles. In particular, in our
construction the monopoles (a.k.a the quark fields of the
monopole theory) are in the Higgs phase. We will show
that this leads to formation of the non-Abelian strings in
the monopole theory whose tension is proportional to a
(fractional) power of mq, which in the original (quark)

1A somewhat different approach to non-Abelian monopoles
was developed in [14].
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theory must be interpreted as flux tubes of a ‘‘chromo-
electric’’ field.

To make our statement as clear as possible it is worth
comparing it with what was achieved in the Seiberg-Witten
solution [15]. The low-energy limit of the N � 2 theory is
a U(1) theory. Upon dualization it becomes N � 2 SQED
with matter fields representing massless monopoles. This
theory is IR free. Then the original theory is slightly
deformed by a mass term of the adjoint chiral superfield.
To the leading order this deformation does not break N �
2 supersymmetry of low-energy SQED. However, it
changes the IR free regime into the Higss regime. The
monopoles condense, and BPS-saturated light strings of
the Abrikosov-Nielsen-Olesen type [16] ensue. These are
interpreted as the confining strings of the underlying elec-
tric theory.

Our goal is a similar scenario but in non-Abelian version
in N � 1 theories. The string we get is non-Abelian and
non-BPS. The world sheet theory (besides translational and
supertranslational moduli fields) is a nonsupersymmetric
CP�N � 1� model, which has its own dynamics in the
infrared. In particular, kinks of the CP�N � 1� model are
N-plets of a global symmetry. In this sense our construc-
tion is closer to the QCD string, whatever it might be.

The paper is organized as follows. In Secs. II and III we
introduce the quark and the monopole theories related by
extended Seiberg’s duality, and identify unbroken global
symmetries. In Sec. IV we study the pattern of physical
scales relevant to both theories, imposing the requirement
of weak coupling in the monopole theory. We show that
this regime is self-consistent and then study the spectrum
of elementary excitations in the monopole theory. In
Secs. V and VI we thoroughly discuss the emergence of
the non-Abelian strings and confined monopoles in the
monopole theory. The tension of the string is shown to be
small (vanishing in the limit mq ! 0). All hadrons related
to these strings are light in the scale of �Q. Arguably, they
represent a variety of light dual counterparts in the quark
theory. The latter, being strongly coupled, tells us nothing
about this rich set of low-lying states. In Sec. VII which can
be viewed as a conceptual culmination we continue the
discussion of the light sectors and suggest a quark-theory
interpretation of the results obtained in the monopole
theory. Section VIII presents brief conclusions.
Appendix A summarizes our notation. In Appendix B we
discuss peculiarities of the ’t Hooft matching conditions in
our construction.

II. QUARK THEORY

Our quark theory2 is N � 1 SQCD with the gauge
group U�Nc� � SU�Nc� � U�1� and Nc � N flavors of
fundamental matter—let us call it quarks. As usual each

quark flavor is described by two chiral superfields, Q and
~Q, one in the fundamental another in the antifundamental
representation of U�Nc�.

We will endow N quark flavors (out of Nc � N) with
equal mass terms mq, while the remaining Nc quark fields
have vanishing mass terms. Our color/flavor notation is as
follows: the quark supermultiplets are the chiral superfields
QkA and ~QAk where

 k � 1; . . . ; Nc

and

 A � 1; . . . ; �Nc � N�

are the color and flavor indices, respectively. The coupling
constants of SU�Nc� and U(1) gauge factors are denoted by
�gQ2�

2 and �gQ1�
2, respectively. The subscript Q will re-

mind us that we deal with the quark theory.
In the supersymmetric vacuum the scalar components of

the quark multiplets q and ~q are subject to N2
c real D-term

conditions
 

qATa �qA � �~qATa~qA � 0; �a � 1; 2; . . . ; N2
c � 1�;

qAT �qA � �~qAT~qA � 0; (2.1)

where Ta are generators of the SU�Nc� normalized by the
condition

 TrTaTb � 1
2�

ab;

while T is the U(1) generator which we choose to be T �
1=2.

The massless quark flavors—there are Nc such fla-
vors—develop VEVs breaking both SU�Nc� and U(1)
gauge groups. Then the theory is fully Higgsed. It has a
vacuum manifold, the Higgs branch whose dimension is

 dimHQ � 4N2
c � N

2
c � N

2
c � 2N2

c : (2.2)

Here we take into account the fact that we have 4N2
c real

variables qkP and ~qPk with the flavor index P,

 P � 1; . . . ; Nc;

which describe massless squarks; we subtract N2
c real

D-term conditions and N2
c gauge phases (for the U�Nc�

gauge group) eaten by the Higgs mechanism. In other
words, 2N2

c � 2 real degrees of freedom (out of 4N2
c) enter

the non-Abelian gauge supermultiplets and acquire
‘‘masses’’ ��Q where �Q is the dynamical scale parame-
ter of the quark theory. Two real degrees of freedom enter
the U(1) gauge supermultiplet and acquire masses equal to
that of the (Higgsed) photon.

The Higgs branch can be described in a gauge invariant
way by the meson and baryon chiral moduli [1,2,4]3

2A summary of our notation and conventions is presented in
Appendix A.

3Note that unlike [2] only the product of the baryon operators
~BB is gauge invariant in the case of the U�Nc� gauge group.
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 h~qSqPi; ~BB; (2.3)

subject to the condition

 deth~qSq
Pi � ~BB � �2Nc�N

Q mN
q ; (2.4)

where

 B �
1

Nc!
"k1...kNc

qk11 . . .qkNcNc ;

~B �
1

Nc!
"k

1...kNc ~q1k1
. . . ~qNckNc :

(2.5)

One can view

 �Q;le � ��
2Nc�N
Q mN

q �
1=�2Nc� (2.6)

as a scale parameter of the effective low-energy theory
emerging at momenta below mq. However, this parameter
will play no role in what follows.

Using SU�Nc� � SU�Nc� flavor rotations we can always
transform the matrix of the vacuum expectation values
h~qSqPi to a diagonal form,

 h~qSqPi ! �PSQP; (2.7)

where Nc parameters QP determine the position of the
vacuum on the vacuum manifold. Generically Q1 �

Q2 � . . . � QNc . We will assume that all Q’s are non-
degenerate and of the same order of magnitude,

 Q 1 �Q2 � . . .�QNc �Q: (2.8)

Finally, we will assume that

 Q � �2
Q; (2.9)

see below for a more detailed discussion. Equation (2.9)
implies the strong coupling regime.

Now, let us make a step back and set mq � 0. Then the
quark theory at the Lagrangian level has

 SU �Nc � N�L � SU�Nc � N�R � U�1�R � U�1�A

(2.10)

global symmetry. The axial U�1�A symmetry is anomalous.
The U�1�R symmetry is chosen to be nonanomalous with
respect to non-Abelian gauge bosons. However, it appears
to be anomalous with respect to the U(1) gauge bosons, see
Appendix B. Note the absence of the global baryon U(1)
symmetry. The baryon charge is gauged in our theory.

