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We consider the cosmology where some function f�G� of the Gauss-Bonnet term G is added to the
gravitational action to account for the late-time accelerating expansion of the universe. The covariant and
gauge invariant perturbation equations are derived with a method which could also be applied to general
f�R;RabRab; R

abcdRabcd� gravitational theories. It is pointed out that, despite their fourth-order character,
such f�G� gravity models generally cannot reproduce arbitrary background cosmic evolutions; for
example, the standard �CDM paradigm with �DE � 0:76 cannot be realized in f�G� gravity theories
unless f is a true cosmological constant because it imposes exclusionary constraints on the form of f�G�.
We analyze the perturbation equations and find that, as in the f�R� model, the stability of early-time
perturbation growth puts some constraints on the functional form of f�G�, in this case @2f=@G2 < 0.
Furthermore, the stability of small-scale perturbations also requires that f not deviate significantly from a
constant. These analyses are illustrated by numerically propagating the perturbation equations with a
specific model reproducing a representative �CDM cosmic history. Our results show how the f�G�
models are highly constrained by cosmological data.
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I. INTRODUCTION

The accumulating astronomical evidence for the present
accelerating expansion of the universe has stimulated many
investigations into the nature of the dark energy which
might be responsible for this unexpected dynamics (for a
review see, e.g., [1]). Besides proposing to add some kinds
of exotic (and purely theoretical) matter species into the
energy budget of the universe, many investigators have
also focused their attention on modifying general relativity
(GR) on the largest scales so as to introduce significant
modifications at late times. One example is provided by the
family of f�R� gravity models, which had also been con-
sidered before the discovery of cosmic acceleration (see,
for example, Refs. [2–4]). In Refs. [5,6], the authors
discuss a specific model where the correction to GR is a
polynomial function of the R2, RabRab, and RabcdRabcd
quadratic curvature invariants (here, R, Rab, and Rabcd
are, respectively, the Ricci scalar, Ricci tensor, and
Riemann tensor) and show that there exist late-time accel-
erating attractors in Friedmann cosmological solutions to
the theory. It is very interesting that, when the Ricci scalar
R in the Einstein-Hilbert action is replaced by some gen-
eral functions of R and RabRab, it becomes necessary to
distinguish between two different variational approaches in
deriving the field equations. In the metric approach, as in
Refs. [5,6], the metric components gab are the only varia-
tional variables and the field equations are generally of
fourth order, which makes the theories phenomenologi-
cally richer but more stringently constrained in many

cases. Within the Palatini variational approach, on the
other hand, we treat the metric gab and connection �abc as
independent variables and extremize the action with re-
spect to both of them, and the resulting field equations are
second order and easier to solve. The Palatini f�R� gravity
is also proposed as an alternative to dark energy in a series
of works [7–10]. There has since been growing interest in
these modified gravity theories: for the local tests of the
Palatini and metric f�R� gravity models see [11,12], and
for the cosmologies of these two classes of models see
[13–19].

Both approaches to modifying gravity are far from
problem-free. In the metric f�R� gravity models, the theory
is conformally related to standard GR plus a self-
interacting scalar field [3], which generally introduces
extra forces inconsistent with solar-system tests [12]. The
Palatini approach, on the other hand, generally leads to a
large (or even negative) sound-speed-squared term in the
growth equation of the matter perturbations on small
scales, and its predicted shapes of the cosmic microwave
background (CMB) and matter power spectra deviate un-
acceptably from those predicted in GR [17–19], and so fail
the most fundamental cosmological tests. Again, these
examples reiterate the difficulties encountered when trying
to make general modified gravity theories compatible with
observations.

In this work we will focus on another form of modified
gravity, the modified Gauss-Bonnet theory, which is pro-
posed and discussed in [20–24] (see, for example, [25–27]
for a related model). In these models, GR is modified by
adding an arbitrary function f�G� into the gravitational
action, where G � R2 � 4RabRab � RabcdRabcd is the
Gauss-Bonnet invariant (which is a topological invariant
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in four dimensions). Such correction is motivated by the
effective low-energy actions in string theory and is shown
to be able to pass solar-system tests even though it arises in
the metric variational approach. Furthermore, Refs. [20,23]
also demonstrate that such models can produce late-time
cosmic acceleration, as well as a transition from decelera-
tion to acceleration, or from a nonphantom phase to a
phantom phase. Here, we are interested in the perturbation
dynamics in such modified gravity theories, and the cos-
mology arising from them at first order in perturbation
theory.

