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Tseytlin has recently proposed that an action functional exists whose gradient generates to all orders in
perturbation theory the renormalization group (RG) flow of the target space metric in the worldsheet
sigma model. The gradient is defined with respect to a metric on the space of coupling constants which is
explicitly known only to leading order in perturbation theory, but at that order is positive semidefinite, as
follows from Perelman’s work on the Ricci flow. This gives rise to a monotonicity formula for the flow
which is expected to fail only if the beta function perturbation series fails to converge, which can happen if
curvatures or their derivatives grow large. We test the validity of the monotonicity formula at next-to-
leading order in perturbation theory by explicitly computing the second-order terms in the metric on the
space of coupling constants. At this order, this metric is found not to be positive semidefinite. In situations
where this might spoil monotonicity, derivatives of curvature become large enough for higher-order
perturbative corrections to be significant.
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I. INTRODUCTION

It has been known for quite a long time that the renor-
malization group (RG) flow of 2-dimensional nonlinear
sigma models, computed to first order in the loop expan-
sion and neglecting all but gravity, is a gradient flow
generated by the Einstein-Hilbert action. The first-order
RG flow [1] is the Ricci flow, which can be written as

 

@gij
@t
� ��0Rij � Grad

�
�0
Z
M
RdV

�
: (1.1)

Here we take gij to be a Riemannian metric, dV to be the
metric volume element, R � gijRij to be the scalar curva-
ture of the metric, t to be the logarithm of the renormal-
ization scale, and �0 > 0 to be a constant,1 the string length
squared, which serves as an expansion parameter in the
sigma model context.

The gradient here is on the ‘‘space of coupling con-
stants,’’ which we take to be the space whose points
represent positive symmetric 2-tensor fields on a manifold
M. The inner product of the gradient vector with another
vector is a directional derivative which, in the present
context, is the first variational derivative of an ‘‘action
functional’’ or potential that generates the gradient flow
(for greater detail, see Sec. IV).

Now the variational derivative of the Einstein-Hilbert
action

 SEH :�
Z
M
RdV (1.2)

on a closed manifold M (so there are no boundary terms)2

in the direction @gij
@s gives the very familiar result:
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dV: (1.3)

If the metric were hu; vi �
R
M uijvklg

ikgjldV then the
gradient would be the negative of the Einstein tensor, but
if the metric is

 hu; vi :�
Z
M
uij

�
gikgjl �

1

2
gijgkl

�
vkldV; (1.4)

then the gradient is indeed the negative of the Ricci tensor
[2], verifying the second equality in (1.1), and giving the
formula

 

dSEH

dt
� �02hRic;Rici (1.5)

for the derivative of the action along the flow. If the metric
h�; �i were positive semidefinite, this formula would show
that the action would increase monotonically along the
flow, but obviously this metric is not of definite sign. As
a result, the gradient can in principle change between being
‘‘timelike’’ and being ‘‘spacelike’’ according to whether
the trace or tracefree part of the Ricci tensor dominates.
Along any flow for which such a change occurs, the
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Einstein-Hilbert action will not be a monotonic function of
the flow parameter.

The apparent lack of a monotonicity formula along the
RG flow is surprising in view of the Zamolodchikov
C-theorem [3], which guarantees a monotonic quantity
along RG flow for a 2-dimensional unitary quantum field
theory with a finite number of couplings [as opposed to the
current case, where the coupling constants, usually found
by expanding gij�x� around a point x0 2 M, are infinite in
number]. For a discussion of the problems associated with
generalizing the C-theorem to the worldsheet sigma model
(on a curved worldsheet), we refer the reader to the sum-
mary in [4].

There is, however, another approach which does yield a
monotonicity formula for first-order RG flow and possibly
beyond. In his celebrated work on Ricci flow, Perelman [5]
has proposed an approach based on enlarging the space of
coupling constants to include an extra function which then
generates diffeomorphisms that act by pullback on gij. A
choice of this function gives a submanifold of the enlarged
space onto which the original space of coupling constants
can be mapped, and can be thought of as a choice of
parametrization of the coupling constants gij in the sigma
model. The first-order RG flow induces a flow on this
submanifold, and the submanifold can be chosen so that
the induced flow is gradient with respect to a positive
definite metric. The submanifold is selected in a very
natural way: one fixes the extra function above to be given
by the lowest eigenfunction of a certain Schrödinger prob-
lem3 on the manifold �M;gij�. We have described this
construction in greater detail in [7].