If mq � 0 this global group is broken by quarks VEVs
down to

 SU �N�L � SU�N�R: (2.11)

The number of broken generators is 2N2
c � 4NNc.

The global symmetry (2.11) is broken by the quark mass
mq � 0 down to a diagonal

 SU �N�: (2.12)

When a small mass mq is switched on, some of the sponta-
neously broken generators are broken explicitly too and,
thus, interpolate pseudo-Goldstone (pG) rather than the
Goldstone states. The number of true massless states is
given by the dimension of the Higgs branch (2.2) while the
number of the pseudo-Goldstone states is

 NpG � 4NNc: (2.13)

These pG states (interpolated by ~QSQ
_K where _K � Nc �

1; . . . ; Nc � N while S � 1; . . . ; Nc, see Appendix A) have
masses

 mpG �mq: (2.14)

The pseudo-Goldstones ~QSQ
_K are in the fundamental rep-

resentation of the global unbroken SU�N�.
Other light states are not easily seen on this side of

duality but can be inferred from its dual description (see
Sec. IV), in particular, a vector multiplet and ‘‘pions’’
~q _Lq

_K in the adjoint representation of the global SU�N�.
The first coefficient of the � function of the quark theory

is

 bQ � 2Nc � N: (2.15)

To make it positive (so the theory is asymptotically free) it
is sufficient to have N < 2Nc. However, we will limit
ourselves to even smaller values of N. We will consider
the quark theory well below the left edge of the conformal
window [3],

 N <
Nc
2
: (2.16)

Moreover, we will assume the quark mass terms to be the
smallest dimensional parameter in the quark theory,

 mq �
�����
Q

p
� �Q: (2.17)

This condition means that N quark flavors with vanishing
VEVs are dynamical and do not decouple, while the con-
dition (2.9) ensures that the quark theory is in the strong
coupling regime. If the quark VEVs were much larger than
�2
Q the quark theory would be in the Higgs phase at weak

coupling. Instead, at small quark VEVs the theory is in the
strong coupling regime and, although the Higgs and con-
finement phases are analytically connected in theories with
fundamental matter [17], it is more convenient to speak of
the quark theory in terms of confinement.

III. MONOPOLE THEORY

To begin with, let us put mq �Q � 0 in the quark
theory. In this case we can just follow Seiberg [1] and
accept that the dual description of the original quark theory
(Seiberg’s ‘‘magnetic dual’’) is given by an N � 1 super-
symmetric gauge theory with certain matter fields. The
gauge group is U�N�. The N � 1 vector multiplets consist
of the U(1) gauge fields A� and SU�N� gauge field Aa�,

M. SHIFMAN AND A. YUNG PHYSICAL REVIEW D 76, 045005 (2007)

045005-4



(here a � 1; . . . ; N2 � 1) and their Weyl fermion super-
partners ��, and �a�. The spinorial index of �’s runs over
� � 1, 2.

There are N � Nc flavors in the monopole theory. From
the standpoint of the monopole theory per se each flavor is
represented by a pair of superfields hkA and ~hAk with the
lowest (scalar) components hkA and ~hAk and the Weyl
fermions  kA and ~ Ak, all in the fundamental representa-
tion of the SU�N� gauge group. Here k � 1; . . . ; N is the
color index while A is the flavor index, A � 1; . . . ; �N �
Nc�. Seiberg termed these h fields dual quarks. From the
standpoint of the original quark theory the dual quarks are
to be interpreted as monopole fields.

In addition, the monopole theory has a gauge neutral
‘‘mesonic’’ field MB

A which is locally related to the ~QAQB

composite chiral operator of the original quark theory
[1,4],

 

~QAQB � �MB
A; (3.1)

where � is an energy scale to be determined below.
The mesonic field is coupled to the dual quark fields via

the superpotential [1,4]

 WYukawa � ~hAkhkBMA
B: (3.2)

The mass term mq
~Q _KQ

_K of the quark theory takes the
form of a linear in M superpotential

 Wlinear � �
1
2�M

_K
_K
: (3.3)

From Eq. (3.1) we find the following relation between the
parameter � in the linear superpotential (3.3) and the quark
masses in the original theory:

 � � �2�mq: (3.4)

The bosonic part of the action of the monopole theory (in
the limit mq �Q � 0) is
 

S �
Z
d4x

�
1

4�gM2�
2 �F

a
���

2 �
1

4�gM1�
2 �F���

2 � Trjr�hj2

� Trjr�
�~hj2 �

2

	
Trj@�Mj

2 �
g2
M2

2
�Tr �hTah

� Tr~hTa �~h�2 �
g2
M1

8
�Tr �hh� Tr~h �~h�2 � TrjhMj2

� Trj �~hMj2 �
	
2

��������~hAhB �
1

2
� _K
A�

B
_K
�
��������2
�
; (3.5)

where the covariant derivatives are defined as4

 r� � @� �
i
2
A� � iA

a
�T

a: (3.6)

The trace in (3.5) runs over all flavor indices. In addition to
the dual gauge couplings gM1 and gM2 for the U(1) and

SU�N� factors, respectively, we introduced the coupling
constant 	 for the M field.

Let us note that the duality pairs were found in Ref. [1]
for theories with the gauge groups SU�N� rather than U�N�.
To generalize Seiberg’s duality to the latter case we gauge
the U(1) global baryon symmetry present on both sides of
Seiberg’s duality.

If in the original quark theory the quark fields have the
baryon charge 1=2, then the baryon charges of the dual
quark fields in the monopole theory are Nc=�2N� (see
Refs. [1,4]). If we still want to keep the corresponding
couplings identical we must choose

 gM1 �
Nc
N
gQ1: (3.7)

Then on both sides of Seiberg’s duality the U(1) charge is
1=2 being measured in the units of the appropriate gauge
coupling. Then the definition (3.6) stays intact.

The SU�N� gauge coupling constant gM2 in (3.5) is
determined by the scale �M of the monopole theory. The
latter is related to the scale �Q of the quark theory as [1,4]

 �2Nc�N
Q �2N�Nc

M � ��1�N�Nc�N: (3.8)

As we will see shortly, �M is the largest parameter in our
analysis, �M 	 �Q, but it will play no role since the
monopole theory in the limit mq �Q � 0 (and with N
satisfying the condition (2.16)) is infrared rather than
asymptotically free; it lies to the right of the right edge
of the conformal window. What will be important for
dynamical considerations is an effective low-energy pa-
rameter �M;le which will emerge after mq � 0 and Q � 0
are taken into account.