Our presentation is organized as follows. In Sec. II, we
briefly introduce the model and present the perturbation
equations of the general f�G�model in covariant and gauge
invariant (CGI) form. For this, we generalize the effective
energy-momentum tensor approach of deriving CGI modi-
fied gravitational field equations in a way which could be
applied to a general f�R;RabRab; RabcdRabcd� theory—
which includes the f�G� and f�R�models as specific cases.
In Sec. III we shall discuss the background evolution of
f�G� models and explain why arbitrary cosmic histories
cannot be realized with the f�G� model. The perturbation
equations are then analyzed in Sec. IV, where we also
evolve these equations numerically to investigate the
f�G� effects on the growth of linear perturbations. Our
discussion and conclusions are presented in Sec. V.
Throughout this work our convention is chosen as
�ra;rb�uc � Rabd

cud, Rab � Racb
c, where a; b; . . . run

over 0, 1, 2, 3 and c � " � 1; the metric signature is
��;�;�;�� and the universe is assumed to be spatially
flat and filled with photons, baryons, cold dark matter
(CDM), and three species of effectively massless
neutrinos.

II. FIELD EQUATIONS IN MODIFIED GAUSS-
BONNET GRAVITY

In this section we briefly introduce the main ingredients
of f�G� gravity and derive the general perturbation equa-
tions that govern the dynamics of small inhomogeneities in
the cosmological models that arise in this theory.

A. The generalized Einstein equations

Our starting point for f�G� gravity is the modified
Einstein-Hilbert action

 S �
Z
d4x

�������
�g
p

�
R� f�G�

2�
�Lm

�
; (1)

in which � � 8�GN, with GN being the gravitational
constant and R � R�gab� the Ricci scalar. Varying this
action with respect to the metric gab gives the modified
Einstein equations

 

Rab �
1
2gabR � �Tfab �

1
2gabf� 2FRRab � 4FRcaRbc

� 2FRacdeRb
cde � 4FRacdbRcd

� 2RrarbF� 2Rgabr2F� 4RcarbrcF

� 4RcbrarcF� 4Rabr
2F

� 4gabR
cdrcrdF� 4Racbdr

crdF; (2)

where F � F�G� � @f�G�=@G [notice that, unlike in the
f�R� models, here F is not dimensionless] and Tfab is the
energy-momentum tensor of the fluid matter (photons,
baryons, cold dark matter, and light neutrinos). The trace
of Eq. (2) reads

 � R � ���f � 3pf� � 2f� 2FG� 2R�F

� 4RabrarbF; (3)

with Taa � T � �f � 3pf. We see that the curvature-
related quantities (R;G; F; . . . ) are determined by the
energy-momentum tensor of the fluid matter through a
complicated dynamical equation (3) and thus the modifi-
cation to the GR field equations can be understood as a
change in the way that the spacetime curvature, and thus
the Ricci tensor Rab, responds to the distribution of matter.

B. The perturbation equations in general relativity

The CGI perturbation equations in general theories of
f�G� gravity are derived in this section using the method of
3� 1 decomposition [28–31]. Furthermore, we shall
adopt the effective energy-momentum tensor approach
[16,32], which treats the modifications on the right-hand
side of Eq. (2) as an effective energy-momentum tensor.
However, since the modification generally involves terms
nonlinear in Rab, Rabcd, we should express these terms
appropriately. This will be done in more detail below, but
now let us briefly review the main ingredients of 3� 1
decomposition and their application to standard general
relativity for ease of later reference (as in GR, there is only
fluid matter, so we shall neglect the superscript f in this
subsection).