While Perelman’s approach works to first order in �0,
there remains the question of whether the full RG flow is
gradient with respect to a positive definite metric. Tseytlin
has recently addressed this question [4]. He starts with an
action functional which is the integral over the target space
of the ‘‘generalized central charge function,’’ a particular
combination of metric and dilaton �-functions discussed in
[8,9], to which he appends a Lagrange multiplier term.
Upon truncating the generalized central charge to first
order in �0 and extremizing the resulting action functional
with respect to the dilaton, one can reproduce Perelman’s
construction, so the first-order RG flow of the target space
metric is obtained as a gradient flow of the truncated action
functional of Tseytlin. Then Tseytlin invokes results of
Osborn [10] to argue that the untruncated gradient gener-
ates to all orders in perturbation theory the RG flow of the
sigma model’s target space metric.4

The corresponding metric on the space of coupling
constants is not explicitly given beyond first order in [4]
(to that order it is just the metric obtained from Perelman’s
construction [5,7]). Thus the issue of monotonicity of this
action functional under RG flow beyond first order remains
to be explored. Tseytlin argues that a strict monotonicity
formula is not necessary. Rather, since the leading
(Perelman) term in the derivative of the action along the
flow is positive, failure of monotonicity indicates that
higher-order terms become dominant. This suggests that
perhaps the perturbation series for the �-functions will fail
to converge whenever monotonicity of the action fails;
conversely, monotonicity holds whenever perturbation the-
ory makes sense. A motivation for this expectation is the
fact that the central charge action is related to the
Zamolodchikov C-function, and upon applying
Perelman’s construction, the hope is that it indeed behaves
like a C-function, and is monotonic under RG flow to all
orders.

It is difficult to test this since the full perturbation series
is not known explicitly. However, we take a pragmatic
view. Say the �-functions are known to some order p.
Then the central charge action (plus Lagrange multiplier
term) is also known at this order, and one can compute its
derivative along the flow and check for monotonicity. This
will reveal the circumstances C, if any, in which monoto-
nicity may fail at order p. If C is nonempty, one can then
attempt to estimate whether the order p truncation of the
�-functions is valid or whether higher-order, neglected
terms are, in circumstances C, comparable in size to the
lower-order, untruncated terms. If so, the order p trunca-
tion breaks down; i.e., the truncation should be extended.
The view in [4] would be confirmed if such an extension
either restores monotonicity or eventually points to a di-
vergent perturbation series, but these are not the only
possible outcomes. A reliable assessment would require
greater knowledge of the perturbation series than is pres-
ently available.

The purpose of the present work is to confirm that the
issue does arise, because the metric that emerges from the
proposal in [4] is not order by order of definite sign; indeed,
the issue will arise at second order in �0.

There are essentially two ways in which truncations at
finite order and perturbation theory may become unreli-
able. Judging from the known terms in the perturbation
series for � (e.g., [11]), these are when either (i) curvatures
become large (� 1=�0 or larger), or (ii) derivatives of
curvatures become large. The problem can occur even
when the curvature is small in magnitude, if some deriva-
tive of curvature is sufficiently large.53A special case of this Schrödinger problem first appeared in

the study of RG flows in [6], which studied the case of a 2-
dimensional target space.

4In the process, the dilaton becomes metric dependent (it in
fact satisfies the equation of the lowest eigenfunction of a
Schrödinger operator describing the wave function of a particle
coupled to gravity via the curvature scalar). This dilaton no
longer satisfies its own independent RG flow equation.

5One may suggest that RG flow will smooth out the inhomo-
geneities that generate large derivatives. This is not always clear.
Ricci flow, for example, does not always smooth out
inhomogeneities.
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Let us now look more closely at the mechanism by
which monotonicity might fail when passing from leading
order in�0 to next order. If S is the action and RG flow is its
gradient flow, then schematically at least, along the flow we
have

 

dS
dt
� ���;��; (1.6)

 �
Z
M
��ijkl
�0� ��

�1�
ij �

�1�
kl � �

�1�
ij �

�2�
kl � �

�2�
ij �

�1�
kl � � � ��

� �ijkl
�1� �

�1�
ij �

�1�
kl � �

ijklmn
�1� rm�

�1�
ij rn�

�1�
kl � � � �	dm:

(1.7)

Here ���; �� is the metric on the space of coupling con-
stants, dm is some measure, and � represents the
�-function for the target space metric. The subscript or
the superscript in parentheses indicates the order in �0, so
we keep only terms up to order �03 inclusive (the leading
term being of order �02). On dimensional grounds, higher
derivatives than those shown cannot occur at this order.
Since truncation at leading order is just the case studied in
[5], we see that �ijkl

�0� is positive semidefinite. Monotonicity
at next-to-leading order becomes a question of the signa-
tures of the two ��1� coefficients.