It is natural to assume that

 	� 1: (3.9)

Now let us switch onmq � 0, Q � 0 in the quark theory
and discuss the vacuum structure of the monopole theory.
The linear in M superpotential which reflects mq � 0
triggers spontaneous breaking of the U�N� gauge symme-
try. The vacuum expectation values of the h fields can be
chosen as

 hhk _Ki � h �~h
k _K
i �

���
�
2

s 1 0 . . .
. . . . . . . . .
. . . 0 1

0@ 1A;
hhkPi � h �~h

kP
i � 0;

(3.10)

up to gauge rotations.
Furthermore, Higgsing the quark theory (2.7) and (2.8)

manifests itself in the monopole theory as nonvanishing
VEVs of the MP

S fields related to VEVs of ~QSQ
P via (3.1),

 hMP
S i �

M1 0 . . .
. . . . . . . . .
. . . 0 MNc

0B@
1CA; (3.11)

4For further explanations on our notation, see Appendix A.

CONFINEMENT IN N � 1 SUPERSYMMETRIC QCD: . . . PHYSICAL REVIEW D 76, 045005 (2007)

045005-5



where M1 �M2 � . . .�MNc �M and we introduced
a common scale M. The above nonvanishing VEVs make
the first Nc monopole flavors massive by virtue ofWYukawa.
If we descend below M the massive flavors can be inte-
grated out. What remains is a U�N� gauge theory with N
flavors which is asymptotically free. The scale of this
theory �M;le is defined via the relation

 �2N
M;le � �2N�Nc

M MNc ; (3.12)

which, in turn, can be expressed in terms of the quark-
theory scale,

 �2Nc�N
Q �2N

M;le � ��1�NM2Nc�N (3.13)

by invoking Eq. (3.8). As we will see shortly, the scale
�M;le lies between mq and

���
�
p

. This guarantees that the
monopole theory is weakly coupled.

Other M fields do not condense,

 hM _K
_L
i � hMP

_L
i � hM _K

S i � 0: (3.14)

The color-flavor locked form of the quark VEVs in
Eq. (3.10) and the vanishing of VEVs in (3.14) result in
the fact that, while the theory is fully Higgsed, a diagonal
SU�N�C�F symmetry survives as a global symmetry.
Namely, the global rotation

 h! UhU�1; �~h! U �~hU�1; M ! U�1MU

(3.15)

is not broken by the VEVs (3.10) and (3.11). Here U is an
arbitrary matrix from SU�N�. We write the dual quark
(monopole) fields hk _K, ~h _Kk, and M _K

_L
with indices k �

1; . . . ; N and _K; _L � Nc � 1; . . . ; Nc � N as N � N matri-
ces; the matrices U act on these indices. This is a particular
case of the Bardakç�-Halpern mechanism [18].

Classically, in addition to the unbroken global
SU�N�C�F symmetry, there is also a chiral U�1�R00 symme-
try which survives the breaking induced by VEVs (3.10)
and (3.11), see Appendix B. However, it turns out to be
anomalous with respect to the U(1) gauge fields. Therefore,
the global unbroken symmetry of the monopole theory

 SU �N�C�F (3.16)

is the same as the symmetry of the quark theory (2.12). In
Appendix B we check duality by demonstrating that the ’t
Hooft anomaly matching conditions in the quark and
monopole theories are satisfied. There are certain peculiar-
ities since the matching looks different at ‘‘high energies’’
(i.e. when the momentum q flowing in the axial current
satisfies q2 	 �) and ‘‘low energies’’ (q2 � �). We check
both limits.

The SU�N�C�F global symmetry of the theory is sponta-
neously broken on strings, which gives rise to the orienta-
tional zero modes [12] of the ZN strings in the model (3.5).

Below we assume that the original quark theory has the
same low-energy physics as the monopole theory (3.5). By
low energies we mean scales

���
�
p

and below.

IV. ELEMENTARY EXCITATIONS IN THE
MONOPOLE THEORY

First we observe that the fields MP
S can develop VEVs;

thus, the dimension of the Higgs branch in the monopole
theory

 dim�HM� � 2N2
c (4.1)

agrees with the one in the quark theory (2.2). As a result,
2N2

c (real) fields MP
S are massless.

Now we will demonstrate that the scale of VEVs of the
MP
S fields is the largest relevant parameter in the monopole

theory. In particular, it is much larger than the effective
scale �M;le of the monopole theory. Equation (2.8) implies
that all parameters MS in Eq. (3.11) are of the same order,

 M 1 �M2 � . . .�MNc �M: (4.2)

Because of the Yukawa interactions (3.2) the flavors hkP

(~hPk) become massive, with masses m�hP� �M, and de-
couple below this scale. Integrating them out in the super-
potential (3.2) produces an effective low-energy
superpotential

 WM;le � ~h _Kkh
k _L
�
M _K

_L
�
M _K
PM

P
_L

M

�
: (4.3)

This superpotential gives small masses to 4NNc (real) off-
diagonal fields M _K

P , MP
_K. To see that this is indeed the case

please observe that the fields hk _K develop VEVs�
���
�
p

(see
Eq. (3.10)). Then the second term in (4.3) implies

 m�MP
_K
� �m�M _K

P � �
�
M

: (4.4)

We see that the number of the off-diagonalM fields that are
light coincides with the number of the pseudo-Goldstone
fields ~q _Lq

P in the quark theory, see (2.13). Requiring their
masses to be the same we get

 � �M; (4.5)

where we used (2.14), (3.4), and (4.4). This fixes the so-far
unknown coefficient �. All three scales of the monopole
theory, namely �M, �, and M are now fixed in terms of
three scales of the quark theory �Q, mq, and

 h ~QQi �Q�M2: (4.6)

As was mentioned, below the scale M the effective low-
energy theory is the U�N� gauge theory with N flavors of
the hk _K fields supplemented by the mesonic (gauge-singlet)
field M, out of which MP

S are massless, M _K
P and MP

_K
have

masses �mq, and M _K
_L have masses �

���
�
p

, see below. We
consider this theory in the weak coupling regime imposing
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the condition

 �	 �2
M;le: (4.7)

In terms of the quark-theory scales this condition can be
rewritten by virtue of Eq. (3.13) as

 M 2Nc � �2Nc�N
Q mN

q : (4.8)

We see that in order to keep the monopole theory at weak
coupling, the scale M cannot be too large.

To elucidate the meaning of this condition, following [4]
we relate the baryon operators in the quark theory B and ~B
to the baryon operators in the monopole theory

 B � q1 . . . qNc � 
���1�N��N�2Nc�N
Q �1=2h1 . . .hN;

~B � ~q1 . . . ~qNc � 
���1�N��N�2Nc�N
Q �1=2 ~h1 . . . ~hN:

(4.9)

The right-hand sides of these expressions have nonvanish-
ing VEVs in the vacuum of the monopole theory, see
(3.10). Note, however, that the h field VEVs are given by
(3.10) only classically. We expect corrections in hh . . . hi of
order of �M;le to the product of the classical expectation
values (3.10). These corrections are small provided (4.7) is
satisfied.

