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General hypersurface layers are considered in order to describe braneworlds and shell cosmologies. No
restriction is placed on the causal character of the hypersurface which may thus have internal changes of
signature. Strengthening the results in our previous paper [M. Mars, J. M. M.. Senovilla, and R. Vera, Phys.
Rev. Lett. 86, 4219 (2001).], we confirm that a good, regular, and consistent description of signature
change is achieved in these brane/shells scenarios, while keeping the hypersurface and the bulk
completely regular. Our formalism allows for a unified description of the traditional timelike branes/
shells together with the signature changing, or pure null, ones. This allows for a detailed comparison of the
results in both situations. An application to the case of hypersurface layers in static bulks is presented,
leading to the general Robertson-Walker geometry on the layer—with a possible signature change.
Explicit examples on anti-de Sitter bulks are then studied. The permitted behaviors in different settings
(Z,-mirror branes, asymmetric shells, signature changing branes) are analyzed in detail. We show, in
particular, that (i) in asymmetric shells there is an upper bound for the energy density, and (ii) that the
energy density within the brane vanishes when approaching a change of signature. The description of a
signature change as a “‘singularity”’ seen from within the brane is considered. We also find new relations
between the fundamental constants in the brane/shell, its tension, and the cosmological and gravitational

constants of the bulk, independently of the existence or not of a change of signature.
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I. INTRODUCTION

In a previous paper [1], we explicitly showed that brane-
world models [2—4] constitute a natural scenario for the
classical regular description of a change of signature in the
physical spacetime. This can also be said in general of any
higher-dimensional theory (e.g. [5,6] and references
therein) admitting domain walls or (hyper)surface layers.
The same idea, together with the possibility of topology
change, was later advocated in [7] by constructing explicit
solutions of an action given by the area/volume functional
of the brane.

In this paper we want to elaborate on the ideas put
forward in [1], but keeping the full generality so that we
can also recover the traditional results usually derived for
pure timelike branes or shells, see [8—15]. We also want to
present detailed proofs of several interesting results merely
announced in [1].

In geometrical terms, branes, or shells are submanifolds
of a higher-dimensional spacetime called the bulk. The
bulk metric is differentiable everywhere except on the
brane where it is only continuous. The jump in the deriva-
tives of the bulk metric is related to the part of the distri-
butional energy-momentum tensor with support on the
brane. Traditionally, branes have been assumed to be time-
like submanifolds so that the induced geometry is
Lorentzian and the brane can describe the four-
dimensional spacetime where we live. In this case, the
precise relation between the jumps in the metric derivatives
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and the energy-momentum quantities on the brane is given
by the so-called Israel conditions [16].

However, the timelike assumption is too strong: on
physical grounds, it is enough that there is a region of the
brane where it is timelike. A priori, there is no physical or
mathematical obstruction to the existence of completely
regular branes—in totally regular bulks—which change
its causal character. As a trivial example, consider a cir-
cumference centered at the origin of two-dimensional
Minkowski spacetime: this has two spacelike regions,
two timelike ones, and four points where it is null.
Therefore, in these higher-dimensional scenarios with
branes or shells, the study of signature change becomes
the geometrical analysis of embedded submanifolds in the
bulk: a well-posed mathematical problem.

As we shall see, a very interesting property of this type
of signature changing branes is that, even though the
change of signature may appear as a dramatical event
when seen from within the brane—specially if the scien-
tists living there believe that their universe is Lorentzian
everywhere—both the bulk and the brane can be totally
smooth. As a matter of fact, we shall see that the change of
signature occurs at a region in the brane which might be
interpreted as a curvature singularity by those scientists. Of
course, this opens the door to explain, or avoid, the clas-
sical singularities of general relativity [17,18]. For in-
stance, a past big bang singularity may be replaced by a
signature changing set leading to a Euclidean region prior
to the birth of time, or a neighborhood of the singularity
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inside a black hole by a kind of Euclidean core. Explicit
examples of these situations were actually built in [1,19],
see also [7]. This has natural and obvious links with the no-
boundary proposal [20] for the prescription of the wave
function of the Universe in quantum cosmology, and with
similar ideas of quantum tunneling [21,22] from ‘‘noth-
ing”’ or from instantons.

From a classical standpoint, changes of signature were
treated in the literature mainly from the inner point of view,
by just considering a manifold with a metric which be-
comes degenerate somewhere and changes signature, see
[23—26] and references therein. There was much debate on
whether the transition between the Euclidean and the
Lorentzian regions should occur smoothly or with a
jump, see [27] and references therein. Both cases can be
treated in the brane scenario that we proposed in [1]. The
most natural case, though, is when the brane or shell is
differentiable and the signature change is therefore
smooth." Some explicit signature changing solutions of
the field equations for scalar field sources [31,32] and for
spinor fields [33,34] have been found, as well as in higher-
dimensional cases with compact extra dimensions [35], or
for the spherically symmetric case [36]. In any case, the
differences between our approach and those intrinsic treat-
ments are radical, as we have a bulk structure available
which defines inherited regular structures on the brane. As
a matter of fact, we can even prove that some ad hoc
assumptions in [23-27] become necessary conditions in
our setting, precisely because of this bulk structure, see
Sec. ITA.

In order to describe signature changing branes we need
to consider hypersurfaces without a fixed causal character,
so that they may have timelike, spacelike, and null por-
tions. There are some obvious technical difficulties when
dealing with hypersurfaces of such an arbitrary causal
character. For instance, the first fundamental form is de-
generate somewhere, and also the second fundamental
form is no longer extrinsic everywhere—it is actually
intrinsic at null points. This leads to the most important
difficulty: the usual matching conditions are no longer
valid for hypersurfaces with changing causal character. In

'By allowing continuous piecewise differentiable hypersurfa-
ces, we could also describe discontinuous changes of signature.
This would require a detailed knowledge of the matching con-
ditions within a submanifold which, itself, is a matching hyper-
surface between the two bulk subregions. The mathematical
tools needed for that purpose have only appeared recently in
the literature [28]. Incidentally, a similar comment holds for
standard timelike branes whenever the energy-momentum tensor
within the brane has jumps, as for instance on the surface of a
star. A proper mathematical description of such a situation would
require the results in [28]. Let us remark that several papers have
actually dealt with stars on the brane, e.g. [29,30]. However, in
those papers the whole description is made from within the
brane, with standard matching conditions across the surface of
the star. It would be interesting to perform a full bulk description
and compare the results.

PHYSICAL REVIEW D 76, 044029 (2007)

particular, the Israel formulas [16] are not suitable to
describe the energy-momentum on the shell or brane, and
the appropriate generalization must be used. Probably this
has been the reason behind the lack of studies on signature
changing branes prior to [1], and also of some misunder-
standings2 in the interesting recent work [37]. Fortunately,
the required generalization was already developed in [38]
in four spacetime dimensions. The results carry over to any
dimension with no essential change and can therefore be
used to study signature changing branes. A self-consistent
summary of the required results from [38] is presented in
Secs. II and III.

When dealing with changes of signature, there always
remains the important unsolved question of which physical
mechanisms may produce, or induce, them. Several specu-
lative possibilities have appeared in the literature, such as
large time fluctuations [39], tachyon condensation and S
branes [40—43], dynamical stabilization of extra dimen-
sions by means of scalar fields [44], or emergent space-
times in Bose-Einstein condensates [45]. In particular, one
should be able to devise a physical process stimulating the
signature change on a brane of an otherwise innocuous
bulk. As far as we are aware, this is an important and fully
open question, which we shall not address in this paper.

Plan of the paper and summary

The basics of gluing and how to construct branes or
shells by pasting together two spacetimes with boundary
is presented in Sec. II. When the boundaries have a non-
constant signature, one needs the results of [38,46] to
perform the matching correctly. These are described, and
corrected, in that section. In particular, we also correct an
erroneous statement in our paper [1]. In this section we also
prove rigorously that signature changing branes or shells
are not compatible with the Z,-mirror symmetry assumed
many times in braneworlds.

The generalized Israel formula is then presented and
briefly explained in Sec. III. Section IV is devoted to the
field equations on the bulk and their consequences on the
brane or shell. In particular, we prove some statements
announced in [1]: there cannot be umbilical hypersurfaces
changing signature, and the brane tension cannot be con-
stant in signature changing branes.

Readers familiar with these matters may skip the men-
tioned sections and go directly to the more interesting
physical results discussed afterwards.

Sections V and VI deal with the explicit construction of
(signature changing or not) branes and shells in static and

’In [37] the traditional Israel formula (9) is applied to a
Z,-symmetric brane, and then the brane is claimed to undergo
a change of signature. Nevertheless, for a signature changing
brane the Israel conditions (9) are not valid, and the appropriate
generalized formula (11) should have been used. Observe that, in
fact, a Z,-symmetric brane can never undergo a signature
change, according to our general result Corollary 2.
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spherically, plane, or hyperbolically symmetric bulks. We
prove that, by gluing two such spacetimes across any
hypersurface preserving the spatial symmetries, a brane
or a shell is obtained which has the general Robertson-
Walker line element, with a possible change of signature,
as first fundamental form. The physical quantities of these
branes are then computed in general. Section VI special-
izes these results to the case of two (AdS) spacetimes,
which produces a bulk with two, different in principle,
cosmological constants. The different possibilities are
then analyzed in detail, and we recover all previous results
on Z,-symmetric branes and asymmetric shells.

We also derive the corresponding new results for the
signature changing branes or shells, and we prove that the
boundary of the Lorentzian part of the brane is part of a
signature changing set which is completely regular. We
further show that the energy density of the matter fields
vanishes when approaching this set. The possible interpre-
tation of this set as a curvature singularity for observers
living within the Lorentzian part of the brane is carefully
considered. Finally, old and new relations between the
fundamental constants in the brane and the parameters of
the bulk are derived in some physically motivated limits.

Throughout the paper, we will use units with the speed
of light ¢ = 1.

II. SIGNATURE CHANGING HYPERSURFACES:
BASIC PROPERTIES AND BRANE
CONSTRUCTION BY GLUING

In general, branes are submanifolds in a higher-
dimensional spacetime (M, g), which is called the bulk,
with g being a Lorentzian metric of signature
(=, +, ..., +). Such objects had been traditionally known
(specially for the case of codimension one) as thin layers or
domain walls. The typical branes have a constant causal
character, usually timelike. However, the purpose of this
paper is to analyze the possibility of having more general
branes such that their causal character may change from
point to point. Thus, signature changing branes are sub-
manifolds of changing causal character in (M, g). In this
paper we will present a unified formalism which allows to
deal with general types of branes, signature changing and
signature-constant ones, at the same time.