We will confirm by explicit variation of the second-order
action that to second order in �0 the RG flow is the gradient
flow of Tseytlin’s action functional and that its flow de-
rivative has the form (1.7) [with the diffeomorphism-
improved �-function ��ij, defined in (1.8), appearing in

place of � above]. Furthermore, �ijkl
�1� � 0, but �ijklmn

�1� is
nonpositive so � (truncated at order �0) is no longer
positive semidefinite and so the RG flow, truncated at
second order, does not have a monotonicity formula. This
happens precisely in situation (ii) above; i.e., when first
derivatives of the curvatures are as large as
O�jRiemj=

�����
�0
p
�, and may signal a breakdown in perturba-

tion theory. Interestingly, large and even arbitrarily large
curvatures will not violate monotonicity at second order if
the curvature is sufficiently homogeneous—even though
for large enough curvatures the sigma model perturbation
theory certainly breaks down.

We find in particular that on Ricci solitons the monoto-
nicity formula holds for the second-order RG flow. Indeed,
monotonicity holds at second order on a wider class of
metrics than solitons, namely those with harmonic curva-
ture operator. This condition is not preserved along the
second-order flow, so monotonicity along a flow that be-
gins at a metric with harmonic curvature can eventually
break down at large enough t along the flow.

We follow [4] for our definitions of �-functions. In
particular, we choose local coordinates on M so that the
RG flow of the target space metric gij and dilaton � is
expressed as

 

@gij
@t
� � ��gij

� ��0�Rij � 2rirj�� �
�02

2
RiklmRj

klm �O��03�;

(1.8)

 

@�
@t
� � ���

� �c0 � �0
�
1

2
��� jr�j2

�
�
�02

16
jRiemj2

�O��03�: (1.9)

This paper is organized as follows. Section II reviews
Tseytlin’s proposal and Perelman’s technique. Section III
extends the analysis to second order in �0. Section IV
shows that the second-order flow is gradient and contains
the formula for the derivative along the flow of Tseytlin’s
action S. Section V contains a brief discussion of metrics
for which monotonicity does not break down. We reiterate
that, throughout, all manifolds are closed Riemannian
manifolds.

II. TSEYTLIN’S PROPOSED POTENTIAL

In this section, we review Tseytlin’s proposal and the
result of Perelman upon which it is based.

Consider the ‘‘central charge action’’ [8,9], modified by
a Lagrange multiplier term:

 S�g;�� :�
Z
M

~��e�2�dV � �
�Z

M
e�2�dV � 1

�
; (2.1)

 

~�� :� ��� �
1

4
gij ��gij

� c0 � �0
�
��� jr�j2 �

1

4
R
�
�
�02

16
jRiemj2

�O��03�: (2.2)

Tseytlin’s proposal is that the RG flow for gij is the
gradient of the action6

 S �g� :� Ŝ�g; ’�; (2.3)

where

 ’ � � log� (2.4)

and � solves the eigenvalue problem

 �0
�
��

1

4
R�

�0

16
jRiemj2 �O��02�

�
� � ���� c0��;

(2.5)

6The sign convention for the action is opposite that of
Perelman, so the desired monotonicity property will be a mono-
tone decrease.
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 1 �
Z
M

�2dV 

Z
M
e�2’dV: (2.6)

In the action � appears as a Lagrange multiplier, and c0

is a free parameter. Note that c0 � � must be the lowest
eigenvalue of the operator on the left-hand side of (2.5),7

since by (2.4) � cannot have nodes; otherwise the loga-
rithm would fail to be defined. The eigenvalue problem
(2.4), (2.5), and (2.6) arises by extremizing the action
Ŝ�g;�� with respect to � and �. The dilaton RG flow
cannot be obtained as a gradient flow of (2.3) since the
action S�g� is not a functional of �.