Substituting VEVs (3.10) in (4.9) and ignoring the above
corrections we get for the baryon operator VEV in the
quark theory

 h ~BBi � ��2Nc�N
Q mN

q ; (4.10)

where we used Eq. (3.4). We see that the relation (2.4) of
the quark theory is saturated to the leading order by the
baryon operator. Quantum corrections to VEVs (3.10)
substituted into (2.4) allow for

 deth ~QPQ
Si �M2Nc � �2Nc�N

Q mN
q � �h ~BBi: (4.11)

Thus, the weak coupling regime in the monopole theory
corresponds to the baryon dominated vacuum in the quark
theory.

Relevant scales of the quark and monopole theories are
shown in Fig. 1.

Now let us prove the statement made above regarding
the states with masses of the order of

���
�
p

. Since both the
U(1) and SU�N� gauge groups are broken by the h _K field
condensation, see Eq. (3.10), all gauge bosons become
massive. From (3.5) we get for the U(1) gauge boson
mass (dual ‘‘photon’’)

 mph � gM1

����
N
2

s ���
�

p
: (4.12)

The (N2 � 1) gauge bosons of the SU�N� group (dual ‘‘W
bosons’’) acquire a common mass

 mW � gM2

���
�

p
: (4.13)

This is typical of the Bardakç�-Halpern mechanism.
Needless to say, N2 vector states with masses �

���
�
p

must
appear in the quark theory too.

To get the scalar boson masses we expand the potential
in (3.5) near the vacuum (3.10) and (3.11) and diagonalize
the corresponding mass matrix. The N2 components of the
2N2-component5 scalar �h� �~h�k _K=

���
2
p

are eaten by the
Higgs mechanism for the U(1) and SU�N� gauge groups.
Another N2 components are split as follows: one compo-
nent acquires the mass (4.12). It becomes a scalar compo-
nent of a massive N � 1 vector U(1) gauge multiplet. The
remaining N2 � 1 components acquire masses (4.13) and
become scalar superpartners of the SU�N� gauge bosons in
the N � 1 massive gauge supermultiplet.

The fieldsM _K
_L

and �h� �~h�k _K=
���
2
p

form chiral multiplets.
Namely, the states proportional to the unit N � N matrix
(associated with U(1)) acquire masses

 mM
U�1� �

����������
	N�

4

s
; mh

U�1� �

����������
	N�

4

s
; (4.14)

respectively, while the traceless parts of M _K
_L

and �h�
�~h�k _K=

���
2
p

(associated with the SU�N� sector) have masses

 mM
SU�N� �

�������
	�
2

s
; mh

SU�N� �

�������
	�
2

s
: (4.15)

Other states with masses of the order of M are much
heavier and we do not include them in the low-energy
spectrum. To reiterate, in the monopole theory the low-
energy spectrum includes the Goldstone and pseudo-
Goldstone states (with masses (4.4)), as well as the states
with masses �

���
�
p

, ‘‘elementary’’ states discussed above,
and composite states to be discussed below. In Sec. V we
will discuss formation of non-Abelian strings in the mono-
pole theory. These strings produce (extra) nonperturbative
states in the monopole theory with masses �

���
�
p

. Needless
to say, all these states from the low-energy sector of the
monopole theory are presumed to exactly match the low-
energy spectrum of the quark theory. This is the statement
of extended duality.

V. NON-ABELIAN STRINGS

Non-Abelian strings were shown to emerge at weak
coupling in N � 2 supersymmetric gauge theories [9–

ξ
energy

m

Λ

ΛQq

M,le

FIG. 1. Scales of the quark (open points) and monopole
(dashes) theories. 5We mean here real components.
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12]. Recently they were also found [6] in N � 1 super-
symmetric theory with the U�N� gauge group and N fun-
damental matter multiplets supplemented by a mesonic
field M _K

_L
( _K; _L � Nc � 1; . . . ; Nc � N).

The M model of Ref. [6] is a close relative of the
monopole theory we consider here. The two models differ
in that there are extra components of the M fields in the
monopole theory, namely, the Goldstones MP

S and pseudo-
GoldstonesM _K

P ,MP
_L
. The impact of their presence is rather

unimportant, as we will see below. Extra monopole fields
hkP present in the monopole theory are heavy and can be
ignored.

A. Non-BPS strings

Since the M field does not enter the classical string
solution, the explicit solution for the non-Abelian strings
found in the M model [6] can be readily adjusted to fit the
monopole theory at hand. The light components of the M
field which have no counterparts in the M model will show
up only at the quantum level.

A consequential distinction of the monopole theory from
the M model is that the � parameter which triggers the
h-field condensation is introduced via superpotential (3.3)
rather than through the FI D term as in the original M
model. Introducing � through the superpotential is a viable
alternative. In this case we will speak of MF model while
the original M model can be termed MD.

Note that the MF model strings are necessarily non-BPS
[19], while in the MD model we deal with the BPS-
saturated strings. This means that the world sheet theory
on the strings will be nonsupersymmetric in the case at
hand.

The bosonic part of the action of the MF model is given
by (3.5), with the flavor indices running only over N values
A;B! _K; _L � Nc � 1; . . . ; Nc � N. This is shown in
more detail in Appendix A.

The scalar fields involved in the string solution are

 hk _K � �~hk
_K
� 1��

2
p ’k _K: (5.1)

With this substitution the ansatz for the solution for the
elementary non-Abelian strings (in the singular gauge)
becomes [6]
 

’ �
1

N

�N � 1�
2 �
1� � �
1 �
2�

�
n  n� �

1

N

�
;

ASU�N�
i �

�
n  n� �

1

N

�
"ij
xi
r2 fNA�r�;

AU�1�
i �

1

N
"ij
xi
r2 f�r�; M _K

_L
� M _K

P � MP
_L
� 0;

(5.2)

where r is the distance from the string axis to the given
point in the orthogonal plane. Moreover, nl is a set of
complex scalar fields forming the fundamental representa-
tion of SU�N� subject to the constraint

 n�l n
l � 1 (5.3)

(l � 1; . . . ; N is the SU�N� index). In Eq. (5.2) for brevity
we suppress all SU�N� indices. Varying nl we change the
orientation of the string flux in the non-Abelian color
subgroup SU�N�. It is associated with the orientational
zero modes of the non-Abelian string.

The profile functions for the scalar fields 
1�r�, 
2�r�
and for the gauge fields f�r�, fNA�r� satisfy the following
boundary conditions:

 
1�0� � 0; fNA�0� � 1; f�0� � 1; (5.4)

at r � 0, and

 
1�1� �
���
�

p
; 
2�1� �

���
�

p
;

fNA�1� � 0; f�1� � 0
(5.5)

at r � 1.
To see that the strings in the MF model are not BPS it is

sufficient to note that the masses of the scalar field ’ given
in the second lines in Eqs. (4.14) and (4.15) are not the
same as the gauge boson masses (4.12) and (4.13) (for
generic values of the coupling constant 	). In the MD
model the scalars involved in the string solution are in
fact the scalar superpartners of the gauge bosons from
N � 1 massive vector supermultiplets. The equality of
masses of the scalar and gauge fields is ensured and pro-
tected by supersymmetry. This is the reason why the MD
model strings are BPS saturated [6].