In order to have a topological defect such as a codimen-
sion one brane, and to have well-defined Einstein’s field
equations on the entire bulk, the metric g needs to be at
least of class C? everywhere on M except on the brane 3,
where it should only be continuous—in a suitable coor-
dinate system. Thus, the differentiability of the manifold
M must be at least C3, which we will assume from now on.
C3 manifolds with C? Lorentzian metrics will be called C?
spacetimes from now on. The brane 3 is a hypersurface
and hence it inherits a first fundamental form ~ which must
also be at least C? in order to admit gravitational field
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equations within the brane.”> Consequently, as a submani-
fold 3 must be at least C* too. Let N be a normal one-form
of 2, i.e. a nonzero one-form satisfying

N@®)=0 V3€ET,2 VpeX

so that it annihilates all vectors tangent to 3. Raising the
index of N we obtain a vector field N which may still be
called a ““normal vector field,” but which is not necessarily
transverse to 2 everywhere. From our assumptions, N and
N are differentiable fields. Observe that, if we want to
allow for signature changes on the brane, N cannot be
globally normalized as it is null somewhere. Thus, N is
defined only up to rescaling N — AN, where A is a no-
where vanishing C? function on 3. This ‘“‘normalization”
freedom plays an important role in the physics of the brane
and needs to be kept in mind. Since the bulk metric is
continuous across 2, the norm (Greek lowercase indices
run from O, ---,n — 1, where n is the dimension of the
bulk)

N(N) = (N,N) = gt"N,N,

is well defined on 3, and of class C?. For the signature of
the brane to change, the set of points where 2 is null must
be nonempty. Thus, to fix ideas and notation, we put
forward the following.

Definition I—Let 3y C 3, %5 C X, and %; C X bethe
subsets where the hypersurface 3 is spacelike, null, and
timelike, respectively. Equivalently,

Sp={p € 2:(N, N)|, <0},
3o ={p € 2:(N, NI, =0},
3, ={p € 3:(N,N)|, > 0}.

Accordingly, the induced metric /4 is positive definite at
3., Lorentzian at 3, and degenerate at 3. Then, 3 is
called the Euclidean phase of the brane, 2, its Lorentzian
phase, and 3, its null phase. Finally, the set

S=(ENZYUEENZ

is called the signature changing set of 2.

By definition %, is a closed subset of 2. Also by
definition we have S C 3. The case when 3 has empty
interior is characterized by S = 3, and will be one of the
important cases in our analysis. Note also that V (]\jf)lg0 =
0 so that N is actually tangent to 3 on 3, see [38].

We will implicitly assume that 3,; is nonempty so that
we have at least one region where the brane is timelike and
therefore able to describe a real (Lorentzian) world.
Notice, though, that it is still possible that both S and 3,
are nonempty while 3 = @. In fact it is even possible to

31f objects like stars, with discontinuous energy-momentum
tensors, are present on the brane, then the Cc? differentiability of
h holds only outside the separating surfaces.
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have branes which are timelike everywhere except at a
single point, where it is null. A simple example is given
by the hypersurface

{x = a(t)cosh, y = bsinb, 1}

in 3-dimensional Minkowski spacetime with Cartesian
coordinates {z, x, v}, where b > 0 is a constant and a(z) is
a positive function whose derivative satisfies |¢| = 1 with
equality at one single value. Similarly, branes which are
spacelike everywhere except for a single point are possible,
as well as null branes so that 3,; = 3 = @. Most of these
situations do not truly describe a signature changing brane,
or at least not the one we usually have in mind, which
require that both 3; and 3p—and therefore S too—are
nonempty. In this situation it is obvious that S cannot
consist of a finite number of points. Even though our
main goal in this paper is proper signature changing
branes, all mentioned cases are included and can be treated
within our formalism. In the explicit examples, however,
we will mainly deal with proper signature changing branes
with 3, = S, i.e. such that there is no open set where the
hypersurface 3, is null.

A. Restrictions on the signature changing set S

Even if one assumed that X, has empty interior there
remains a lot of freedom on the structure of S. In a general
setting, not necessarily of brane type, the signature chang-
ing set S may have many different structures. Nevertheless,
this is no longer true in a brane-in-bulk setting, which is a
desirable outcome, because conditions on S which are
typically assumed ad hoc become predictions in this sce-
nario. As a matter of fact, in our paper [1] we claimed that
one of the advantages of studying signature change within
the brane scenario is that the structure of S becomes
restricted. While this general claim remains true, see
Lemma 1 below, the specific result on the structure of S
presented in [1] is unfortunately false. We are grateful to E.
Aguirre-Daban and J. Lafuente-Lopez [47] for pointing out
that Result 1.1 in [1] is not correct. Let us describe this in
detail.

Result 1.1 in [1] states that in the brane scenario,
changes of signature occur at a single “instant of time.”
In other words, that S is a spacelike (n — 2)-submanifold of
the bulk. If we define, as usual, the radical of a degenerate
metric h as the set of vectors V satisfying a(V, -) = 0, the
claim above amounts to saying that the first fundamental
form h of 3 at p € S has a transverse radical (i.e. that the
radical is nowhere tangent to S). A detailed study of
signature changes with tangent radical (i.e. such that the
degeneration vectors are tangent to the signature changing
set S) has been performed in [48]. This analysis was done
in full generality, without assuming that the signature
changing space (2, &) is a brane within a bulk. From these
general results, explicit examples of signature changes for
branes with tangent radical may be derived [47]. One such
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example is as follows. For signature changes with 2, = §
and tangent radical there exists [48] a coordinate system
{y, xi v} (i, j=3,---,n— 1) on a neighborhood of any
point p € S such that S: {y = 0} and the signature chang-
ing “metric” reads

ds?|s = dy* + y(g,dv + g;dx')* + g,»jdxidxj,

where g,, g;, and g;; are differentiable functions of
(v, x', v) such that g,(0,x',v) =1 and (g;;) is positive
definite. This tensor can be obtained as the first fundamen-
tal form of the hypersurface 3: { = 0} in an n-dimensional
bulk spacetime with metric

ds®> = ydr* + 2kdtdv + dy* + y(k,dv + k;dx')?
+ kijdxidxj,

where k, k;, k,, and k;; are functions of (¢, y, x', v) satisfy-
ing kyl,—o = &2, kili=0 = 2> kijlt:O = g;; and k is chosen
so that ds? has Lorentzian signature everywhere. To see an
explicit example (in four dimensions, for definiteness)
consider the metric

ds® = f(df* + dv?) + 2(/1 + fA)dtdv + dy* + dz?,
(1)

which is a globally defined, smooth, Lorentzian metric on
R* for any smooth choice of f(z, v, y, z). Take f = y and
the brane defined by 3: {r = 0}, which is Lorentzian for
y < 0 and Riemannian for y > 0. The signature changing
set S C X is defined by {y = r = 0}, which is clearly a
two-dimensional null surface, contradicting Result 1.1 in
[1]. In fact, the same example (1) with a different f can be
used to show that S needs not even be a differentiable
submanifold and that branch points are allowed. Indeed,
taking f = yz, the signature changing set is located at yz =
0, which are two 2-planes intersecting at the branch line
(y =z =0, v €R). Thus, Result 1.1 in [1] does not hold
and the structure of S allows for much more freedom than
claimed there.

Despite several efforts, the only restriction on the struc-
ture of S, and more generally on the properties of 3, that
we have been able to derive from the brane setting is

Lemma 1. At any point p € 3, (and therefore at all
points of §) of a codimension one brane 2, the induced
metric 4 of 3 has a unique degeneration direction given by
NI,

Proof. At p € 3 the normal vector N| p 18 also tangent
to 3. It obviously satisfies g(N, 7)| » = 0 for any vector
v|, € T,%, which clearly implies h(N, )|, =0, so that
N| p» 18 a degeneration vector. To show uniqueness, let us
take another degeneration vector w|, € T,X. It follows
g(w,w)|, =0 and g(N, w)|, =0, so that the two null
vectors N| ,» and w|, must be parallel. B
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This Lemma does indeed restrict the structure of S in the
brane scenario because more general behaviors can occur
for arbitrary signature changes. It may happen, for in-
stance, that the metric changes signature at a smooth
hypersurface where the radical is two- or higher-
dimensional, or even spans the whole tangent space. A
simple example of the latter is given by the following (0,
2)-tensor in R™,

ds?> = —td? + 2(dx? + dx3 + - - dx2 ).

B. Gluing

Let us next discuss the standard procedure of how to
build branes by gluing manifolds with boundary, and the
possibility of actually constructing signature changing
branes by that method. This is important as most of the
standard branes are constructed in this manner. However,
for hypersurfaces with changing causal character, the usual
matching conditions are no longer valid and an appropriate
generalization must be used. Fortunately, such a general-
ization was already developed in [38] in four dimensions.
These results can be readily generalized to arbitrary di-
mension with no essential change. Since we shall use this
matching procedure extensively, let us describe its essen-
tial features.

We start from two oriented C* n-dimensional manifolds
with boundary M=, whose boundaries are X~. These
manifolds are endowed with C? Lorentzian metrics g~.
In order to join them across their boundaries we need to
identify the boundaries pointwise. This means, in particu-
lar, that there must exist a one-to-one correspondence
between 2" and X, ~, which moreover must be a diffeo-
morphism in order to preserve the differential structure.
Both for conceptual and operational reasons, it is conve-
nient to state this condition in the following equivalent
manner: there exists an abstract (n — 1)-dimensional C3
manifold 3 and two C® embeddings

b3 — M, b3 —- M,
which satisfy @, (2) = 2% and ®_(2) = 2. The iden-
tification of the boundaries is then given by ® = &, o
@illz—. Under these circumstances, and using standard
techniques of differential topology, it follows that the space
M= MU M, with the boundaries identified, can be
endowed with a differential structure [49] so that it be-
comes a manifold. Our aim is to define a metric g on M
which is continuous everywhere, in particular, across X,
(we shall often abuse notation and identify %, 37, and 3
when necessary), such that g coincides with the original g*
in the interiors of M=, respectively. Demanding continu-
ity is obviously sufficient for having a well-defined in-
duced metric on the brane. It turns out that continuity is
in fact the only possibility, as we discuss next.
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1. Tangent space identification: Riggings

As pointed out by Clarke and Dray [46], defining a
metric on M requires not only that we identify the points
on the boundary but also that the tangent spaces are prop-
erly identified. The differential map d® fixes uniquely the
way of identifying the tangent vectors of the boundaries.
Thus, if we want to define a continuous metric on M we
need to require at least that the first fundamental forms of
>* and 3~ coincide (via ®@). In other words

ht =d%(g") =dx(g7)=h", (2)

where ®% denote the pullbacks of ®.. and 2™, h™ are the
first fundamental forms of % as defined from M™* and
M~ respectively. Conditions (2) are called preliminary
matching conditions. When they hold we write h = h"™ =
h~. In local coordinates they read as follows. Let {£°} (a,
b=1,---,n—1),{x}and {x*} be local coordinate sys-
tems on X, M*, and M, respectively. Consider the basis

vectors d‘; and their images by d® .
- 9 axi(§) o
o= d(I)+ = — > 3
“ [ (&)= a2 ®

where the functions x% (&) define the embeddings ®. in
local coordinates, i.e.