The main idea of 3� 1 decomposition is to make space-
time splits of physical quantities with respect to the 4-
velocity ua of an observer. The projection tensor hab is
defined as hab � gab � uaub and can be used to obtain
covariant tensors perpendicular to u. For example, the
covariant spatial derivative r̂ of a tensor field Tb			cd			e is
defined as

 r̂ aTb			cd			e � hai h
b
j 	 	 	 h

c
kh

r
d 	 	 	 h

s
er

iTj			kr			s : (4)

The energy-momentum tensor and covariant derivative of
the 4-velocity are decomposed, respectively, as

 Tab � �ab � 2q�aub� � �uaub � phab; (5)

 raub � �ab �$ab �
1
3�hab � uaAb: (6)
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In the above, �ab is the projected symmetric trace-free
(PSTF) anisotropic stress, qa the heat flux vector, p the
isotropic pressure, �ab the PSTF shear tensor, $ab �

r̂�aub� the vorticity, � � rcuc � 3 _a=a (a is the mean
expansion scale factor) the expansion scalar, and Ab �
_ub the acceleration; the overdot denotes a time derivative

expressed as _� � uara�, brackets mean antisymmetriza-
tion, and parentheses mean symmetrization. The normal-
ization is chosen to be uaua � 1. The quantities �ab, qa, �,
p are referred to as dynamical quantities and �ab, $ab, �,
Aa as kinematical quantities. Note that the dynamical
quantities can be obtained from the energy-momentum
tensor Tab through the relations

 � � Tabuaub; p � �1
3h
abTab;

qa � hdau
cTcd; �ab � hcah

d
bTcd � phab:

(7)

Decomposing the Riemann tensor and making use of the
Einstein equations, we obtain, after linearization, five con-
straint equations [30,31]:

 0 � r̂c�"abcdu
d$ab�; (8)

 �qa � �
2r̂a�

3
� r̂b�ab � r̂

b$ab; (9)

 B ab � �r̂
c�d�a � r̂

c$d�a�"
d
b�ecu

e; (10)

 r̂ bEab �
1
2��r̂

b�ab �
2
3�qa �

2
3r̂a��; (11)

 r̂ bBab �
1
2��r̂cqd � ��� p�$cd�"ab

cdub; (12)

and five propagation equations,

 

_��
1

3
�2 � r̂aAa �

�
2
��� 3p� � 0; (13)

 _�ab �
2
3��ab � r̂haAbi � Eab �

1
2��ab � 0; (14)

 _$� 2
3�$� r̂�aAb� � 0; (15)

 

1
2�� _�ab �

1
3��ab� �

1
2����� p��ab � r̂haqbi�

� � _Eab � �Eab � r̂
cBd�a"b�ec

due� � 0; (16)

 

_B ab � �Bab � r̂
cEd�a"b�ec

due �
�
2
r̂c�d�a"b�ec

due � 0:

(17)

Here, "abcd is the covariant permutation tensor, and Eab
and Bab are, respectively, the electric and magnetic parts of
the Weyl tensor W abcd, defined by Eab � ucudW acbd and
Bab � �

1
2u

cud"ac
efW efbd. The angle brackets mean

taking the trace-free part of a quantity.

Besides the above equations, it is useful to express the
projected Ricci scalar R̂ into the hypersurfaces orthogonal
to ua as

 R̂ � 2��� 2
3�

2: (18)

The spatial derivative of the projected Ricci scalar, �a �
1
2ar̂aR̂, is then given as

 �a � �r̂a��
2a
3
�r̂a�; (19)

and its propagation equation by

 _� a �
2�
3
�a � �

2

3
�ar̂ar̂ 	 A� a�r̂ar̂ 	 q: (20)

Finally, there are the conservation equations for the
energy-momentum tensor:

 _�� ��� p��� r̂aqa � 0; (21)

 _q a �
4
3�qa � ��� p�Aa � r̂ap� r̂

b�ab � 0: (22)

As we are considering a spatially flat universe, the
spatial curvature must vanish on large scales and so R̂ �
0. Thus, from Eq. (18), we obtain

 

1
3�

2 � ��: (23)

This is the Friedmann equation in standard general relativ-
ity, and the other background equations (the Raychaudhuri
equation and the energy-conservation equation) are ob-
tained by taking the zeroth-order parts of Eqs. (13) and
(21), as

 

_��
1

3
�2 �

�
2
��� 3p� � 0; (24)

 _�� ��� p�� � 0: (25)

In what follows, we will only consider scalar modes of
perturbations, for which the vorticity $ab and magnetic
part of the Weyl tensor Bab are at most of second order
[30,31] and will be neglected from our first-order analysis.