If we considered a special set of the coupling constants,

 g2
M1 � g2

M2 � 	=2 � g2; (5.6)

the equality of masses of the scalar fields (4.14) and (4.15)
and the gauge fields (4.12) and (4.13) would be guaranteed
at the classical level. In this case the string profile functions
would satisfy the following first-order equations [6,12]:
 

r
d
dr

1�r��

1

N
�f�r�� �N� 1�fNA�r��
1�r� � 0;

r
d
dr

2�r��

1

N
�f�r��fNA�r��
2�r� � 0;

�
1

r
d
dr
f�r��

g2N
4

�
1�r��2��N� 1��
2�r��2�N�� � 0;

�
1

r
d
dr
fNA�r��

g2

2

�
1�r��

2��
2�r��
2� � 0:

(5.7)

For generic values of the coupling constants the string
profile functions satisfy the second-order equations. The
condition (5.6), even being imposed at the classical level,
will be certainly destroyed by loop corrections.

Assuming (5.6) we would find the tension of the ele-
mentary string

 Tstring � 2��� quantum corrections: (5.8)
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The 2�� is no longer exact. Without (5.6), and with no
explicit solution of the second-order equations we can only
say that the string tension Tstring / �. The non-Abelian
string discussed above presents an SU�N� rotation of the
ZN strings [12]. The rotation parameters are determined by
nl, (l � 1; 2; . . .N), see Eq. (5.2). The ZN string carries a
combination of magnetic fluxes: the magnetic flux of the
U(1) field as well as that of the non-Abelian fields. At the
classical level the color orientation of the non-Abelian
fluxes is fixed in the Cartan subgroup, in a well-defined
manner. At the quantum level the color orientation of the
non-Abelian fluxes strongly fluctuates, in accordance with
dynamics of the world sheet CP�N � 1� model, so that the
entire SU�N� group space is spanned.

To conclude this section let us note a somewhat related
development: non-BPS non-Abelian strings were recently
considered in metastable vacua of a dual description of
N � 1 SQCD at Nf > N in Ref. [20].

B. World sheet theory

To derive a world sheet theory describing orientational
moduli nl of the non-Abelian string we follow
Refs. [9,12,21], see also the review paper [22].

Assume that the orientational collective coordinates nl

are slowly varying functions of the string world sheet
coordinates xk, k � 0, 3. Then the moduli nl become fields
of a �1� 1�-dimensional sigma model on the world sheet.
Since the vector nl parametrizes the string zero modes,
there is no potential term in this sigma model.

To obtain the kinetic term we substitute our solution,
which depends on the moduli nl, in the action (3.5), assum-
ing that the fields acquire a dependence on the coordinates
xk via nl�xk�. Then we arrive at the CP�N � 1� sigma
model (for details see the review paper [22]),

 S�1�1�
CP�N�1� � 2�

Z
dtdzf�@kn�@kn� � �n�@kn�2g; (5.9)

where the coupling constant � is given by a normalizing
integral I defined in terms of the string profile functions,

 � �
2�

g2
M2

I: (5.10)

The two-dimensional coupling constant is determined by
the four-dimensional non-Abelian coupling.

Using the first-order equations for the string profile
functions (5.7) one can see that the integral I reduces to a
total derivative and is given by the string flux determined
by fNA�0� � 1, namely I � 1. However, for the non-BPS
string in the problem at hand we certainly expect correc-
tions to this classical BPS result. In particular, we expect
that generically I acquires a dependence onN and coupling
constants.

The relation between the four-dimensional and two-
dimensional coupling constants (5.10) is obtained at the
classical level. In quantum theory both couplings run. So

we have to specify a scale at which the relation (5.10) takes
place. The two-dimensional CP�N � 1� model is an effec-
tive low-energy theory appropriate for describing string
dynamics at low energies, much lower than the inverse
string thickness which, in turn, is given by gM2

���
�
p

. Thus,
gM2

���
�
p

plays the role of a physical ultraviolet (UV) cutoff
in (5.9). This is the scale at which Eq. (5.10) holds. Below
this scale, the coupling � runs according to its two-
dimensional renormalization-group flow.

The sigma model (5.9) presents a nontrivial part of the
world sheet dynamics. It is not supersymmetric. Besides
(5.9), there are translational and supertranslational moduli;
they are represented by free bosonic and fermionic fields (2
and 4 degrees of freedom, respectively). Since these are
free fields they are not so important in what follows.

The sigma model (5.9) is asymptotically free [23]; at
large distances (low energies) it gets into the strong cou-
pling regime. The running coupling constant as a function
of the energy scale E at one loop is given by

 4�� � N ln
�

E
�CP�N�1�

�
�    ; (5.11)

where �CP�N�1� is the dynamical scale of the CP�N � 1�
model. As was mentioned above, the UV cutoff of the
sigma model at hand is determined by gM2

���
�
p

. Hence,

 �N
CP�N�1� � gNM2�

N=2 exp
�
�

8�2

g2
M2

I
�
: (5.12)

Note that in the bulk theory, due to the squark field VEVs,
the coupling constant is frozen at gM2

���
�
p

.
The coupling constant gM2 is determined by the scale

�M;le (see Eq. (3.12)) of the bulk monopole theory (3.5).
Then Eq. (5.12) implies

 �CP�N�1� �
�2I
M;le

�gM2

���
�
p
�2I�1

� �M;le; (5.13)

where we take into account that the first coefficient of the�
function in (3.5) is 2N.

Concluding this section let us add a few words on the
fermion zero modes on the non-Abelian string. We first
note that the index theorem presented in Ref. [6] is valid
only in the MD model. It cannot be generalized to the MF
model. Therefore, we do not expect any superorientational
fermion zero modes of the string. Of course, four super-
translational fermion zero modes are guaranteed by ‘‘non-
BPSness’’ of the string at hand. They are ‘‘Goldstinos’’ of
the N � 1 bulk supersymmetry broken by the string
solution. They decouple from the world sheet CP�N � 1�
model. We have mentioned this fact above.

C. Higher-derivative corrections

The CP�N � 1� model (5.9) is an effective theory which
describes the non-Abelian string dynamics only at low
energies. It has higher-derivative corrections which be-
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come important at higher energies. Higher-derivative cor-
rections run in powers of

 �@k; (5.14)

where � is a string transverse size.
In the MF model the string size is determined by the

inverse mass of the bulk states,

 ��
1

gM2

���
�
p :

A typical energy scale on the string world sheet is
�CP�N�1�, see (5.13). Thus,

 @! �CP�N�1�;

and higher-derivative corrections can be ignored.
However, the monopole theory (3.5) is not quite the M

model. In addition to the field content of the M model we
have more lightM fields in the bulk, namely, the Goldstone
(MP

S ) and pseudo-Goldstone �M _K
P ;M

P
_L� states. The fact of

their presence entails that the string profile functions ac-
quire long-range tails at the quantum level [24] (classically,
as we have already mentioned, the fields MA

B vanish on the
string solution). This means that an effective string thick-
ness grows, and higher-derivative corrections to the basic
CP�N � 1� model on the string world sheet might become
important.