IR )

Obviously, {¢5} span the tangent planes of the hypersurfa-
ces 2 as embedded in M ™. In terms of these objects, the
preliminary matching conditions (2) read

R (&) = h, (&), 4

where

x5 (£) 9xL(€)

age agh
In order to complete the identification of the tangent
spaces, we only need to identify one transversal vector

on % with one transversal vector on 3. Then, the
identification of all tangent vectors follows by linearity.

To that end, let us choose a C? vector field €, on 3+ which
is nowhere tangent to X *. The existence of such a vector
field, sometimes called rigging [38], is a standard property
of manifolds with boundary. Transversality means
N, ¢4 #0 where N* is a normal one-form of X% in

hap(€) = g6 (£))

M™ . Furthermore, we choose €, pointing towards M*
everywhere; actually, since € is transversal to 27, it is

sufficient to impose that €, points towards M ™ at one
point of 3. Of course, we could alternatively demand that

¢ points outwards from M *. This would induce obvious
changes in the discussion below with no essential new
features.

Now we need to choose another C? rigging ¢_ on 3.
Since we intend to identify €, with €_ and get a continu-
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ous metric, we must impose at least that their norms and
scalar products with arbitrary vectors in T2, coincide. This
amounts to requiring that

2 - 14 14 2 - 4
Gty =g, Are”, guthes” =g tte,”, (5

where the symbol 2 stands for equality using the diffeo-
morphism ®. Equations (5) should be interpreted as re-
strictions on E _ once {7 + has been chosen, or vice versa.
These n conditions are not sufficient to ensure a proper
matching, as the rigging ¢_ must also satisfy the property
of pointing outwards from M~ everywhere. This is neces-

sary because, after the identification, the vector € = £ L=

A points towards M™* (as ¢ + does). When viewed from
the glued manifold M = M™ U M~ this is equivalent to
saying that ¢ points outwards from M.

Two important questions arise: (a) are these conditions
on the riggings already sufficient for the existence of a
matching with continuous metric? and (b) do they intro-
duce any restrictions on the manifolds M .. to be matched?
In a remarkable paper [46], Clarke and Dray addressed
these questions for the case of constant-signature matching
hypersurfaces. Their conclusion was that the answer is
affirmative in both cases. Unfortunately, this conclusion
is not completely correct as stated, as we shall see presently
with examples. Let us discuss this.

The proof given by Clarke and Dray can be divided in
two parts. In the first one, question (a) above is addressed
and the authors try to prove that a pair of riggings ¢ +
satisfying (5) with the correct orientation does exist. In
the second part, which corresponds to question (b) above,
the existence of a maximal atlas on M for which the metric
g is continuous is shown, provided the preliminary match-
ing conditions hold and a pair of suitable riggings 7 + exist.
This second part is correct and, in fact, depends very
weakly on the assumption of constant signature of the
matching hypersurface. A slight modification of the argu-
ment allows one to show that the same result holds for
spacetimes with boundaries having varying causal charac-
ter. The first part of the proof, however, is not correct for
boundaries having null points, both in the constant null-
signature case treated in [46] or in its generalization to
signature changing boundaries. Thus, a correct reformula-
tion of Clarke and Dray’s result is

Theorem 1. Let (M™, g*) be two n-dimensional C?
oriented spacetimes with boundary, with respective C>
boundaries %= such the preliminary matching conditions
(4) hold on 2. Assume further that there exist transverse
vector fields € . on X7* satisfying the scalar product con-
ditions (5) and such that ¢ + points towards M™* and A
points outwards from M ™. Then, there exists a unique,
maximal, C? differentiable structure on M = MT U M~
(with their points on >* and 3~ identified), and a unique
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continuous metric g which coincides with g* on M ™ and
with g~ on M ™.

Remark. The hypothesis on the existence of the rigging
is necessary only in the case of boundaries which have at
least one point of degeneration, i.e. %, # @. For every-
where spacelike or everywhere timelike boundaries the
unit normal vectors with appropriate orientation fulfil all
the requirements.

2. On the existence of riggings for 2, with null points

When 2 has null points existence of the appropriate
riggings is not guaranteed, as we show next. We start
with a Lemma stating that, at points where the hypersur-
face is non-null, the solution of (5) with the proper ori-
entation is unique, if it exists.

Lemma 2. Let 2M™ be two spacetimes with boundary
satisfying the preliminary matching conditions (4). Let %~
be non-null at p~ € 3~ and set p* = ®(p~). Choose any
transverse vector field € +|,+ pointing towards M *. Then

there is at most one solution of (5) for 0| p- pointing
outwards from M~

Proof. Take two solutions €_| - and 0_| - of (5). From
the second equation it follows that its difference must be
proportional to a normal vector:

Pl =€ |, +AN|,-.
Inserting this into the first equation in (5) we obtain
0=A(AN, N~ + 2N €*)| -, (6)
Wthh admits two solutions. The solution with A # 0 glves

an €, satisfying N, o+ |,- = =N, €*],-. Thus, ¢ and ¢
cannot both have the correct orientation. ll

The next Lemma shows that, at null points, uniqueness
of €_ | p- holds irrespective of orientation.

Lemma 3. With the same notation as in Lemma 2 assume
now that 3~ is null at p~. Then the solution of the
algebraic equations (5) at p~ is unique, if it exists.

Proof. As N,N™*|,- =0, Eq. (6) simplifies to 0 =
2AN, 7 »—- Transversality of the rigging immediately
implies then that A = 0. l

This Lemma implies that the orientation of 0_is Sixed
directly by the algebraic conditions (5) at null points. This
clearly suggests that there will exist spacetimes with
boundaries satisfying all the preliminary matching condi-
tions which, however, cannot be matched continuously.

Before showing this explicitly, we must check that the
existence of an €_ does not depend on the choice of ¢ 4
Assume that a solution of the preliminary matching con-
ditions (4) exists for one choice of rigging ¢ + and take any

other rigging ¢, . To show that a solution also exists for the

second choice, we only need to decompose ¢, in the basis
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{é-, €.} and define £_ as the same linear combination of

{é; {7_} (with €_ being the solution for (?Jr which we
assume it exists and which we know it is unique). All the

rigging and orientability conditions for ¢ + are automati-
cally satisfied. Thus, existence (or nonexistence) of a suit-
able pair of riggings is reduced to existence of a solution of
(5) for 0 given any chosen rigging ¢ 4

We can now discuss examples showing that the prelimi-
nary matching conditions are not sufficient for the exis-
tence of a continuous matching. Let us begin with the
simplest possible example, so that the main obstruction
to existence becomes clear. Let us consider two identical
copies of the submanifold with boundary defined by r = x
in 2-dimensional Minkowski spacetime in Cartesian coor-
dinates {z, x}. Let us denote them by (M™", ) and (M, 7).
Their corresponding boundaries are obviously %*: {t = x},
see Figure 1. Let us now try to match them by identifying
the boundaries in the natural way, i.e. by taking ® as the
identity mapping. Without loss of generality, let the rigging
vector ¢ + be null and point towards M*. We know by (5)

that €_ also has to be null. Moreover it has to point
outwards from M~ (see Fig. 1). However, with the natural
identification we have chosen, if the tangent vector Zf“
points in one possible direction, then the tangent vector
€, to be identified with é] must also point in that same
direction, see Fig. 1. But then it is clear that the second
equality in (5) cannot be satisfied, showing that these two
spacetimes cannot be matched across their boundaries by
using the natural identification of points. One might still
think that the problem arises from the choice of identifica-

b b
7, A \&ixz \§§5
M) AN = M) AN =7
SEhnnaEaneas SIS
= NN
\\\\\\\§ S
&\\\\\\\\\§5 At S
\\ S X o~ R ————
S SN o
\s§§\\ \\\\\I\\\§\\\\§\‘
ESSSSS =

FIG. 1. Two identical copies of the manifold with boundary
defined by the region # = x of Minkowski spacetime. These are
the nonshadowed parts of the picture. The natural identification
of boundaries amounts to identifying the two a- points, and the
two b-points, and so on. The rigging vectors € are chosen to be
null and one pointing towards M ™" and the other outwards from
M, as required. The second vector é;° to complete the bases
{Ei, é;} coincides with the corresponding normal vector N*.
Both é;" must point from a to b (or vice versa) due to the chosen
identification. But then the tangent spaces cannot be properly
identified because the scalar products do not match. A second
possible choice of rigging vectors is represented by the broken-
line vectors, leading to the same problem.
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tion of boundaries. This is not the case, however, because
generically two manifolds with boundary will have at most
one diffeomorphism between their boundaries for which
the preliminary matching conditions are satisfied. Hence,
in general there is no freedom in choosing another identi-
fication (see Corollary 1 below).

This example can be generalized to arbitrary spacetimes.
First of all let us notice that a natural way of building
spacetimes with boundary is picking up an arbitrary space-
time (V, y) and choosing a hypersurface %~ which di-
vides V into two regions, which we denote by M| and
M5 . Clearly both regions have %~ as their boundary.
Assume now that we have another spacetime with bound-
ary (M7, g¥) and assume that M ™ can be matched with
M7 (say) to produce a spacetime with continuous metric
g. The following proposition ensures that M™* cannot be
matched to M, using the same identification of bounda-
ries if 3~ has at least one null point.

Proposition 1. Let (M™, g*) be a C? spacetime with
boundary %* and M|, M; be two regions of a C?
spacetime (V, ) satisfying

M7UM; ="V, MiNM; =37,

where 2, is a C? hypersurface with at least one null point.
If there exists a diffeomorphism ® between %" and 3~
such that (M™, g%) can be matched continuously to
(M7, 9l MT)’ then (MM ™, g*) cannot be matched continu-
ously to (M;, y|a;) with the same diffeomorphism ®.

Proof. Take a point p~ € 3 and define p™ = ®(p7)
as usual. By Lemma 3, for any transverse vector ¢ +| Pt
pointing towards M7 there exists exactly one transverse
vector € | ,- satisfying the rigging conditions (5).
Moreover, we know that € | ,- points outwards from
M7 because (M7, g™) can be matched continuously to
(M7, *ylml—). Thus, there exists no rigging solving (5)
pointing towards M| . Since M| and M5 can be visual-
ized inside the total spacetime V., it follows that there is no
rigging solving (5) pointing outwards from M, . B

For any hypersurface 3 of arbitrary causal character,
with first fundamental form 4, a diffeomorphism ¥: X —
3 is called an isometry if W*(h) = h. The following
corollary follows immediately from Proposition 1, taking
into account that if (M, g¥) could still be matched to
(M5, v, ) through a different diffeomorphism @', then
® ! o @' would constitute an isometry of X~ different
from the identity.