C. The perturbation equations in f�G� gravity

In the effective energy-momentum tensor approach, the
field equations (8)–(25) listed above preserve their forms,
but the dynamical quantities �, p, qa, �ab appearing there
should be replaced with the effective total ones, �tot �

�f � �G, ptot � pf � pG, qtot
a � qfa � qG

a , �tot
ab � �fab �

�G
ab, in which a superscript G means the contribution from

the Gauss-Bonnet correction.
Writing the modified Einstein equations, Eq. (2) in the

following form,

 Rab �
1
2gabR � �Ttot

ab � �Tfab � �T
G
ab; (26)

one can easily identify
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 �TG
ab �

1
2gabf� 2FRRab � 4FRcaRbc � 2FRacdeRb

cde

� 4FRacdbRcd � 2RrarbF� 2Rgabr2F

� 4RcarbrcF� 4RcbrarcF� 4Rabr
2F

� 4gabRcdrcrdF� 4RacbdrcrdF

and Eq. (7) can be used to calculate �G, pG, qG
a , �G

ab. In
order to do this we need the explicit expressions for Rab
and Rabcd, which could be obtained in terms of either
(effective total) dynamical quantities or kinematical quan-
tities, or a mixture of the two.

To express Rab and Rabcd explicitly, now decompose the
symmetric Ricci tensor Rab in the following general way,

 Rab � �uaub ��hab � 2u�a�b� ��ab: (27)

Then Eq. (26) gives
 

� �
1

2
���tot � 3ptot� � �

�
_�� 1

3�
2 � r̂aAa

�
;

� � �
1

2
���tot � ptot� � �

1

3
� _�� �2 � R̂� r̂aAa�;

�a � �qtot
a � �

2r̂a�
3
� r̂b�ab � r̂

b$ab;

�ab � ��tot
ab � �2

�
_�ab �

2

3
��ab � r̂haAbi � Eab

�
(28)

in which we have used Eqs. (9), (13), (14), and (18). Notice
that the first equalities are expressed in terms of total
dynamical quantities and the second by kinematical quan-
tities. For those terms involving Rabcd, we shall use the
decomposition of the Riemann tensor extensively (keeping
in mind that ucudW acbd � Eab):

 Rabcd �
1
2�gacRbd � gbdRac � gadRbc � gbcRad�

�W abcd �
1
6R�gacgbd � gadgbc�: (29)

For example, it is easy to show that, up to first order,

 Ra
cdeRbcde � �

4
3

_�Eab �
1
2gabR

cdRcd �
1
3RRab �

1
6gabR

2;

(30)

so that

 RabcdRabcd � 2RabRab �
1
3R

2; G � 2
3R

2 � 2RabRab;

(31)

where
 

R � �2 _�� 4
3�

2 � 2r̂aAa � R̂;

RabRab �
4
3�

_�2 � _��2 � 1
3�

4� � 2
3�

_�� �2�R̂

� 8
3�

_�� 1
2�

2�r̂aAa: (32)

With these useful relations and some calculation, the
contribution to the energy-momentum tensor from the
Gauss-Bonnet correction term can be identified as

 ��G � 1
2�f� FG� �

2
3��� 3�� _F�� 2

3��� 3��r̂2F;

(33)

 � �pG � 1
2�f� FG� �

2
3��� 3�� �F� 8

9���
_F� r̂2F�;

(34)

 �qG
a � �

2
3��� 3��

�
r̂a _F� 1

3�r̂aF
�
� 4

3
_F��a; (35)

 ��G
ab �

4
3��

_F�ab � r̂har̂biF� � 2� �F� 1
3�

_F��ab

� 4 �FEab �
4
3�

_FEab: (36)

Here, we want to make some comments about these equa-
tions. First, if f is constant, then F and its derivatives
vanish, so that ��G � ��pG � f

2 and �qG
a � ��G

ab � 0,
and thus we have the �CDM limit. Second, it is not
difficult to check that the above quantities satisfy the
independent energy-momentum conservation equations
 

_�G � ��G � pG��� r̂aqG
a � 0;

_qG
a �

4
3�q

G
a � ��G � pG�Aa � r̂apG � r̂b�G

ab � 0:

This is a result of the energy-momentum conservation in
fluid matter and the contracted Bianchi identity. Third, it
would be convenient to use �a � ��qfa � qG

a � and �ab �

���fab � �
G
ab� [see Eq. (28)] to rewrite Eqs. (35) and (36)

so that �qG
a , ��G

ab are expressed, respectively, in terms of
�qfa; ��

f
ab and other quantities. This is what we do in the

numerical calculation. Fourth, it is interesting to note that
there is no r̂a _� term in �r̂a�G up to first order because
�� 3� � 2

3�
2 � R̂ and r̂a�f� FG� � �Gr̂aF; this is

positive because otherwise Eq. (19) will no longer be an
algebraic equation for r̂a�. For similar reasons Eq. (20)
remains a first-order differential equation for �a for the
present model. These simplifications also occur in the f�R�
gravity models but not in general f�R;RabRab; RabcdRabcd�
theories. In the latter case, the method we use here to derive
the CGI perturbation equations still applies and the pertur-
bation equations will become even higher order and more
complicated (specifically, some of the perturbation equa-
tions above will become propagation equations for qMG

a
and �MG

ab , where MG denotes general modified gravity
theory [33,34]). Finally, we can see that the quantity F
here appears only to (at least directly) influence back-
ground evolutions, and with the background fixed it is its
derivative which determines the perturbation evolutions.

III. THE BACKGROUND EVOLUTION IN f�G�
MODELS

In this section we discuss the background evolution in
general f�G� gravity models. Recall that in f�R� gravity
theories the fourth-order nature of the Friedmann equation
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allows enough freedom for the model to reproduce an
arbitrary background cosmic evolution. Since the field
equations are also fourth order in the f�G� models, one
might think that they could also describe arbitrarily pa-
rametrized background histories. However, this is not the
case, as we shall see below. This is because _G must change
its sign in the recent past in many fixed-background
models.

For the background evolution, we use the Friedmann
equation (23) with the dark-energy density given by
Eq. (33),

 ��DE �
1
2f�

4
9�

2� _�� 1
3�

2�F� 4
9�

3 _F (37)

where we have kept terms only up to zeroth order and used
the expression G � 8

9�
2 _�� 8

27 �
4, which is obtained from

Eqs. (27), (28), and (31). Following [15], we define the
following dimensionless quantities (here H � �=3 is the
Hubble rate and H0 is its present-day value)

 E �
H2

H2
0

; y �
f

H2
0

; (38)

in terms of which G, and so Eq. (37) can be written as

 G � 12H4
0E�E


 � 2E�; (39)

with

 y

 �
�
G

24E2 �
G



G


�
y
 �

G


24E2 y

�
G


4E2 �DE exp��3�1� w�N�; (40)

where a star denotes the derivative with respect to N �
log�a�, �DE � ��DE=3H2

0 is the dark-energy fractional
energy density today, and w � const is the usual dark-
energy equation of state (EOS) parameter. Note that by
writing in this way we have chosen to parametrize the
background expansion to be the same as the dynamical
dark-energy model (w � �1) or the �CDM paradigm
(w � �1).

In the following, we shall assumew � �1 for simplicity
and the calculations for general w could be done similarly.
In this case we have

 E � �DE ��m exp��3N� ��r exp��4N�; (41)

where �m, �ra are, respectively, the fractional densities
for nonrelativistic and relativistic matter species. Deep into
the radiation-dominated era we have E �

:
�r exp��4N�,

and thus Eq. (40) reduces to

 y

 � 9y
 � 8y � 48�DE; (42)

whose solution is

 y�N� � A exp��N� � B exp��8N� � 6�DE: (43)

In this work we shall require

 lim
jG;Rj!1

��������f�G�R
��������! 0

so that B could be set to zero in Eq. (43). To obtain the
background evolution numerically, we start deep in the
radiation-dominated era (e.g., at a � 10�6) and take the
radiation-dominated solution, Eq. (43), to be the initial
condition. The solutions to Eq. (40) are then characterized
by a single parameter A. Different values of A give the
same background history, but, in general, lead to different
evolutions for the perturbations, as we shall see below.
Note that A � 0 describes the standard �CDM paradigm.