Let us show that this does not happen. First note that the
Goldstone states (MP

S ) are singlets with respect to the
SU�N�C�F global symmetry. This means that the orienta-
tional zero modes of the string have no long-range tails
associated with the MP

S fields and are perfectly
normalizable.

As for the pseudo-Goldstone statesM _K
P andMP

_L, they are
not singlets with respect to SU�N�C�F. Therefore, long-
range profile functions of M _K

P and MP
_L

can acquire nl

dependence at the quantum level. Then the higher-
derivative corrections associated with the pseudo-
Goldstone fields will run in powers of

 �pG

���
�
p

M
@k �

���
�
p

�CP�N�1�

mpGM
; (5.15)

where we take into account that the coupling of the pseudo-
Goldstone fields to the classical profile functions of the
string is suppressed, see Eq. (4.3). Since

 �=�mpGM� � 1

we conclude that the higher-derivative corrections remain
to be negligible.

VI. IMPLICATIONS OF STRINGS IN THE
MONOPOLE THEORY

We begin from a few technical remarks. The strings we
found at weak coupling in the monopole theory are in one-

to-one correspondence with the vacua of the world sheet
theory. In reviewing this correspondence we will be brief
since our discussion will run parallel to that of Ref. [21]
which presents the issue in great detail. The nonsupersym-
metric CP�N � 1� model was solved by Witten in the
large-N limit [25]. Interpretation of Witten’s results in
terms of non-Abelian strings in four dimensions can be
found also in the review paper [22].

The model (5.9) can be understood as a strong coupling
limit of a U(1) gauge theory. The action has the form

 S �
Z
d2x

�
2�jrknlj2 �

1

4e2 F
2
kp � 2e2�2�jnlj2 � 1�2

�
;

(6.1)

where rk � @k � iAk. In the limit e2 ! 1 the U(1) gauge
field Ak can be eliminated via the (algebraic) equation of
motion which leads to the theory (5.9). Moreover, the
condition (5.3) is implemented in the limit e2 ! 1.

The nonsupersymmetric CP�N � 1� model is asymp-
totically free and develops its own dynamical scale
�CP�N�1�. Classically the field nl can have arbitrary direc-
tion; therefore, one might naively expect spontaneous
breaking of SU�N�C�F and the occurrence of massless
Goldstone modes. This cannot happen in two dimensions.
Quantum effects restore the full symmetry making the
vacuum unique. Moreover, the condition jnlj2 � 1 gets in
effect relaxed. Because of strong coupling we have more
degrees of freedom than in the original Lagrangian,
namely, all N fields n become dynamical and acquire
masses �CP�N�1�. They become N-plets of SU�N�.

The modern understanding of the vacuum structure of
the CP�N � 1� model [26] (see also [27]) is as follows. At
large N, along with the unique ground state, the model has
�N quasistable local minima, quasivacua, which become
absolutely stable at N � 1, see Fig. 2. The relative split-
tings between the values of the energy density in the
adjacent minima is of the order of 1=N, while the proba-
bility of the false vacuum decay is proportional to
N�1 exp��N� [26,27]. The n quanta are in fact n kinks
interpolating between the genuine vacuum and the adjacent
minimum. The spatial domain inside the �nn meson is a

Vacuum energy

k0−1−2 1 2

FIG. 2. The vacuum structure of the CP�N � 1� model.
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‘‘bubble’’ of an excited quasivacuum state inside the true
vacuum—that’s why the n kinks are confined along the
string.

In the four-dimensional bulk theory the above vacua
correspond to a variety of non-Abelian strings.
Classically all these strings have the same tension.
Because of quantum effects in the world sheet theory the
degeneracy is slightly lifted. Excited strings can in princi-
ple decay into the ground-state string, but at large N their
lifetimes tend to infinity.

Now, let us ask ourselves: what is the physical meaning
of these strings?

Non-Abelian strings are formed in the monopole theory
(3.5) upon the h-field condensation, see (3.10). The dual
quark field h represents monopoles of the quark theory.
Thus, from the standpoint of the original quark theory the
strings must be interpreted as some flux tubes filled in by a
chromoelectric field in a highly quantum regime. The
string junctions of different elementary strings in the
monopole theory—‘‘monopoles’’ of the monopole the-
ory—are seen as kinks n in the effective theory on the
string world sheet, see [22] for details. They must act as
some quarklike objects in the original theory. These objects
transform according to the representation N of unbroken
global SU�N�C�F.

The monopole-theory strings can form closed curves
(e.g. tori) stabilized by angular momentum. They are to
be interpreted as sort of glueballs. In addition, there are
meson states formed by junctions connected by non-
Abelian strings, see Fig. 3. These mesons can belong either
to the singlet or to the adjoint representations of the global
unbroken SU�N�C�F symmetry. Both types of objects have
masses �

���
�
p

.

VII. LOW-ENERGY SPECTRA AND DUALITY

First let us summarize the low-energy spectrum of the
bulk theory as it is seen from the perspective of the mono-
pole theory. The lowest are the Goldstone and pseudo-
Goldstone states, MP

S and fM _K
P ;M

P
_K
g, respectively. The

latter have masses determined by mq � �=M, see (4.4).
From the point of view of the quark theory these states can
be understood as quarks screened by the condensate of
massless squarks. The Goldstone states are singlets with
respect to the unbroken SU�N�C�F while the pseudo-
Goldstone states transform in the fundamental representa-
tion of this group.

Next come states with masses of the order of
���
�
p

. This
set includes elementary excitations: gauge and hmultiplets

as well as the fields M _L
_K
. Their masses are determined by

Eqs. (4.12), (4.13), (4.14), and (4.15), see Sec. IV. These
states transform in the singlet or adjoint representations of
SU�N�C�F. In addition, the set includes composite non-
perturbative states of the type we discussed at the end of
Sec. VI. The latter are believed to be metastable (rather
than stable) as they can decay into the massive gauge/
monopole multiplets (with masses (4.12) or (4.14)) with
the appropriate quantum numbers with respect to the
global SU�N�.

In addition to mesons in the low-energy part of the
spectrum one can speak of ‘‘baryons’’ built of N junctions
cyclically connected to each other by elementary strings
which form a closed ‘‘necklace configuration.’’ (Here N is
not treated as an infinitely large parameter. Of course, if
N ! 1, the baryons are out of the game.) The baryon is in
the

QN
1 �N� representation of SU�N�C�F.