Corollary 1. With the same assumptions as in
Proposition 1, let 2~ be the first fundamental form of
3= € V. If (37,h7) admits no isometries apart from
the identity, then (M™, g%) cannot be matched to
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C. Gluing and the Z,-mirror symmetry

Proposition 1 has another interesting corollary appli-
cable to the case of joining two identical copies of the
same C? spacetime with boundary: the so-called Z,-mirror
symmetry branes. If the boundary has at least one null
point, and if the spacetime is a subregion of a larger C?
spacetime without boundary, impossibility of matching
would follow immediately. It is likely that such a C?
extension always exists. However, instead of attempting a
proof of this fact, let us show directly that, in any case, the
two copies cannot be matched continuously, as announced
in [1].

Corollary 2. It is impossible to join two identical copies
of a spacetime with boundary 3 such that X, # @ (in
particular with a signature changing boundary %), identi-
fying naturally the points on 3, to produce a bulk with
continuous metric.

Proof. Let us call (M=, g*) the two identical copies and
3* their corresponding boundaries. Let y be the natural
identification of M and M ™. Take a point p where the
boundary is null and any rigging vector €|, pointing
towards M™*. Clearly x|z, is the diffeomorphism we are

using to identify the boundaries. By Lemma 3 there is a
unique solution € [ X(p)_ of the rlgglng equations (5), and
that must be obviously 0_| vy =d X(€ |,) which is just a
copy of the original rigging. But since ¢ o » points towards

M it follows that €_| +(p) points towards M~ and the
proposed matching is impossible. H

This corollary shows that the usual Z,-mirror symmetry
extensively used in the brane scenario is incompatible with
signature changing branes, with null branes, and in general
with branes having a nonempty 2. Therefore constructing
such branes requires more sophisticated methods. For in-
stance, we can try to join two different regions of the same
spacetime or two different spacetimes. In general such
constructions are more involved than in the mirror sym-
metric case because the preliminary matching conditions
are not automatically satisfied and more equations need to
be solved. This does not mean, however, that such con-
structions are impossible. Explicit examples were in fact
given in [1]. We shall go back to these and other examples
in Secs. Vand VL

In this section we have seen that in order to construct
spacetimes with signature changing branes one must be
careful with the existence of suitable riggings at points
where the matching hypersurface is null. The results we
have presented obviously hold for usual matching condi-
tions in general relativity, but they also hold in any other
geometrical theory. When trying to join spacetimes involv-
ing matching hypersurfaces with null points (in particular
if the matching hypersurface is null everywhere), the
equality of the first fundamental forms is not sufficient to
ensure the existence of a matched spacetime with continu-
ous metric. Existence of suitable riggings must always be
checked in those cases.
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Having discussed the construction of branes by the
method of gluing and its consequences for the signature
changing case, we need to analyze the equations relating
the jump in the metric derivatives with the singular part of
the Einstein tensor on the bulk. Again, the standard Israel
conditions do not apply in the signature changing case and
need to be generalized. We discuss the results in the next
section.

III. GENERALIZED ISRAEL FORMULA

Under the assumptions of Theorem 1 we have an ori-
entable C* bulk /M with a continuous, piecewise CZ,
metric g. We choose an orientation on M and denote by
7 its canonical volume n-form. This allows us to define the
Riemann, Ricci, and Einstein tensors in a distributional
way. Since the definitions of the Riemann and Einstein
tensors contain second derivatives of the metric and this is
not, in general, C! across 3, one expects that delta-type
distributions with support on 3, will arise. Indeed, it can be
shown [38,46] that the Einstein tensor of g, viewed as a
tensor distribution on M and denoted by G, takes the
form

Zuvs

Gu=0"G,, +0°G,, +8G,, (N

where G, are the Einstein tensors of (M™, ¢*) and G,
which is defined only on X, is called the singular part of
the Einstein tensor distribution. The distributions §* and &
are defined as follows: for any test function Y (ie. a C?
function with compact support on M —note that M is
only C? so it makes no sense to assume higher differenti-
ability for Y)—

@ .= [ rn

Regarding &, we first define a one-form distribution 6 =
Vot = —V@~, see [38]. Explicitly, & acts on any test
vector field Y (C? vector field with compact support) as

8,Y)= ]2 Yrdo,,

where do'ﬂ is defined as

da',u = nua]..‘an,]e?l . an ldfl A df"_l,

where &, = & = &, and {€, é,,---&,_,} is a positively
oriented basis, that is {#do, > 0 (recall that £ = €, = €_

after identification).
It is convenient here to choose the normal

1
=——N,
" TN e

which does not depend on the choice of N, but does indeed
on the choice of rigging vector ¢ given the rigging, its
intrinsic characterization is » « N and n,€% = 1. The
importance of this normal is that the identification of the
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tangent vectors and the riggings at both sides induces the
identification n = n* = n".
Denoting by do a volume element on 2, defined by

do, =n,do < do={*do,

"
the distribution & is defined by

(5,7) = fz Ydo,

where Y is any test function. § obviously depends on the
choice of rigging via the normal form z. From the identity

o6 =nd

and the fact that & is intrinsically defined, it follows that a

rescaling ¢ = A4, so that n’ = An, induces the trans-
formation

' =A"18,= G, = AG,.. ®)

after using (7). Observe that both é and & have support on

We still need to specify the explicit form of G, in
expression (7). By construction, the metric g has continu-
ous tangential derivatives at 3. Therefore, this singular part
of the Einstein tensor distribution will be related to the
discontinuity of the transversal derivatives of the metric
across 2. In the cases where 2 is timelike (or spacelike)
everywhere, the normal vector N is transversal to >, and
therefore we can choose the rigging to be proportional to N
and unit. This implies that n is also unit and in fact €¢ =
sign(n, n)n®. Thus, the second fundamental forms inher-
ited by 3 from both sides, which can be promoted to
spacetime tensors by means of the definition

K}, = PaPiVing,
where V* are the Levi-Civita connections of g~ and
P§ = 8¢, — sign(n, n)n“n,,

is the projector orthogonal to 3, encode properly the jumps
of the transversal derivatives of the metric. It is not sur-
prising, therefore, that G,,,, can be written down in terms of
the jumps of the second fundamental forms in the non-null
case. This is the content of the so-called Israel formula [16]
which reads, taking sign(n, n)7i pointing towards M ™,

G v = —[Ku]+ Py K] )

Here and in the rest of the paper, the ““discontinuity” [f] of
any object which has well-defined limits at both sides of %
is defined as

[A(p) = lim £*(x) = lim f~(x) V¥ pEX.

In the signature changing case, and in general whenever
3 # @, the normal vector is no longer transverse to the
hypersurface everywhere. Thus, the second fundamental
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forms of 2, are no longer suitable to measure the jumps in
the transversal derivatives of the metric. This makes clear
that the Israel formula (9) must be modified in these cases.
Taking into account that € is transverse to the hypersurface,
it is natural to substitute the second fundamental forms by
the new objects (38]*

H o, =11, 108, Vitgls, (10)
where now the generalized projector I1%,, reads
e, = oy —n,€

Observe that IT,, is no longer symmetric, and that
¢#11%,, = 0, hence

H;, =0, ¢'H, =0.
We can now write down the expression of G, in terms
of jumps of these objects [38]

G,U.V = na[g-[ap,]nu + na[g{au]n,u, - nana[g{,u,v]
- n,unv[j—[aa] - g,ule(nanﬂ[g-[aﬂ]
— n"‘na[}[ﬁﬁ]). (11)

This is the generalization of Israel’s formula (9) to arbitrary
hypersurfaces. The transformation (8) under change of
rigging can be directly checked in this expression, taking
into account that [H;B] = A‘l[.’}’-[aﬁ]. Note that [38]:
(i) H;, are not symmetric, but [H ,,] is symmetric;
(ii) [H ,,]does not depend on a change of rigging ¢ =
¢+ f“é, for any functions f“ defined on 3. Neither
n does, and therefore G wv does not depend on a
change of rigging of that kind. Thence, the only
transformation of G, under a change of rigging is
through the rescaling (8) discussed above.
These are of course necessary consistency properties of the
final expression (11). It should also be remarked that, for
nonnull branes, this expression reduces to the usual Israel
formula by taking (= sign(n, n)ii as before. Note that
then n*H oy = €*H ;5 = 0 and H ;5 =sign(n, n)K,.
The generalized expression (11) satisfies

n*Gg,, =0
as one can immediately check. Thus, at points where % is
not null only the tangential components G,, =

e.“e,Pq, g are present, and they contain all the informa-

“It must be remarked that, in purity, the second fundamental
form of a hypersurface is a tensor field defined only on the
hypersurface. Thus, the rigorously defined object is in fact
K., = —g(ii, V; é,), which is symmetric. One can however
use any unit extension of n outside 2, to define K uv and then,
in fact, K, = K M,,e,‘f ey. Similarl}:, the rigorously defined object
using the rigging is H ,, = —g(¢, V; €é,), which in this case is
not necessarily symmetric. Extensions of n and ¢ outside 2
keeping n,€* =1 permit then to define H u» and, again,

n
H,, = J-fﬂ,,effez.
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tion carried by G,,,,. For a 2 with a nonempty 3.0, though,
one should bear in mind that the normal vector 7 is tangent
to % at the null phase 3, so that the geometrical interpre-
tation of this vanishing contraction is not so
straightforward.

IV. FIELD EQUATIONS: THE ENERGY-
MOMENTUM TENSOR ON THE BRANE

We are now in a position where the Einstein equations
on the bulk can be discussed. Because of the structure of
the Einstein tensor distribution of the bulk (7), the corre-
sponding energy-momentum tensor on the bulk 7 wp Will
also be a tensor distribution and will consist of three parts:
the tensor fields T, defined on each region M~, at each
side of 3, plus a singular part with support on 3 propor-
tional to &,

M, =0T}, +6 T, +87,,

Notice that, again, 7,, does not have intrinsic meaning
because 7 cannot be canonically normalized on a signature
changing brane. Only the product 67, is independent of
the normalization. For the individual term 7,, to become
meaningful, a volume element must be fixed once and for
all on . Equivalently, one must choose a given rigging,
which in turn determines a unique normal one-form.
Despite these issues, we will refer to 7, as the energy-
momentum tensor on the brane 2.