Up to this point the procedure is quite similar to that in
metric f�R� gravity models. However, as was claimed
above, the f�G� gravity model cannot be used to reproduce
arbitrarily parametrized background expansion histories.
To explain why, we shall again take the �CDM back-
ground as an example and adopt the value �DE � 0:76,
as suggested by the Wilkinson Microwave Anisotropy
Probe (WMAP) three-year data [35]. Then it will be easy
to find that G
 changes its sign (from � to �) at N0 �
�0:153, which means that G increases (decreases) when
N < �>�N0. As a result, with the match to �CDM at N <
N0, the function f�G� with all possible values of G has
been determined, and there will generally be no freedom
left to fix the evolution to �CDM at N >N0 as well [of
course, if f�G� is a real cosmological constant, then
�CDM will also be reproduced at N >N0, but, in general,
reproducing �CDM on both sides of N0 is far too strong a
requirement to be satisfied]. So, what we may conclude is
that the f�G�model can mimic a �CDM universe up toN0,
after which the evolution might be governed by the
already-determined f�G�. However, note that N0 �
�0:153 corresponds to a critical redshift z0 � 0:166, so
the transition from the �CDM phase to a non-�CDM
phase occurs quite late [36].

In the above, we have analyzed for a �CDM (w � �1)
background. Nonetheless, we can expect that similar situ-
ations exist for general dynamical (w � �1) dark-energy
backgrounds which are characterized by a late-time tran-
sition from G
 > 0 to G
 < 0. The investigation of back-
ground evolutions in general modified Gauss-Bonnet
models is an interesting topic which is unfortunately be-
yond the scope of the present work. Here, we solve the
perturbed equations numerically and investigate the effects
of the f�G� modifications to GR on the growth of linear
perturbations. For simplicity we shall adopt a slightly
unrealistic �CDM cosmic history which is described by
�DE � 0:66 (in this case the transition from G
 > 0 to
G
 < 0 has not taken place yet).

In Fig. 1, we show the redshift evolutions of f�G�
compared with R. Each curve here is characterized by a
specific value of the coefficient A, which can be either
positive, negative, or 0. Note that, although all these curves
lead to the same �CDM background evolution, not all of
them are cosmologically viable. As will be discussed
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below, the stability of early-time perturbation growth re-
quires FG < 0 (where FG � @F=@G) and that of small-
scale perturbation growth furthermore requires jFGjH6 �
1. The condition FG < 0 is found to correspond to the A>
0 subclass of the solutions to Eq. (40). The evolution of
jFGjH

6 � �FGH
6 (which is dimensionless) in this sub-

class is shown in Fig. 2. It is obvious that jFGjH6 is a
rapidly increasing quantity with respect to time whose
magnitude is much smaller than 1 at early times.

IV. THE PERTURBATION EVOLUTION IN f�G�
MODELS

Now we turn to the evolution of perturbation equations
in the f�G� model. The equations presented in Sec. II are
not yet closed, and from Eqs. (33)–(36) we see that an
evolution equation for r̂aF is also needed. To obtain this,
let us look at the trace equation, Eq. (3) [which can also be
obtained from Eq. (19) and the spatial derivative of
Eq. (13)]. Taking its spatial covariant derivative, after
some manipulations we obtain the following evolution
equation:
 

0 � ���
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1� 4
3

_F�

�4FG

�
� (44)

where � is the harmonic expansion coefficient of r̂aF, as

 r̂ aF �
X
k

k
a
�Qk

a; (45)

and Qk
a �

a
k r̂aQ

k and Qk are the zeroth-order eigenvalues

of the comoving Laplacian a2r̂2 (a2r̂2Qk � k2Qk), FG �
@F=@G � @2f=@G2, and the source function S is given by
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where Xf, Xpf, Z, � are, respectively, the harmonic
expansion coefficients of r̂a�f, r̂apf, r̂a�, and r̂aR̂
(see for example [31]). Moreover, here we are working in
the CDM frame (with the ‘‘observer’’ comoving with dark-
matter particles and so free-falling) in which case we can
set Aa � 0 [30,31] to simplify computations. In this case
we have (up to first order)

 r̂ a
_F �

X
k

k
a

_�Qk
a; r̂a �F �

X
k

k
a

��Qk
a:

The presence of the term � 27
16

1��4=3� _F�
�4FG

in Eq. (44) is

notable. As we have seen in the above section, the magni-
tude of the dimensionless quantity j�6FGj is tiny at early
times (deep into the matter- and radiation-dominated eras)
so that, at that time, this term dominates over the other two
in the square brackets. If FG > 0, then � 27

16
1��4=3� _F�
�4FG

!