It is easily checked that (2.2), (2.3), (2.4), (2.5), and (2.6)
imply

 

~�’ � �� � S�g�: (2.7)

where of course � depends nontrivially on g due to (2.5).
An arbitrary one-parameter variation of the action (2.1)

yields
 

dS
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�
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M

�
�

1

4
��ij
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�
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@s

�
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Z
M
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@
@s
�e�2�dV�

�
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�Z
M
e�2�dV � 1

�
: (2.8)

If we vary about the minimizer � � ’, then due to (2.6)
and (2.7) the last two integrals contribute nothing. Thus
(2.8) reduces to

 

dS
ds
�
Z
M

�
�

1

4
��ij
@gij

@s
�

1

4
gij
@ ��ij
@s
�
@ ���

@s

�
��’

e�2’dV:

(2.9)

Section 1 of [5] (see also [7]) shows that if the �-functions
are replaced by their first-order truncations (at the mini-
mizer ’)

 

�� �1�ij � �0�Rij � 2rirj’�; (2.10)

 

��’�1� � c0 � �
0�12�’� j�’j

2�; (2.11)

then the last two terms in the integrand vanish. One obtains
simply

 

dS�1�

ds
�

1

4

Z
M
gikgjl ���1�ij

@gkl
@s

; (2.12)

so the first-order truncated flow

 

@gij
@t
� � ���1�ij (2.13)

is clearly gradient, the metric is

 �u; v� �
Z
M
gikgjluijvkl; (2.14)

which is positive semidefinite, and along the flow we have
the monotonicity formula

 

dS�1�

dt
� �

1

4

Z
M
j ���1�ij j

2: (2.15)

This implies that the derivative (2.9) along the flow of the
full action has the form

 

dS
dt
� �

1

4

Z
M
�j ��ijj2 �O��03��; (2.16)

where the j ��ijj
2 term is O��02�.

III. SECOND-ORDER ACTION

In this section, we include in the action the term
�02jRiemj2 which occurs in ~��, and compute its variation.
The result can also be reconstructed from calculations in
the literature (see [11]). Readers wishing to skip the routine
calculational details may want to proceed straight to the
results (3.11) and (3.12).

For a one-parameter variation in the metric, where s is
the parameter, we use the standard formulas
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@
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Using these, we write
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7’ is therefore sometimes called the minimizer.
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The term Rijklrkrl
@gij
@s is easily seen by index symmetry to

contribute zero, so we will discard it. Next, we integrate by
parts and use the second Bianchi identity, once contracted,
which shows that

 rkRijkl � riRjl �rjRil: (3.5)

The result is
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We can replace the Rijklrk� term using the Ricci identity

 Rijklrk� � ��rirj �rjri�rl�: (3.7)

Finally, if we vary about the minimizer � � ’, then
�12g

ij @gij
@s � 2 @�

@s � vanishes. Using these results, we obtain
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where we define
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so that
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Combining (2.12) and (3.8), we obtain
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where T 2 O�1� is the coefficient of the error estimate.
Lastly, integrating by parts, we can express this in the form

 

dS
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�
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M

@gij
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�
1

4
�gik�1� �0 ~�� � �0gHess
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	 ��kl

� �03Til

�
e�2’dV: (3.12)

Here gHess
ik
��� :� e2’rk�e�2’ri���� and ~� :� gik gHess

ik
.8

IV. GRADIENT FLOW AND MONOTONICITY

In the finite-dimensional case, the flow

 

dxi

dt
� Fi (4.1)

generated by vector field Fi is a gradient flow iff for a
metric �

 Fi � �ik@kV: (4.2)

That is, F is the gradient vector arising from raising the
index on the exterior derivative of a scalar potential V.
Equivalently, F must obey

 @iFj � @jFi � 0; Fi :� �ikF
k: (4.3)

The directional derivative of V in the direction of an
arbitrary tangent vector vi � dxi=ds is of course just

 

dV
ds
�
dxk

ds
@kV: (4.4)

In the infinite-dimensional case, the sums over k become
integrals, the directional derivative (4.2) becomes a varia-
tional derivative, and @iV becomes measure valued (i.e., a
distribution in the sense of Dirac). Given a candidate
potential function for a given flow generated by a known
vector field F, one can perform the variational derivative to
read off the analogue of @kV and then compare this to F if
the metric is known. (When taking the variational deriva-
tive, the vector field dxi=ds is replaced by the cotangent
field @gij=@s.)