Keeping this in mind, the Einstein equations on the bulk
are given by

G+ A, =2TM (12)

where «,, is the n-dimensional gravity coupling constant
and we have set

A =0"Argh, + 07 A g

where A; are the cosmological constants corresponding to

M=, Observe that we are allowing for different values of

the cosmological constant at each side of the brane ..
The Einstein equations (12) decompose then as

Giv T Ar g = kT,

on each of M™* plus

G v = KnTpy 13)

at points on 2. Let us insist once more that this last
equation is intrinsic only when multiplied by the distribu-
tion 6. However, one can still write (13) as it stands
because both sides of the equation are affected by exactly
the same normalization freedom. Furthermore, note that
(13) together with (11) constitute the generalization of the
Israel equations to general hypersurfaces in terms of the
energy-momentum of the (hyper)surface layer.
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The geometrical property n*G,,, = 0 implies then that
n#r,, =0. (14)

As discussed above, at points where 2 is not null, in
particular, on its Lorentzian part 2, Egs. (13) are equiva-
lent to the n(n — 1)/2 projected equations

Gab = K%Tab’ (15)
which are defined on the brane, where as usual

Tab = €4"€," Ty
Nevertheless, for general branes the n(n — 1)/2 indepen-
dent relations contained in (13) are not so simply inter-
preted, and in fact the meaning of (14) on the null phase 3,
and the signature changing set S C 3, is that any fangen-
tial component of 7,, along the unique null degeneration
direction must vanish.

It is customary to decompose the total energy-
momentum tensor on the Lorentzian part X; of the brane
into two parts [14]: the brane tension which takes the form
—Ah,, of a cosmological constant term given by some
effective theory defining the brane, and the energy-
momentum tensor 77, of the particles and fields confined
to the brane. Following the same idea, sometimes we will
consider a similar decomposition all over %,

Tap = —ANhyy, + 7. (16)

It must be remarked then that, at points in the signature
changing set S, 77 does not contain the full information of
the energy-momentum tensor of fields “confined” on the
brane.

Regarding specific energy-momentum tensors on the
brane, much attention has been focused to the case where
the total energy-momentum tensor on the brane is of
“cosmological constant type,” probably for simplicity.
From relation (16) it follows that this case corresponds to
a brane with nonvanishing tension but no matter content, so
that 77% = 0. In the final part of this section we will show
that for signature changing branes the energy-momentum
tensor cannot be of this type near S. We do this in two
steps: for so-called umbilical branes, and in the general
case.

A. Umbilical branes

Recall that a hypersurface is called umbilical whenever
its second fundamental form is proportional to the first
fundamental form: K,;, « h,,. In the constant signature
case, the most simple way of obtaining 7,, = ah,, for
some scalar field « consists on gluing two umbilical hyper-
surfaces %*. This follows immediately from the standard
Israel formula (9). As a matter of fact, this procedure is
exclusive of constant signature branes, because signature
changing branes cannot be umbilical, as we show next.
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To that end, let us decompose the normal vector 7 in the
basis {f, é,}. Since the contraction of 77 — (n, n)¢ with n
vanishes, it follows that this vector must be a linear combi-
nation of the tangent vectors ¢,. Denoting the coefficients
by n we have

ii = (n, n)t + n“é,. (17)

Recall also that the second fundamental form defined as
an object in X reads K,, = e,*e,"K,, = e,e,"V n,.
Then, we have the following important result, which was
advanced in [1].

Proposition 2. A C? umbilical hypersurface of a C?
spacetime must have constant signature.

Proof. Let 3 be a C* hypersurface and n a C?> normal
one-form. Multiplying 7 in (17) by é, and using h,, =
e, e,” g uyls, it follows

nhy, = —(n, n)lge,P.
Defining [38]
o= —t"e,*Vyn,,
it is straightforward to obtain (9, = ¢,#d, = d/0EY
dy(n,n) = —2(n,n)p, + 2K ,nt. (18)
Let us assume now that 2, is umbilical, i.e.
Kup = Fhyp,

for some function F on 3. F is at least C!, because the
second fundamental form is C! and £ is C?. Equation (18)
becomes

du(n.n) = =2p, + Flge,f)m,n),  (19)

which can be viewed as a differential equation for (n, n).
Uniqueness of the solution follows because the first factor
on the right-hand side is at least C' (notice that ¢, is C'
from its definition). Thus, if (n, n) vanishes somewhere,
then it mush vanish everywhere on 2. This proves the
claim. &

Observe that the door for umbilical hypersurfaces which
are null everywhere is still open. In this case both the
second and first fundamental forms are degenerate and
share the null degeneration direction. Thus, one can also
try to glue two spacetimes across umbilical null branes.

B. The brane tension

Let us finally address the question of whether there can
be general branes with only brane tension. Proposition 2 is
a preliminary no-go result along that direction.
Nevertheless, in principle one could still try to obtain
T. = ah,, by gluing two nonumbilical hypersurfaces.
The following result, already announced in [1], proves
that such a brane cannot undergo a change of signature
unless « vanishes somewhere on 3.
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Theorem 2. Let 3 be a brane constructed under the
assumptions of Theorem 1. If G,;, = Bh,,, for a function
B which is nonzero everywhere on X, then 2 cannot
change its causal character.

Proof. Projecting (11) onto 3 with e,*e,” and using

Gah = Bhah’ we get
Bhay = —(n, n)[H 1] = hop(n*nP[H 6]
— (n, n)[H=,)). (20)

Expression (17) and €“5—[§B = 0 implies n®nP[H ,5] =
nn?’[H ,,]. Using also n°n®h,, = (n, n)((n, n)€*€, —
1) which follows by squaring (n, n)¢* in (17), the contrac-
tion of (20) with n?n” gives

(n, n){(B — (n, )[H *,)((n, n),, €+ — 1)
+n*nP[H ,p1(n, n)€ £+ = 0. 2

Thus, the expression between braces must vanish on 3, U
3. ; which readily implies

limB = 0.

p—S
Since S is at least C', hence continuous, we have 8|y = 0
and the result follows. H

Evaluating (20) on S and using that 8 vanishes there, we
obtain

nanﬁ[g{aﬁ]lS = nanh[g{ab]lS = 0.

In addition to this result, let us note that the identity (see
[38] for a proof)

[Kap] = (n,m)[H ]

clearly implies that [K,;,]|s, = 0 on the null phase 2; so,
if we demand [K,,] = Fh,;, on 2, then F must vanish at
the null phase 3 too.

An important corollary follows from Theorem 2.

Corollary 3. For any choice of normalization, the con-
dition 7,, = — Ah,,, for a constant brane tension A # 0 is
incompatible with a change of signature on 3.

A physical interpretation of this result is that a change of
signature on the brane requires that some matter fields
become excited, or equivalently that a signature change
cannot occur just spontaneously. Let us remark that the
possibility of having 7,, = ah,, for some function o has
not been ruled out, but this function must necessarily
vanish at the signature changing set S.

V. GENERAL BRANES IN STATIC AND
SPHERICALLY, PLANE, OR HYPERBOLICALLY
SYMMETRIC BULKS

Our aim now is to provide examples of sufficient gen-
erality for the construction described in the previous sec-
tions. More particular examples on anti-de Sitter bulks will
be then considered in the next section. We will put particu-
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lar emphasis on the possibility of signature changing or
null branes, but we will also compare these cases with the
standard timelike branes.

In this section, we treat the case of general
n-dimensional static spacetimes (N, g*) (with n > 2)
admitting an isometry group G, of dimension k = (n —
1)(n — 2)/2 acting on the hypersurfaces orthogonal to the
static Killing vector and containing an isotropy group I
with s = (n — 2)(n — 3)/2 parameters. We will restrict to
branes preserving the G, symmetries, which leads to a
symmetry-preserving matching of spacetimes, see [50].

In appropriate adapted coordinates, the most general
such spacetimes have line elements

ds®" = —AX(r)d® + BX(r)dr* + C*(r)dQ}

YH*Z)
P
ds* = —A*(P)dP + B*(PdP + C*(PdQ3, .,
é
where dQ%(,,_2 is the “unit” metric on the (n —
&

2)-dimensional Riemannian space Y” 2 of constant curva-

ture, written in standard coordinates denoted by ¢ (and

analogously for dQ%(,,_z). The functions A, B, and C depend
é

only on r and are taken to be positive without loss of
generality. The range of the coordinates ¢ and r may vary
from case to case, and thus it is left free in principle. The
same comments apply to A, B, C‘, f, and 7.

Let us consider the Gy-symmetric hypersurfaces 3* in
N=. They can be defined via C3 embedding maps ®..:
3, — N'*. Taking local coordinates {£, ¢"} on the ab-
stract matching hypersurface 2 (M, N,...=2...n— 1),
where {¢@™} are standard coordinates on Y” 2, the embed-
dings @ can be written in local form as

D, (& oY) ={t =1(é), r = r(&), " = M} (X7),
(& ") ={T=1(&), F = Hé), ¥ = ¢} (37).

The images under the differential maps d® .. of the tangent
space basis {0 &0 ¢M} on X are of course bases of the
tangent spaces on X=. They read explicitly
E;f = f{d, + I"'(:),|2+, E;M = 6¢M|E+,

E; = 'fa; + .fa;lz—, E;M = anglEf,
where the dot means differentiation with respect to £.
Defining the functions

Nt = —A’ + B*i|y+,

N- = AP + BRs-,

(22a)
(22b)

a simple calculation shows that the two first fundamental
forms inherited by 3 from JN'= coincide if and only if
+ — N = A=
NT =N~ =N, C=C=al(f), (23)

so that the induced metric on the brane takes the form
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ds’ly = N(§)d&> + a*(§)d Q] (24)

Y2
Thus, the brane ¥ will have in general a Lorentzian
phase 2, where N < 0, a Euclidean phase X defined by
N >0, and a null phase 3, where N = 0. The Lorentzian
part %; describes a Robertson-Walker (RW) spacetime
with ¢ related to the standard cosmic time T(¢) by

T=+-N on3,. (25)

The whole brane is foliated by homogeneous and isotropic
(maximally symmetric) spacelike hypersurfaces. Changes
of signature occur at given “instants of time”’ correspond-
ing to the values &,, of ¢ where N vanishes but is not
identically zero in any neighborhood of £,,. The set of all
such &, define the signature changing set S of 2.

From the point of view of the Lorentzian part of the
brane the Lorentzian geometry becomes singular at S. We
shall describe later the type of singularity that any observ-
ers living on 3; will see there. We must emphasize, how-
ever, that this singularity exists only from the inner point of
view of the Lorentzian part 2,;, and concerns only the
brane’s ‘“‘Lorentzianity.” Neither the bulk nor the hyper-
surface 2 defining the brane have any singularity any-
where for regular functions N(£) and a(¢).