�1 at these early times, which makes the perturbation �
unstable and it grows quickly to spoil the linear theory.
This is similar to the analysis of stability in f�R� models
[15,16]. For the subclass of models with FG < 0, to which
we are restricting ourselves, � 27

16
1��4=3� _F�
�4FG

! 1 and the

value of � quickly settles towards � 16
27 �

4FGS. It can be

FIG. 1. The evolution versus redshift of f�G�=R for the f�G�
gravity models fixed to match a �CDM cosmic expansion
history (�DE � 0:66). The curves from top to bottom are char-
acterized by A � �0:02, �0:01, 0��CDM�, 0.01, 0.02, respec-
tively. Notice that with our convention R< 0 and f > 0.

FIG. 2. The evolution versus redshift of the dimensionless
quantity �FGH6 for the f�G� gravity models fixed to match a
�CDM cosmic expansion history (�DE � 0:66), which are
stable in early-time perturbation growths (FG < 0). The curves
from bottom to top are characterized by A � 0:0001, 0.001,
0.005, 0.01, 0.02, respectively. Note that a true cosmological
constant has FG � 0.
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checked easily that this is equivalent to r̂aF �
:
FGr̂aG,

which is as expected [note that at these times the influence
of f�G� corrections is negligible and all perturbation quan-
tities except � follow their standard GR evolution]. Note
that this could be used as the initial condition for � when
we evolve it numerically, and the initial condition for _�
could be obtained simply by taking its time derivative.

This is not the whole story. We could use Eq. (19) to
substitute the term �3

_�
�3

k
aZ�

9
2

_�
�4

k2

a2 � in Eq. (46) to
reexpress the evolution equation of � as
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where
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The term �1� 4 _�
�2�

k2

a2 � in Eq. (47) makes the situation more
complicated. During the whole matter-dominated era and
part of the deceleration-to-acceleration transition period,
we have �1� 4 _�

�2�< 0. Thus, for the evolution of � to be
stable on small scales (k2=a2H2  1), we must also re-
quire that this term is subdominant compared with the third
term in the square brackets; that is, jFGH6j must be close
enough to zero not only at early times, but also at low
redshifts [e.g., z & O�10�]. For example, in the �CDM
limit jFGH6j � 0, so that the small-scale instabilities will
never appear. In general, since the deviation from �CDM
in the f�G�model is roughly characterized by the deviation
of A from zero, A� 1 should be satisfied in order that the
model evades cosmological constraints from linear spectra.

To illustrate the effects discussed above, we have shown
the evolution of some linear perturbation variables of the
present model in Figs. 3 and 4. Plotted in Fig. 3 are the
evolutions of the (large-scale) Weyl potential �k. This is
the coefficient of the harmonic expansion of Eab as Eab �
�
P
kk

2�kQk
ab=a

2 and is related to the Newtonian potential
	 by 	 � �� �
a2=2k2 for any specified k mode,
where 
 is the anisotropic stress. From Eqs. (11) and
(33)–(36), it is obvious that �k depends on �, and so
from the analysis above it is easy to understand why on
smaller scales�k changes so dramatically. This situation is
quite similar to that in the Palatini f�R� gravity model [18]
where f�R� � R� 	��R�
 with 
> 0. Since the time
evolution of �k determines the CMB power through the
integrated Sachs-Wolfe (ISW) effect as

 IISW
l � 2

Z �0

�0kjl�k��0 � ���d�;

where jl�k�� are the spherical Bessel functions, and �0 the
conformal time at present, the extremely rapid variations in
�k might greatly enhance the angular power spectrum of
temperature anisotropies, as in the 
> 0 case of Ref. [18].
This will provide the first stringent constraint on the
present model (or equally on A).

FIG. 3 (color online). Evolution of the Weyl potential versus
the cosmic scale factor a at different scales, k � 0:001, 0.002,
0.005, 0:01 Mpc�1, respectively, from bottom to top. The values
of A are indicated beside the curves. A � 0 corresponds to the
�CDM model.