We claim that a suitable metric ���; �� on the space of
couplings is

 

��u; v� :�
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Z
M
dVe�2’

�
gikgjluijvkl

�
�0

2
gikgjlgmn�rmuij �riumj�

� �rnvkl �rkvnl�
�

(4.5)

8In other words, divergences are defined with respect to the
measure e�2’dV. At leading order in �0, which is all that we
require here, this does not differ from the ordinary divergence
which appears in the comparable results in Sec. 2 of [11].
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using integration by parts to obtain the last equality.
Compare (3.12) to (4.6). Assuming that Tij is linear in

��ij and using

 

dS
ds
� ��

�
@g
@s
;GradS

�
; (4.7)

then we can read off that the gradient of S with respect to
the metric � is

 Grad S � � ��ij �O��03�; (4.8)

establishing the claim.
For u � v, (4.5) yields

 ��u; u� �
1

4

Z
M
dVe�2’

�
juijj2 �

�0

2
jriujk �rjuikj2

�
:

(4.9)

Notice the overall minus sign in front of the gradient terms.
Evaluating the derivative of S along a flow given by (1.8),
the result (4.9) leads to
 

dS
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� ���� ��;� ���

� �
1

4

Z
M
dVe�2’

�
j ��ijj2 �

�0

2
jri ��jk �rj ��ikj2

�O��04�
�
: (4.10)

Thus as long as the nonderivative term dominates, S is
monotonically decreasing along the RG flow.

V. DISCUSSION

The action S will fail to be monotonically decreasing at
second order whenever

 jri ��jk �rj ��ikj>

�����
2

�0

s
j ��ijj: (5.1)

This situation is possible because we can always choose
initial data for the flow with spatial gradients that obey
jrRicj � jRicj=

�����
�0
p

. Then both terms in the integrand of
(4.10) are comparable in magnitude, and it may well be that
the second term dominates, making S increase. However,
when (5.1) holds, then jrRicj � jRicj=

�����
�0
p

. Then the
second-order truncation of the �-function is no longer
reliable because third order terms are comparably large
(cf. [11]). The second-order truncation breaks down. This
scenario and its possible outcomes were described in the
Introduction.

We turn now to circumstances for which monotonicity
does hold, at least for an interval of ‘‘time’’ (energy scale).

One such class is the class of manifolds with harmonic
curvature. These are precisely the metrics for which

 rkRijkl 
 riRjl �rjRil � 0: (5.2)

Einstein manifolds obviously belong to this class, as do the
Riemannian products of Einstein manifolds (as these have
parallel Ricci tensor riRjk � 0). Contracting this expres-
sion with gjl and using the contracted second Bianchi
identity, we see that such manifolds must have constant
scalar curvature.9 Then (2.5) and (2.6) admits solutions for
� of the form 1�O��0� and then ’ 2 O��0� (i.e., ’�0� �
0). It follows that
 

�rk ��gij �ri ��gkj	 
 �0�rkRij �riRkj � Rljkirl’	

2 O��02�; (5.3)

assuming O�1� bounds on the curvature. Provided the
solution is not ‘‘nearly solitonic’’ (i.e., provided
���1�6�O��02�), then dS=dt < 0.

The condition of harmonic curvature cannot be expected
to be preserved along the flow in general. If t becomes
large enough, an initially harmonic curvature can eventu-
ally deviate quite a bit from harmonicity.

A second class that obeys monotonicity is the class of
gradient Ricci solitons, including so-called shrinkers and
expanders as well as steadies.10 These obey

 

�� �1�ij 
 �0�Rij � 2rirj’� � �0�gij; (5.4)

where � is a constant. Clearly, for this class,ri ���1�jk � 0, so
the wrong-sign term in (4.10) vanishes, while the leading
term integrates to give

 

dS
dt
� �

n�2�02

4
�O��03� (5.5)

in dimension n, where O��03� denotes the contribution
from ���2�ij . Again, this class will not be preserved along
the flow, but deviations will be governed by the
�02RiklmRj

klm term in (1.8), and such deviations, if absent
initially, will not be important for quite some time. In fact,
all that is required is that the evolving metric have gradient
of ��ij close to that of a soliton metric; i.e., close to zero.
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