In order to complete the matching and have a well-
defined bulk and brane, we need to choose a rigging and
solve the algebraic equations (5). For convenience we
choose normal one-forms of %* with the same norm at
points d.(p), p € 3. One possibility (not unique, of
course) is

Nt = AB(—rdt + idr)|2+,
N~ = AB(—#di + id7)|s-.
Note that (N*, N*) = (N~, N~) = —N provided that the
preliminary matching conditions (23) hold. A suitable
rigging on % is
0. = e(—A29, + B %d,)|s,

where €; selects the subregion of the spacetime we are
choosing; see subsection V B below. Note that N} € # 0

everywhere on X%, as required. To find the rigging €_
satisfying (5), observe that € is orthogonal to the tangent

vectors of Y"~2, which implies that {7 _ must be a linear
combination of d; and d;. Thus, we can write without loss
of generality

{_ = e L(—a?A7%F9; + B%70;)|s-,

where L # 0 and o are coefficients fulfilling the equa-
tions

3 _ _
e1gutliel” = e gu,tte;”:

(26)
2ii = L(a? + DiF
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v D v.
g;v€¢€+ =g,u,V€'l—L€—
2

P22 0 ot
‘ﬁ*ﬁ‘L&gz ﬁ)

The second equation involves L quadratically. In order to
obtain a linear equation in L which will be useful below, let
us consider the linear combination of (27) times N minus
the square of (26). The resulting expression is a perfect
square. Taking its square root, which introduces an extra
sign €, we get

27)

61(N+€+)|z+—661(N €¥)|s-:

A, B A~2 B2
— 1+ — r—eL + a?2=7%).
B A B A

(28)

Because of the positivity of the rest of the factors, this
equation readily implies that € = sign(L). The fact that the
above combinations can be written in the covariant form
(28) is not by chance. It simply accounts for the a poste-
riori identification (after the matching is completed) of n™*
with n~ (see Sec. III): this trivially implies (n*, n*) =
(n~, n™), which thanks to choosing N* and N~ with the
same norm yields (N}€%)?> = (N, €%)>. Thus, (28) fol-
lows for a certain sign €. Moreover, as a result, the iden-
tification of n* with n~ clearly leads now to the
identification of N* with eN~. In fact, it turns out that
the first equation in (5) can be substituted by this relation
(28)—whenever the normal one-forms N~ have the same
norm—provided that the set X, has empty interior.

A. The energy-momentum tensor on the brane

In order to calculate the singular part of the Einstein
tensor distribution, and thereby the energy-momentum
tensor on the brane, we need to know [H ,,]. After a
straightforward calculation using the definition (10) we
obtain

. . L AL . A B
el[H el = —ii—iF+L(a?*FT+7F) — i2t<27’ + #)

- t*AA +L[ <2a2A—f+—f>
B2 A B
L AA -
+ P20 29
- } . (29)
cc, .CC;
[H ynldeMdeN = €1< B Lt 7 > inn 2
= [j{]dQYﬂ 2y (30)
[5'[§M] =0
where, for later convenience, we have defined
[H]= - H-
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with

CC

+_

.CC;
) H-=eLi—~| . (3
s B~ |s

Next, we must use expression (11) to obtain the tensor
G .- Obviously, the explicit form of this tensor depends on
the coordinate system used to describe the spacetime.
Since the matching procedure allows for different coordi-
nate systems on each side of the matching hypersurface we
need to choose one of them. For definiteness we choose the
coordinate system on N . Using the explicit expressions
(29)-(31) for [H ,] together with the fact that

¢#[H ,,]1= 0, and after some calculations, the final result
can be conveniently written as
, (n=2[H] . .
gw,dx“dx = - W(A2tdt - Bzrdr)z
- )2 dQ3,ols+
(€¢Ng) ¢

(32)

As expected, G, is directly related to the quantities
[H ¢¢] and [H]. However, expressions (29) and (30) for
these two quantities are not quite satisfactory yet because
they involve L and « which are the solutions of the
algebraic equations (26) and (28). Solving directly for L
and « and substituting into (29) and (30) is not convenient
since the preliminary matching conditions must also be
taken into account. We leave the details of this somewhat
tricky calculation to the appendix and quote here the final
results. It turns out that, at points where N # 0, [H ] can
be written in the symmetric form

a(t¢Ny)

()= S

A~ - .

< €S C.i— ——C,O‘ (33)
B ' s

while [ H ¢¢] reads

1 . A.. .. B
L g gii=eil e B B
(e e E[B "X

(34)

Because of the presence of N in the denominator it may
seem at first sight that the expressions (33) and (34) diverge
when we approach the null phase 3. This is however not
the case because [H uv] 18 by construction well defined
everywhere on 3. This also follows directly from expres-
sions (29) and (30), which are regular on 3.

For completeness, let us include here an expression for
[JH] at points on 2. Equations (22) become

2 K2

A .
2 =2
Ply, =Pl Pls, =50l

044029-13



MARS, SENOVILLA, AND VERA

This implies that neither 7, {, 7, nor 7 can vanish on 20
(otherwise ®@. would not be embeddings). Then, Eq. (27)
implies that

012|§0 =1,

which inserted in (26) gives

(35)

Using all this in (30) and recalling @ = C ,ily = C,7?|2,
we finally obtain

212
. . . €1 B
[H]IEO = sign(F t)aaA—B<1 - —?2§2>

2y

Once we have computed the singular part G, of the
Einstein tensor, given by (32), the energy-momentum ten-
sor on the brane follows directly from (13). A convenient
way of describing this object is via its eigenvalues. Since
G 1" = 0 holds identically, the rank of the tensor G,,,,
and hence of 7, is at most n — 1 and 0 is always one of its
eigenvalues. In order to evaluate the remaining eigenvalues
of 7,,,—which correspond to the eigenvalues of 7, wher-
ever 2, is not null—Ilet us rewrite (32) as

7,,dx"dxt = —N~19(A2idr — B2idr)? + patd a3, .,

(36)
where we have defined

(n — 2)N[H ]
a?(LENG)? s
n=2) (A . A_ .
a5 55|
a*(tINg)?
_[He] n-3
@aNI?  n—2"@

2A —
K,0 =

>
|

Since the one-form —A?#dt + B*idr appearing in (36) is
precisely the tangent vector é; with index down and that its
norm is simply N, it follows easily that the remaining
eigenvalues of 7, are precisely —p and p.

The explicit expression for p can be read off directly
from the previous formula and the use of (34). However, it
is simpler and more convenient to note the following
identity which follows after a straightforward, if somewhat
long, calculation

PHYSICAL REVIEW D 76, 044029 (2007)
5+ <(€$N;)' _ N

N a, . R
m ﬁ) +(n_2)E(Q+P)

(n—2) [A%F/C, A%F/C,
+ e () — e (%
K%((fﬁ‘-NI){ a <AB>,r a (AB>,7} s

=0. (37)

This identity clearly resembles a continuity equation. We
shall see that this is exactly the case, with explicit appli-
cations for anti-de Sitter bulks.

B. The meaning of the signs

Since our convention is that the rigging ¢ + of 3% points
towards the submanifold M* C Nt and that ¢_ points
outward from the submanifold M~ C N~ it follows that
choosing the signs € and €; amounts to selecting which
subsets M* C IN'* are taken to perform the matching.

Hitherto everything is valid for general branes. However,
if 3 is non-null everywhere, the algebraic equations (26)
and (27) admit two different solutions for L for each choice

of (? +, and these two solutions have a different sign e,
according to (28). On the other hand, if there is a point p
where >, becomes null, from Lemma 3 there is at most one
solution for €. Let us determine its value. We already know
that € = sign(L), but L|y, has been already computed on
(35), and consequently

€ = sign(L) = sign(fi??)lgo (2o # 92). (38)
Therefore, if 3, is not empty then € is unique and explicitly
determined by the two embeddings. Since in the purely
Lorentzian (or Euclidean) case € is free, we shall also keep
€ free in order to compare our general results with previous
works on Lorentzian branes.

With regard to the remaining sign €;, this has not been
fixed so far. Observe that €; = sign(€4N_), as follows
from (28) and the fact that A, B, C have been chosen to
be positive. The interpretation of this sign is, therefore, as
follows. In the construction above, we use two spacetimes,
each of which contains a hypersurface that separates each
spacetime into two regions. So we have four regions to play
with. Fixing one of the regions in one spacetime, this may
be matchable to none, one, or both of the regions in the
second spacetime—if 3 has a nonempty null phase, there
is at most one possibility as follows from Proposition 1.
But, can the left-out region of the first spacetime be
matched to any of the regions in the second? The answer
is yes if the originally chosen region in the first spacetime
was matchable to one of the regions in the second; and
actually the region that now matches with it is precisely the
complementary part of the one that matched with the first
region of the first spacetime. In short, given two matchable
spacetimes there always are two complementary match-
ings, as discussed in detail in [51]. This provides an inter-
pretation for €, : it selects which region at both sides of 2, in

044029-14



LORENTZIAN AND SIGNATURE CHANGING BRANES

AdS

3
‘e

eubug
o e
o
anbuy
o e
™

.
o*

PHYSICAL REVIEW D 76, 044029 (2007)

Ads

—t

3

FIG. 2. Four different possible matchings between AdS and AdS in the case k = 1 driven by the signs € and €, (fixed o Ed ). The
anti-de Sitter diagrams for k = 1 are drawn at the top. The slashed curves represent %" and 2, that divide AdS and AdS into two
parts, respectively. The pairs of choices of regions (halves) to be joined depend on the relative signs of the rigging vectors, &, and on
the orientation of €, which is determined by €;. For ¢ = 1 we obtain one of two possibilities on the bottom left, which differ on the sign

of €;, and for ¢ = —1, the two on the bottom right.

the first spacetime is taken to perform the matching. A
scheme of the four possible different cases discussed in this
paragraph for the particular case of AdS bulks is shown in
Fig. 2 (see Sec. VI for the notation).

VI. SIGNATURE CHANGING BRANES IN AdS,
BULKS

Let us now specialize to the case where N'" and N~
are anti-de Sitter spaces of dimension n, usually denoted
by AdS,,. For that, we choose the metric functions to be

A2 =B7?=k+ \*F? C=r, (39)

A2=B7=k+ NP  C=F (40)
where A and A are non-negative constants related to the
cosmological constant by means of 2A,, = —(n — 1)(n —
2)A2, and analogously for the tilded ones. Here k = —1, 0,
1 corresponding to three possible coordinate systems to
describe the AdS, spacetime. k coincides with the sec-
tional curvature of dQYZ)_Z'

The case of a flat bulk is included here for the values
A=0and k= 1. When k = 0, 1, the ranges of the non-
angular coordinates are —o0 <t << ocoand r > 0.Inthe k =
—1 case, though, the range of r is further restricted to r >
1/A.

Because of Corollary 2 we cannot construct the bulk by
gluing together two copies of a submanifold with boundary
of AdS, if the boundary has a nonempty null phase.
However, there is no a priori obstruction to consider two
different submanifolds with boundary of AdS, or, more
generally, to try and paste a region of AdS,, with another

region of a possibly different anti-de Sitter space, AdS,,
with another cosmological constant. For simplicity, and as
in the previous section, we will only consider branes 3
with spherical, plane, or hyperboloidal symmetry.