FIG. 4 (color online). Evolution versus cosmic scale factor a
of the cold dark-matter density contrast �CDM at different scales,
from bottom to top k � 0:005, 0.01, 0.02, 0.05, 0:1 Mpc�1,
respectively. The values of A are indicated beside the curves.
A � 0 corresponds to the �CDM model. Note that the rapid
growths of small-scale perturbations may make these scales
leave the linear regime much earlier than in the standard
�CDM model.
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In Fig. 4 we have displayed the time evolution of the
cold dark-matter density contrast, �CDM, on different
scales. As expected, on large scales the k2 term in
Eq. (47) never becomes important and FGH6 is small
enough for our choices of A, so the deviation from
�CDM (A � 0) is small. On small scales, however, the
k2 term is significant, and makes �CDM blow up quickly.
This is also similar to the 
> 0 branch in Ref. [18], and
produces a matter power spectrum which is strongly scale
dependent for large k [note the difference to metric f�R�
models [16]]. This scale dependence will be strongly dis-
favored by current data on galaxy power spectra (such as
those from the Sloan Digital Sky Survey) and gives a
second stringent constraint on the f�G� cosmological mod-
els. Considering these, although evaluating the numerical
constraint on A is beyond the scope of the present work, we
can claim that the parameter space for a viable f�G�
cosmology is highly limited. This, once more, reveals the
difficulties that arise when explaining the cosmic accelera-
tion with modified gravity models.

One should notice that the instabilities of the matter
component found in these f�G� models, and in f�R� mod-
els within the Palatini approach, are in fact dependent on
the nature of the dark matter and not only on the gravity
sector [17]. For instance, instabilities are also found in
GR models where cold dark matter is coupled to a light
scalar field [37]. However, when dark matter is not cold,
and so has a free-streaming length, instabilities might go
away, as occurs in some interacting hot dark-matter–dark-
energy models [38]. Hence, ruling out these gravity models
just due to the instabilities in CDM might not be the last
word.

V. CONCLUSION

To summarize: in this work we have considered the
cosmology arising from a new modified gravity model,
the modified Gauss-Bonnet model, where a function,
f�G�, of the Gauss-Bonnet invariant is added to the
Einstein-Hilbert gravitational action to account for the
current cosmic acceleration, at both the background and
first-order perturbation levels.

For the background-level evolution, we find that f�G�
models cannot describe arbitrarily parametrized cosmic
histories leading to the current observations, because these
histories are generally characterized by a transition from
_G> 0 to _G< 0 which might impose too strong a require-

ment on the form of f.

For the linear-level evolution, we present the first-order
perturbation equations for the f�G� gravity model in the
CGI formalism with a derivation which can also be applied
to general f�R;RabRab; RabcdRabcd� models. The special
combination of R, RabRab, and RabcdRabcd terms in the
invariant G ensures that the set of perturbation equations
resemble that in the f�R� gravity models and is much
simpler than those in f�RabRab� or f�RabcdRabcd� theories.
We analyze the perturbation equations and find that only
the @2f=@G2 < 0 subclass of the models could have stable
perturbation growth. Furthermore, even within this sub-
class, there will be a period during which the small-scale
perturbation growth is no longer stable unless jFGjH6 is
close enough to zero. This unstable growing period has two
important consequences. First, it makes the gravitational
potential �k change very rapidly, which may greatly en-
hance the ISW effect and alter the CMB power. Second, the
small-scale dark-matter density perturbations grow much
more quickly than in the �CDM paradigm, which might
lead to a strongly scale-dependent matter power spectrum.
In both cases, the model therefore faces stringent con-
straints from the cosmological data sets on linear spectra.
We thus conclude that the parameter space for a viable
f�G� cosmological model is highly constrained.

There are several points which arise from this work but
are beyond the scope of the present investigation. For
example, it might be interesting to make an analysis of
the evolution dynamics for general f�G� models and to
include the constraints arising from solar-system tests of
gravity on the model.
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Notes added.—There has recently appeared another
work [39] whose authors analyze a specific form of
f�R;G� theory by different methods. They also conclude
that their model does not give a viable cosmology because
of unstable behavior.
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