Note that both quarks and monopoles do not carry the
baryon numbers. Therefore, our baryon has no baryon
number either. The reason for this is that the U(1) baryon
current is coupled to a gauge boson (photon) in the U�N�
gauge theory considered here. Moreover, the U(1) gauge
symmetry is spontaneously broken in the quark and the
monopole theories by condensation of quarks and dual
quarks, respectively. Thus, the baryon charges are
screened. This means, in particular, that baryons can decay
into mesons or gauge/monopole multiplets and are in fact
unstable.

All these nonperturbative states reflect the existence of
‘‘thick’’ strings with tension scaling as � and thickness
proportional to ��1=2.

All states with masses of the order of
���
�
p

will eventually
decay into the Goldstone or pseudo-Goldstone mesons.
Say, a meson in Fig. 3 in the adjoint representation with
respect to the global SU�N� can decay into a pair of
pseudo-Goldstone states. However, these decays are sup-
pressed by the smallness of the ratio

���
�
p
=M.

Now it is time to discuss the most interesting question: if
the low-energy states in the quark and monopole theories
are connected by duality how can one interpret the set of
states we uncovered in the monopole theory in the lan-
guage of the quark theory?

The quark theory is strongly coupled. Quantitative pre-
dictions are virtually impossible. Still we do have some
qualitative knowledge of this theory. In the quark theory
color is screened since the theory is fully Higgsed. There
are matter fields in the fundamental representation.
Therefore long strings cannot exist. They are screened/
ruptured immediately. On the dual side we do see strings,
however. The scale of the string-induced confinement

���
�
p

is small in the original quark theory, much smaller than its
dynamical scale, �� �2

Q.
This apparent puzzle can be resolved if we assume that a

‘‘secondary’’ gauge theory (or a ‘‘gauge cascade’’) devel-
ops in the original quark theory. Assume that massless

FIG. 3 (color online). The junction-antijunction meson. The
binding is due to strings.
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composite ‘‘� mesons’’ whose size is���1
Q are formed in

the quark theory which interact with each other via a
secondary gauge theory whose scale parameter is

���
�
p

. At
distances �1=

���
�
p

the above ‘‘� mesons’’ must be viewed
as massless gluons. It is conceivable that they are coupled
to massless secondary quarks which, in addition to their
gauge coupling to � mesons, have nontrivial quantum
numbers with respect to the global SU�N�. With respect
to the original quark theory the secondary quarks are
colorless (‘‘bleached’’) bound states which include the
original quarks at their core. Their sizes are proportional
to ���1

Q and, hence, they are pointlike on the scale of
�1=

���
�
p

, much in the same way as � mesons-gluons.
Alternatively one can adopt a more pragmatic albeit less

explicit point of view. If we trust duality we can view the
predictions derived in the monopole theory as certain data
to be interpreted in terms of the quark theory. One can
think that these predictions for the quark theory are similar
to experimental data for QCD.

Following this line of thought we can interpret the light
spectrum seen from the monopole theory as follows. First
of all, we note that all states in the physical spectrum of the
monopole theory are colorless. We interpret this as con-
finement in the quark theory. Next, besides Goldstone and
pseudo-Goldstone states (which we identify with ~QSQ

P

and ~QSQ
_K states) the monopole theory predicts the occur-

rence of a set of light states with masses of the order of
���
�
p

.
We interpret them in terms of the quark theory according to
their global flavor quantum numbers. Say, we interpret
singlets with respect to the global SU�N� as glueballs
with possible admixture of quark-antiquark states in the
singlet representation. Next, we interpret perturbative and
nonperturbative states of the monopole theory in the ad-
joint representation of SU�N� as adjoint quark-antiquark
mesons or more complicated ‘‘exotic’’ multiquark states.

Note, however, that we do not attempt to interpret the
monopole-theory string junctions as the fundamental
quarks Q _K of the quark theory. There is a number of
reasons why this identification does not work. The
monopole-theory string junctions should be rather under-
stood as a kind of ‘‘constituent quarks’’ which form me-
sons in Fig. 3. Although these constituent quarks are in the
fundamental representation of the global flavor SU�N�
their relation to the fundamental quarks Q _K of the quark-
theory Lagrangian remains unclear.

VIII. CONCLUSIONS

Our starting point is a Seiberg’s dual pair with electric
theory lying to the left of the conformal window and the
magnetic theory to the right. The electric theory is strongly
coupled while the magnetic one is infrared free. Our basic
idea is to deform the electric theory very weakly—with all
deformations being very small in its natural scale �Q—
and, nevertheless, they are sufficient to drastically change

the infrared behavior of the magnetic dual. It switches from
infrared free to asymptotically free. Seiberg’s infrared
duality now extends beyond purely massless states; it con-
nects with each other light states on both sides of duality.

Upon condensation of the dual quarks, the dual theory
supports non-Abelian flux tubes (strings). Being inter-
preted in terms of the quark theory these flux tubes are
supposed to carry chromoelectric fields. The string junc-
tions then can be viewed as constituent quarks of the
original quark theory. We interpret closed strings as glue-
balls of the original quark theory. Moreover, there are
string configurations formed by two junctions connected
by a pair of different non-Abelian strings. These can be
considered as constituent quark mesons of the quark the-
ory. Most of these states are quasistable rather than stable.
They can cascade into the lightest Goldstones and pseudo-
Goldstones.

The constituent quarks could result from emergent ‘‘sec-
ondary gauge theory’’ on the electric side.
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APPENDIX A: NOTATION

Flavor indices from SU�Nc � N� are denoted by capital
letters from the beginning of the Latin alphabet,

 A;B; . . . � 1; 2; . . . ; Nc; . . . ; Nc � N: (A1)

Flavor indices from SU�Nc� are denoted by capital
letters from the middle of the Latin alphabet,

 P; S; . . . � 1; 2; . . . ; Nc: (A2)

Flavor indices from SU�Nc � N�=SU�Nc� are denoted
by overdotted capital letters from the middle of the Latin
alphabet,

 

_K; _L; . . . � Nc � 1; . . . ; Nc � N: (A3)

Color indices of the fundamental representation of
SU�Nc� (and SU�N� in the monopole theory) are denoted
by lowercase letters from the middle of the Latin alphabet,

 k; l; . . . � 1; 2; . . . :Nc or k; l; . . . � 1; 2; . . . :N: (A4)

Color indices of the adjoint representation of SU�Nc�
(and SU�N� in the monopole theory) are denoted by low-
ercase letters from the beginning of the Latin alphabet,
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 a; b; . . . � 1; 2; . . . ; N2
c � 1 or

a; b; . . . � 1; 2; . . . ; N2 � 1:
(A5)

The bosonic part of the action of the MF model is
 

S �
Z
d4x

�
1

4�gM2�
2 �F

a
���

2 �
1

4�gM1�
2 �F���

2 � jr�h
_Kj2

� jr�
�~h

_K
j2 �

2

	
Trj@�Mj2 �

g2
2

2
� �h _KT

ah _K

� ~h _KT
a �~h

_K
�2 �

g2
1

8
� �h _Kh

_K � ~h _K
�~h

_K
�2 � TrjhMj2

� Trj �~hMj2 �
	
2

��������~h _Kh
_M �

1

2
� _L

_K
� _M

_L
�
��������2
�
: (A6)

APPENDIX B: THE ’T HOOFT ANOMALY
CONDITIONS

That the quark and monopole theories are dual to each
other in the limit Q � mq � 0 follows from Seiberg’s
construction. Here we reiterate the analysis of the ’t
Hooft anomaly matching relevant to our particular defor-
mation of the theory. There are certain peculiarities since
the matching looks different at ‘‘high energies’’ (i.e. when
the momentum q flowing in the axial current is ‘‘large,’’
q2 	 �) and ‘‘low energies’’ (q2 � �). We check both
limits.