Particularizing the equations of the previous section to
the explicit functions (39) and (40), we get

a(§) = r(§) = #(¢&) (41)

while (22) and (23) yield ordinary differential equations for
t(€) and #(£) in terms of N(&)

LY N L
k+ A2a*\ a? <a2 >

Fa a2 ko<
k + A2a? \/a2 N<az A )

where o and & are two signs. For compactness, it is
convenient to define

(42a)

(42b)

~Q
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€ = €04, (43)

which will in fact substitute &
With these expressions we can write down the explicit
form for 0 and p in the present case:

-3 NN+ Na_i
KﬂwN;(ﬁ+”_2e)=8037——Q&LfL
" 4 — N+ A?)

where
aZ
€+N; = €1<2m - N)
Regarding the identity (37), it simplifies to
d (4N,
— (log| tNa
dé VINI

At points where N # 0 (i.e. outside the null phase ) we
can define

o+ )é+m—mg@+m=w.M®

[€4N ] NS
L, p=p—=, (45)
[N [N|

e=20
so that the conservation law is obtained from (44) in its
standard form

Q+m—ﬁ%e+m=a (46)

This choice of normalization may seem artificial, but it
corresponds precisely to the choice of the unit normal
vector as the rigging vector on ;. Therefore, ¢ and p
are functions that correspond to the emnergy density and
pressure measured within the Lorentzian part %, of the
brane 2. These nonhatted functions are then relevant
physical quantities one has to analyze.

To start with, recall that 0 and p are regular everywhere
on 2. Thus, from (45) one could be misled to think that the
energy density @ and pressure p blow up when approach-

ing a change of signature SN 3. Nevertheless, we are
going to prove in what follows that, actually, @ vanishes at
the signature change, and that p can also be regular in
many cases; see subsection VIB.

To show this and to compare with previous works on
purely Lorentzian branes in AdS (see e.g. [11]), let us
perform the change (25) from the timelike coordinate &
to the cosmic time 7', which is suitable at points where N <
0, so that the line element (24) reads on X,

PHYSICAL REVIEW D 76, 044029 (2007)
2 - 2 2 2
ds’ls, = —dT* + a2dQ3, .

Using the notation ' = d/dT we have

. . N
d=—f=  d'=-Stags @)
which we use to obtain
a/
e'+(n=2—(e+p)=0 (48)
K% a/2 k . a/2 k 5

(49)

Defining the Hubble function H = a’/a as usual, Eq. (48)
yields

e .k , k <\ 1/2
= - = + =+
P ) R)

k ~12
x<H2+—3+nV> —1}. (50)
a

Passing any of the square roots of (49) to the left and
squaring we obtain the following respective two expres-
sions

a? k., o (n—2)
Q ?+?+A =0’€187
N0 L 51)
n-277)
a” (n—2)
Ot AT a5
w(—ph K1 (52)
n-22%)

Now, squaring any of these two expressions, and provided
o # 0, we obtain the following condition

” k (n — 2)2 B KA
+ = B+ ——
a2 a* 4k [( (n—2)

IS}

2 ~
92> _ 4/\2)l2i|’

(53)

z

which is usually referred to as ‘“‘the modified Friedmann
equation” for braneworld cosmologies.

Let us discuss these relations (48)—(53) in detail.

(i) An important remark is that (48)—(53) hold only on
2.

(i) Equation (48) is the usual continuity equation in
(n — 1)-dimensional RW spacetimes. The traditional
4-dimensional case is recovered by assuming n = 5,
that is, a 5-dimensional bulk.

(iii)) Equation (50) can be regarded as a Raychaudhuri-
like equation on the brane.
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(iv) Concerning (49), let us first of all stress the fact that
the modified Friedmann equation (53), which is the
equation usually found in the literature as a conse-
quence of using the formalism in [9], is just one of its
consequences. In other words, (53) is only a neces-
sary quadratic condition, and its solutions still have
to satisfy (49). Thus, the truly relevant equation,
containing all the information, is (49).

To see this in more detail, and its consequences, let
us focus on (51) and (52). By multiplying these two
equations we obtain

2
K

0= - d
8<<n—2

from where

e>4 - (- A2)2>,

K2 T2 2 .
K ol = IR = A2 ife=1, (54)
n—2

K2 T2 2 .
2 ol =4/IAF =A% ife=—1. (55)
n—2

Actually, these limits can be strengthened when k =
0, 1, for which the inequalities are strict. In fact, for
k=0and e =1 we obtain%ml = A — Al

The important expression (49) appears in full form in
[8,15], and partially in [10,11] for the so-called ‘“‘shell
cosmologies.”

In expression (49) (for n = 5), both the usual ‘“‘brane,”
i.e. using Z,-mirror symmetry in AdSs, and the “‘shell”
cosmologies are naturally recovered. The Z,-mirror branes
require A = A and, as we already know, are incompatible
with signature changes or null phases. The shell cosmolo-
gies, also referred to as “asymmetric’’ brane cosmologies
in [13], require on the contrary that A # A, and they are
compatible, in principle, with the existence of null phases
3, and signature changing sets S.

Next, we discuss all these different possibilities.

A. Constant signature branes or shells in AdS;

These cases are characterized by having only one of the
possible phases, and thus § = @. The relevant physical
case is the Lorentzian one, that is, when X, = X, . Then,
relations (48)—(53) hold on the entire 2. The other two
cases 2 = X and X = X can also be treated in the
formalism, but they have no direct physical interpretation
apart from possible topological defects.

1. Z,-mirror Lorentzian branes

For Lorentzian branes 3 = ; with Z,-mirror symme-
try one only has to take

A=A

and € = —1. The latter is necessary because for a Z,
matching, t =7 and r =7 and (42) implies o = &.
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Moreover, € = —1 because N™ must be identified to
— N7, c.f. the discussion after (28). Thus € = —1 follows
from (43). Notice that € = 1 corresponds to a matching
that recovers the original AdSs spacetime (in particular
© = 0 in that case, as follows from (49)). In order to have a
positive @, we have to choose the matching such that

o€, = —1. The geometrical view of different possible
matchings depending on the values of €| and € are shown
in Fig. 2.

For these Z,-symmetric branes in AdS bulks, the big
bang singularity on the brane is characterized by the di-
vergence of ¢ and p. In the cases k = 0, 1, since the brane
is assumed to be regular (r > 0) and Lorentzian (N < 0)
everywhere, the only possibility is that the big bang co-
incides with the vanishing of a. This big bang is therefore
located at r — O in the AdS bulk. In fact, the brane cannot
be regular there, because it is forced to be Lorentzian. As
for the cases with k = —1, the range for r is restricted to
r > 1/\ and therefore the description of 3, in those coor-
dinates obviously fails at a < 1/A.

2. Shells, or asymmetric Lorentzian branes

The asymmetric case is characterized by
A# A

Observe that then, both possible signs € = *1 are feasible.
This has been correctly stated in [8,15] but, for unclear
reasons, only the case € = 1 was considered in [10,11]. By
setting € = 1 in our formulae and using the freedom in
interchanging A and A one can set oe; = 1 without loss of
generality. This implies A > A for a positive @. Notice that
there is an upper bound for the energy density @ given by
(54). As far as we know, this upper limit had not been
noticed before.

On the other hand, the case € = —1 requires from (49)
that oe; = —1if o is to be positive. Acceptable matchings
are hence possible, and both signs of A2 — A2 are allowed.
In this case, there is a lower bound for the energy density
given by (55).

B. Signature changing branes in AdS;

It follows from Lemma 3 that only one of the values of €
allows for a nonempty signature changing set S. This was
identified in (38) as € = sign(i 7 { ?)IEO. Using (41) and
(42) we get € = o, so that in this subsection we must set

e=1.

This implies, on using (49), that we must necessarily
require

A# A

so that signature changing branes must be of “asymmet-
ric” type. This, of course, is nothing but a direct conse-
quence of the general Corollary 2. Furthermore, the
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possible matchings for a positive @ are identified by the
necessary condition

o€, = sign(A? — A?),

as follows from the discussion after (55). Again, Q is upper
bounded by (54).

Nevertheless, things can behave quite differently now in
comparison with the typical, purely Lorentzian, ‘“‘asym-
metric”’ case studied above. For instance, new types of
“big bangs” —in the sense of the beginning of time—-can
appear at points where a is not zero, @ and d are well
behaved, but where a’ and/or a” diverge. Actually, that
happens precisely at the signature changing set S due to the
vanishing of N there. This type of behavior simply cannot
be found in pure Lorentzian brane cosmologies, be them
Z,-symmetric or asymmetric.

Moreover, in the signature changing case one can further
prove that (49), or its consequence the modified Friedmann
relation (53), allows us to avoid the presence of truly
singular big bangs even from the point of view of the
observers in the brane. To show this, we first note that

als # 0

as otherwise, since N = 0 on S, from (42) we would have
that i|g = 7]y = 0, which we know is impossible on S,
cf. Sec. VB. Thus, from the definition of a’ we have the
following

Lemma 4. On a signature changing brane with 3, # @,
a' diverges necessarily when approaching the signature

changing set SN Z Hence, H also diverges there.

Now, since H is unbounded when approaching S N3,
(49) easily implies that @ vanishes there:

. . 30'61 XZ_)\Z
lim o= lim —5 ———=

0. (56)
x—SN3, x—8N3, 2K§ |H|

Collecting the results we have thus proven the following:
Theorem 3. In a signature changing brane produced by

joining AdS5 and AdSs preserving the spatial symmetries,
the total energy density @ on the Lorentzian part %,; of the
brane is bounded above by (54) and vanishes at the set of
signature changing points SN 3.

As a remark, observe that linear equation of states of
type p = y@ with constant y are not allowed in this
signature changing case, for this would imply from (48)
that 0a>1*Y) = const, which is not compatible with the
vanishing of o at SN3; (where a must be finite.)
Nevertheless, general linear equations of state of type p =
po + Yo are possible, as (48) gives now (py + (1 +
y)@)a*'*7) = const, which has no problems at SN, .
Observe, however, that this particular equation of state
implies clearly that p must be finite at SN 3.

Thus, to study the behavior of p close to the change of
signature we use (50) for € = 1, together with (56), to

PHYSICAL REVIEW D 76, 044029 (2007)

obtain the following limit

Hl
lim p= lim_Q<—2 - 1)
x—SN3, x—SN3, 3H
30€, A2 — /\2< H' )

= i — -1
1m 3H2

x—»SﬁE—L 2K§ |H|

2
= lim ZL(R2 - V=N
S alal

XﬁSnEL KS
i N 4a
X[=———-—).
<c’z 2N a )

Thus, the actual value of this limit will depend on the
particular choice of the function N(£): for regular branes,
p diverges at SN, if N|g # 0, while p may remain
regular if N|g = 0. Observe that changing the function
N(£) does not necessarily mean a change of cosmological
model.

Therefore, by choosing appropriately the hypersurface
3, in AdSs, signature changing branes such that both @ and

p remain finite and well behaved everywhere on 2., are
feasible. Recall that ¢ always vanishes at the change of
signature.

We would like to stress that this conclusion and theo-
rem 3 are very satisfactory results: the Hubble parameter
H—an observable quantity—diverges when approaching
the change of signature, yet the whole geometrical struc-
ture remains unhurt and the relevant physical quantities,
such as @ and p, are regular there.

Fully explicit examples of signature changing branes,
with particular known functions a(£) and N(£), were pre-
sented in [1]. We refer to this letter for some discussion and
extra comments of physical interest.

The Lorentzian phase 3| considered as a classical
spacetime in general relativity

An observer living on the Lorentzian part 2; of the
brane might interpret, in principle, that a change of signa-
ture would correspond to a singularity in a RW spacetime.
If this “singularity” is in the past, it could represent a big
bang from the inner point of view of %;. We would like to
discuss this now in detail.

To begin with, it may seem contrary to our physical

intuition that @ — 0 at the signature changing set SN X,
which plays the role of such a ““singularity’” from the inner
point of view of the Lorentzian phase 2.;. The meaning of
this is that the total energy density © (the matter and
radiation energy density plus the brane tension) ‘“‘starts”
at SN X,, which is the origin of time in %;, with a
vanishing value which increases from then on but is always
bounded by (54). We must remark, however, that the usual
4-dimensional Einstein equations do not apply anywhere
on 2, and that @ and p are (normalized) quantities asso-
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ciated to the singular part 7,,, with support on 2, of the

wys
energy-momentum distribution 7™ v
But what would an uninformed scientist, confined to live
within 3, interpret about these facts? If this scientist
believes that general relativity (GR) is the correct theory
describing the universe (i.e., 2; for him/her), he/she would
rather try to compute the eigenvalues of the Einstein tensor
within the brane, that is to say, the Einstein tensor of the
first fundamental form &, of X;. The eigenvalues of this
tensor are, of course,
87GE R + Ay = i(a’Z + k) = i(— i k> (57)
g a’\ N '

a1
SWGP(GR) - A4 = _2; - ?(0/2 + k)

_lfpd Nay, 1@
N\ a Na a’\N
which obviously diverge at the ““singularity’” placed on the

signature changing set S N 3. Here, A, is the GR cosmo-
logical constant as computed by that scientist.

More importantly, let us stress the fact that there is a
relation between these GR quantities and the actual energy
density and pressure on the brane according to the real 5-
dimensional field equations. For instance, from (49) we
derive

2 877G A ~
K5 » — 277 HGR) 4 114 22
—3 (% 0'61{\/ 3 % 3

387G A
- (GR) 4 224 4 )2
\/ 3 ° 3

while (51) and (52) give the inverse relations

27 22+ K_ggz :
4;(‘5‘92 9

8GR + Ay +3X% =

and the one obtained by interchanging A < A.

These formulas patently show that the GR “‘singularity”
where p(©®) — oo, which corresponds to the signature
change, is simply a manifestation of the fact that the proper
energy density on the Lorentzian phase of the brane ac-
tually vanishes there.

C. Recovering the Friedmann equation at different
limits: Effective 4-dimensional fundamental constants

A well-known fact in the Z,-symmetric brane cosmolo-
gies, as well as in the asymmetric ‘““‘shell”” cosmologies, is
that the usual Friedmann equation (57) of general telativity
can be recovered from the equation on the brane (49) at the
limit when the matter density is small compared to A, once
a nonvanishing tension A has been introduced in an appro-
priate manner. This limit is, in fact, the one used to recover
the full 4-dimensional Einstein equations in GR, see [9,14],
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and to relate A5 and A with effective 4-dimensional gravi-
tational and cosmological constants (see (65) below).

Nevertheless, that limit relies on the existence of a non-
vanishing tension. In the present case there is another limit,
both natural and convenient, for which no tension is
needed. Such a limit corresponds to large values of a while
keeping a finite a/, so that H> + k/a? is small. Another
characterization of this limit is that 87GoO®) + A, is
small. One appropriate dimensionless quantity to perform
rigorously this limit is

H? + k/a*> _ 87wGe® + A,
A2 As ’

where = stands for equality except for a constant of order
one. A or /~\5 could also be used to define the dimensionless
parameter.

Also worth mentioning is the fact that in many papers
(see [9,13,14]) the limits of the modified Friedmann equa-
tion have been taken starting from the quadratic equa-
tion (53), instead of the original (49) which contains
more information, thus missing the meaning of the signs
€ and €;0. An exception is [11] where the authors consid-
ered Eq. (49), but as mentioned before not all the possible
signs were taken into account. Therefore, for the sake of
completeness, let us derive the limits keeping those signs
free.

1. Large values of a with small values of H

Let us start by considering the limit for large values of a
while keeping H small. Equation (49) for n = 5 can be
approximated to

2 17)
K - la“+kre 1 4
20=gA—A+-———(=—=|+ 0 .

0'6139 € 5 (/\ /\) (a™)
Since eA — A # 0 in order to have a brane or shell at all,
this expression can be rearranged as

2 k
3<a— + —) = o€ K}

=+ = 0 +68AX + O(a™™).
a a

e — A
(58)

Let us consider now the tension of the brane as a contrib-
uting part of 7,, so that (16) holds. Then, ¢ and p
decompose as ¢ = 0,, + A and p = p,, — A, where 9,,
and p,, correspond to 77, . Using this together with (57) in
(58), we derive

2AA -
87TGQ(GR) + A4 = O'ElKg'm(Qm + A) + 6gAA

+ 0(a™).

There are many ways to interpret this relation. In principle,
it simply determines the value of 0°® in terms of p,,, A
and the constants G, ks, A, )I, and A,. It seems natural,
however, to identify the constant terms at both sides of this
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relation, and therefore the remaining terms too. Identifying
e =0, (59)

we obtain the following relations between the fundamental
constants

24\
87G = 2 =, 60
T O €K A— ] (60)
240 -
A, = o€ k2 - A + 6 (61)
gA— A

As far as we are aware, these relations were previously
unknown.

Relations (60) and (61) can be particularized to the case
of Z,-symmetric Lorentzian branes, for which A = A and
e = —1, so that

87G = —0€ K3, Ay = —oe kKEIAN — 6A%

In view that we need oe; = —1 for a positive gravitational
constant these equations can be rearranged as

P A
87G = S[A — 2
T 6( 87TG>

These expressions differ from the ones usually obtained in
the literature, involving a different limit—given by (65)
below—, and seem to be new.

2. Small values of 0,,/A

As for the usual limit @,/ A — 0 with a nonvanishing A
it is convenient to start from the quadratic equation (53).
Using 0 = @,, + A and defining 8 = 31/(A«2) and 8 =
3A/ (Ak2), it can be expressed as
4
S =N -2+ ) + (B - Y]
a2 612 36

SN (B - 12+ Olen/AY]
18 A " i
Comparing with (57) we get
4
BTGEON + Ay = DAY1 ~ 2B + B) + (B ~ B)]
K_§ 2 _ (32 — p2y218m
FERNL - (B - BRI
+ 0[(n/A)]

which, as before, provides an expression for Q(GR) and can
be resolved in many different ways. Using again the natural
identification (59), a different set of relations for the effec-
tive fundamental constants is obtained:

81
KEAY

87G = é;@/\[l - (X2 - mz} (63)
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18 81
KEA KEA

Ay = iKgA2[1 — s (24 A2 +

> Ny Az)z}

(64)

For the particular Z,-symmetric branes, for which A = A,
and recalling that A2 = —As/6, these two relations sim-
plify to

87G = %K‘S‘A, Ay = %(877GA + As), (65)
which correspond to the usual relations found in the litera-
ture [14].

3. Relationship between the two limits

We have seen that the usual relations (65) are not unique,
since they depend crucially on the kind of limit taken.
Another limit of physical interest, with no need of a tension
A, leads for instance to the alternative relations (62). These
two sets (62) and (65) only coincide when one demands a
vanishing effective four-dimensional cosmological con-
stant, this is, if the tension of the brane is fine-tuned in
order to have A, = 0. In that case both sets contain the
same information, given by x!A2/6 = —Ajs (the fine-
tuning of the tension) and 87G = K‘S‘A/ 6. This was to be
expected, because the limit at large a implies that @GR
tends to the constant — A ,/87G, and therefore if (and only
if) A, vanishes then the limit 9,,/A — 0 is recovered by
means of the identification (59).

It is worth mentioning here that in Ref. [11], despite the
use of the limit of a particular case of expression (48), the
relations found for the fundamental constants are the usual
ones (65) precisely because it was assumed that A, = 0.
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APPENDIX

The aim of this appendix is to present the intermediate
steps leading from the expressions (29) and (30) involving
L and « to the final result (33) and (34) which is indepen-
dent of L and « and symmetric under the interchange of
N+t by N™.

Regarding [F], it turns out to be convenient to work
with N[ ]. Directly from their definitions (22) and (31)

we have, using Cé C = a(®),
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NH]=N"H—N"H~

—ael{ —5 (—A?# + B*i?)

— LSRR R } ‘ Al

P ( ) . (A1)
Taking now the derivative of a(¢) we get @ = C ,ily+ =
C‘,;'Flg—, which allows us to build the following chain of
equalities

C,i%t — C;Li*i = a(iri —Li1) = a(a®LiF —i7)

= C;La’1i? — C,ii?ls,

where in the second equahty we used (26). Substituting
now the term C ,i2i — C AL 7 appearing in (Al) by this
expression, we find

A /A B
N[H]=ae {~-C i~ (=i +—i?
(9] = aer|~C,i% (57 + 57
~ o AJA B.
" B\B A s
It only remains to use (28) in the two terms in parenthesis
in order to get the final result (33).

Let us now rewrite (29) in a symmetric manner. To that
aim, it is convenient to consider [H ;]i7 and try to get
common factors ¢¥N; as we did before. Rearranging
terms in (29) yields
BB T
—55 i = =P

A

A, 5.
e[ it = t{ - 212 +

Now, evaluating N= allows us to write the identities
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1:’ “+BB Lit — it —i%F
i 2e)
—azij PP+ a? BAB;’F M — a?F Tt —1F
3%?N—§i<%?2+a2§f2>,

which substituted in (A2) yields

e[ H s liT= {2A2rN (Ar+?rt2+jr2>

(318
B A

. a2 o B~ A;;Q B
2A A B A

A B
X <Tt2 + az—r2>}
B A

In this expression the only terms that require extra treat-
ment are A~27f —La?A~2Fi. Multiplying the first sum-
mand by N* and the second by N~ we get after adding
zero in the form of 2772 — L(1 + a?)ii = 0, see (26),

| . 1. B:. (A B
N(—=if—La?=Fi S e
A A? A \B A

B, /A B.
_L—~t7~"<—~t2 + 61’27772>.
A \B A

Inserting this into (A3) we finally find

(A3)

A, N\ . (NB., B. A;y
X=tr+—7|—tl|z—==F—=F— =t
<B A ) <2NA A B
' i _
- —;’72><é~t2 +a2Bp

A B

which becomes exactly (34) after using (28).
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