As was already mentioned in Sec. II our theory has the
following global symmetry at the Lagrangian level

 SU �Nc � N�L � SU�Nc � N�R � U�1�R � U�1�B; (B1)

where we also included the vectorlike baryon U�1�B sym-
metry which is in fact gauged in our model. The above
symmetry is nonanomalous with respect to the non-
Abelian gauge currents [1,4]. The fields of the quark and
monopole theories transform as

 Q:
�
Nc � N; 1;

N
Nc � N

;
1

2

�
;

~Q:
�

1; Nc � N;
N

Nc � N
;�

1

2

�
;

h:
�

�Nc � �N; 1;
Nc

Nc � N
;
Nc
2N

�
;

~h:
�
1; Nc � N;

Nc
Nc � N

;�
Nc
2N

�
(B2)

under this symmetry, while the Grassmann  parameters
have the unit charge under U�1�R [1,4].

Consider first the quark theory. Classically the tree-level
symmetry is broken down to

 SU �N� � U�1�R0 (B3)

by the condensation of theQP fields and massesmq forQ _K

fields. Note that the R symmetry U�1�R0 classically survives

the breaking. It is a combination of U�1�R and an axial
subgroup of non-Abelian factors in (B1) which do not
transform quark fields QP. It turns out that the fermion
superpartners of squarks � Q�

_K and � ~ Q� _K have zero
charges with respect to this symmetry. Therefore, it is not
broken by masses mq.

Quark fields of the quark theory transform as

 Q _K: �N; 1�; � Q�
_K: �N; 0�;

QP: �1; 0�; � Q�P: �1;�1�;

~Q _K: � �N; 1�; � ~ Q� _K: � �N; 0�;

~QP: �1; 0�; � ~ Q�P: �1;�1�

(B4)

under the classically unbroken symmetry (B3), while the
gauginos of the quark theory (�Q) transform as (1, 1).

In quantum theory, however, the U�1�R0 is anomalous
with respect to the Abelian U(1) gauge currents (baryonic
U�1�B currents). At high energies, well above the scale of
the U�1�B symmetry breaking, the anomaly U�1�R0U�1�

2
B is

proportional to

 � 2�12�
2N2

c � �
1
2N

2
c ; (B5)

which comes from the contribution of QP fermions. Here
we take into account that we have Nc colors and Nc flavors
of these fermions. At low energies the U�1�B charges are
screened by the Higgs mechanism and the anomaly effec-
tively disappears.

Now consider the monopole theory. It has classically
unbroken

 SU �N�C�F � U�1�R00 (B6)

symmetry, where U�1�R00 is a combination of the original
U�1�R and axial subgroup of non-Abelian factors in (B1)
which do not transform h _K and ~h _K fields.

Now, duality suggests to us to identify two global clas-
sically unbroken groups (B3) and (B6) of the quark and the
monopole theories. The monopole fields h transform as

 h _K: � �N; 0�;  _K: � �N;�1�;

hP: �1; 1�;  P: �1; 0�;

~h _K: �N; 0�; ~ _K: �N;�1�;

~hP: �1; 1�; ~ P: �1; 0�

(B7)

under the classically unbroken symmetry (B6). The M
fields of the monopole theory transform as

 M _K
_L
: �N2; 2�; � M�

_K
_L
: �N2; 1�; M _K

P : �N; 1�;

� M�
_K
P : �N; 0�; MP

S : �1; 0�; � M�
P
S : �1;�1�

(B8)

where  M are fermion superpartners of the scalar fields M.
The � fermions transform as (1, 1). Note that the U�1�R00
symmetry is not broken by the condensation of the MP

S
fields because these fields are neutral under this symmetry.
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However, much in the same way as in the quark theory,
the R symmetry U�1�R00 is anomalous with respect to the
U(1) gauge currents. At high energies, above the scale of
the U�1�B symmetry breaking, the anomaly U�1�R00U�1�

2
B is

proportional to

 � 2
�
Nc
2N

�
2
N2 � �

1

2
N2
c ; (B9)

which comes from the contribution of h _K fermions. Here
we take into account that we haveN colors andN flavors of
h _K fermions as well as their baryon charges, see (B2). We
see that the anomaly in the monopole theory matches with
the one in the quark theory (B5). At low energies the U�1�B
charges are screened and the anomaly effectively
disappears.

Since the R symmetry is classically unbroken we can
check the ’t Hooft anomaly matching conditions for the
quark and monopole theories. This calculation is quite
similar to that reported in [1]. The first anomaly to check is

 SU �N�2U�1�R: 0 � �N � N; (B10)

where the left-hand side and the right-hand side at high
energies are given by the quark and monopole theories,
respectively. On the monopole-theory side we take into
account the contributions of the h and M fermions. At low
energies both h and M fermions become massive and do
not contribute to the anomaly. The matching condition is
trivially satisfied.

Next we check

 U �1�3R: ��1�32N2
c � �N2

c � 1�

� ��1�32N2 � �N2 � 1� � N2 � ��1�3N2
c ; (B11)

where at high energies on the quark-theory side we take
into account the contributions of the QP fermions and �Q
fermions, while four contributions on the monopole-theory
side are associated with the h fermions, �’s, and MK

L and
MP
S fermions, respectively.
At low energies this anomaly matching becomes

 U �1�3R: ��1�3N2
c � ��1�3N2

c ; (B12)

where we take into account that on the quark-theory side
half of the QP fermions6 and all �Q fermions become
massive and do not contribute to the anomaly, while on
the monopole-theory side the only contribution comes
from the massless MP

S fermions.
Finally, the last anomaly matching to check is

 

U�1�R: � 2N2
c � �N2

c � 1� � �2N2 � �N2 � 1�

� N2 � N2
c ; (B13)

where at high energies the quark-theory contribution
comes from the QP fermions and �Q’s, while the
monopole-theory contribution comes from the h fermions,
�’s, and M _K

_L
and MP

S fermions, respectively. At low ener-
gies we have

 U �1�R: � N2
c � �N

2
c ; (B14)

where the contribution on the quark-theory side comes
from a half of the QP fermions (those which are massless),
while the contribution on the monopole-theory side comes
from the MP

S fermions.
We see that all anomalies match.
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