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The symmetry structures of two-dimensional heterotic string theory are studied further. A �2d� n� �
�2d� n� matrix complex H-potential is constructed and the field equations are extended into a complex
matrix formulation. A pair of Hauser-Ernst-type linear systems are established. Based on these linear
systems, explicit formulations of new hidden symmetry transformations for the considered theory are
given and then these symmetry transformations are verified to constitute infinite-dimensional Lie algebras:
the semidirect product of the Kac-Moody o� dd; d� n� and Virasoro algebras (without center charges).
These results demonstrate that the heterotic string theory under consideration possesses more and richer
symmetry structures than previously expected.

DOI: 10.1103/PhysRevD.76.044025 PACS numbers: 04.50.+h, 02.20.Tw, 04.20.Jb

I. INTRODUCTION

Due to their importance in theoretical and mathematical
physics, the studies of symmetries for the dimensionally
reduced low energy effective (super)string theories have
attracted much attention in the recent past [e.g. [1–20]]. In
addition, it was also found [21] that there exists a remark-
able link between the asymptotic cosmological behavior
and the properties of symmetry structures for the stringy
cosmological models, while string cosmology is believed
to be significant for the problem of vacuum selection in
string theory. Effective string theories describe various
interacting matter fields coupled to gravity, the dimension-
ally reduced heterotic string theory [e.g. [1,2,8,13–
15,17,19,20]] is a typical and very important model of
this kind. Some symmetries of this theory have been found
and some analogies between it and the reduced Einstein-
Maxwell theory have been noted. However, many scalar
functions in Einstein gravity correspond, formally, to ma-
trix ones in the string theory, thus the noncommuting
property of the matrices gives rise to essential complica-
tions for the further study of the latter. Moreover, some
particular relations, such as for any 2� 2 matrix A:
A>�A � �detA��, A>�� �A � �trA�� with

 � �
0 1
�1 0

� �
have no general analogues for higher dimensional m�m
(m � 3) matrices, while these relations are important and
useful in some studies of the reduced Einstein gravity [e.g.
[22–26]]. Since in this paper we deal mainly with �2d�
n� � �2d� n� matrix functions and typically d � 8, n �
16, some deeper research and further extended studying
methods are needed.

In the present paper, we further study the symmetries of
two-dimensional heterotic string theory. We find that we
can construct a �2d� n� � �2d� n� matrix complex
H-potential and establish a pair of Hauser-Ernst (HE)-

type linear systems. Based on these linear systems, new
infinitesimal symmetry transformations for the considered
theory are explicitly constructed and then these symmetry
transformations are verified to constitute infinite-
dimensional Lie algebras: the semidirect product of the

Kac-Moody o� dd; d� n� and Virasoro algebras (without
center charges). These results demonstrate that the theory
under consideration possesses more and richer symmetry
structures than previously expected.

In Sec. II, a �2d� n� � �2d� n� matrix complex
H-potential for the two-dimensional heterotic string theory
is constructed, the motion equations are written as a com-
plex matrix formulation in terms of this H-potential, and a
pair of associated HE-type linear systems are established.
In Sec. III, by virtue of these linear systems, we give
explicit expressions of some infinitesimal transformations
for the studied theory and then verify that they are all
hidden symmetries leaving the motion equations and re-
lated conditions invariant. The infinite-dimensional Lie
algebra structure of these hidden symmetries is calculated
out in Sec. IV. Finally, Sec. V gives some summary and
discussions.

II. MATRIX COMPLEX H-POTENTIAL AND HE-
TYPE LINEAR SYSTEMS

We start with the action describing the massless sector of
heterotic string theory as follows:

 S �
Z
d2�dx

�������
jGj

q
e���R�GLN@L�@N�

� 1
12H LNPH

LNP � 1
4F

K
LNF

KLN	; (2.1)

where R is the Ricci scalar for the metric GLN �L;N �
1; 2; 
 
 
 ; 2� d�, � is the dilaton field, and

 F K
LN � @LAK

N � @NA
K
L ;

H LNP � �@LBNP �
1
2A

K
LF

K
NP� � cyclic;

(2.2)
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while BLN and AK
L (K � 1; 2; 
 
 
 ; n) denote the antisym-

metric tensor field andU�1�n gauge fields, respectively. For
the heterotic string d � 8, n � 16, but we keep them
arbitrary in the present discussion.

Now following Maharana and Schwarz [1] and Sen
[2,3], when dimensionally reducing the above theory
from 2� d to 2 dimensions by compactification on a
d-dimensional torus and using the fact that the two-
dimensional antisymmetry tensor field and two-
dimensional gauge fields have no dynamics, then (2.1)
can be reduced to the following effective action [2,8,17]

 S �
Z
d2x

���
g
p
e���R� g��@��@��

� 1
8g
�� Tr�@�M

�1@�M�	; (2.3)

where g�� (�; � � 1, 2) denotes the inverse of the two-
dimensional metric g�� (in this paper we choose the sig-
nature of g�� to be �� ), g � det�g���, R is the Ricci
scalar for g��, � is the shifted dilaton field, and the �2d�
n� � �2d� n� matrix M, representing the moduli G, B,
and A, is parametrized as

 M �
G�1 G�1�B� C� G�1A

��B� C�G�1 �G� B� C�G�1�G� B� C� �G� B� C�G�1A
A>G�1 A>G�1�G� B� C� In � A>G�1A

0
B@

1
CA; (2.4)

in which G, B, and A are, respectively, d� d symmetric,
antisymmetric, and d� n matrix-valued fields coming
from the fields of the �2� d�-dimensional heterotic strings,
‘‘>’’ denotes the transposition, C � 1

2AA
> is a d� d

matrix, and In denotes the n� n unit matrix. All of the
above fields are assumed to depend only on x1, x2. The
motion equations for the moduli M and dilaton e�� can be
written as [2,8,17]

 @��
���
g
p
g��e��M�1@�M� � 0; (2.5)

 @��
���
g
p
g��@�e��� � 0: (2.6)

From Eq. (2.6), we see thatM :� e��M satisfies the same
Eq. (2.5) as M does. For our purpose, in this paper we shall
equivalently use M instead of M. In the conformal gauge
g�� � e2����, denoting x1, x2 by x, y and e�� by � for
simplicity, the motion equations (2.5) and (2.6) can be
equivalently written as

 d���1ML�dM� � 0; (2.7)

 d�d� � 0 (2.8)

with conditions
 

M> � M; (2.9a)

MLM � �2L; (2.9b)

L :�

0 Id 0

Id 0 0

0 0 In

0BB@
1CCA; (2.9c)

where the notations of differential form are adopted, ‘‘�’’ is
the dual operation of two-dim Euclidian space fx; yg.
Moreover, according to the Einstein equations derived
from the action (2.3), the field ��x; y� in the conformal
metric can be obtained by a simple integration provided M
is known [2,8], so we shall focus our attention on
Eqs. (2.7), (2.8), and (2.9) in the following.

Equation (2.7) implies that we can introduce a �2d�
n� � �2d� n� matrix twist potential Q�J� � Q�x; y� such
that

 dQ � ���1ML�dM: (2.10)

Using (2.9), we obtain from (2.10)

 dM � ��1ML�dQ: (2.11)

Now introducing a �2d� n� � �2d� n� matrix complex
H-potential

 H :� M� iQ (2.12)

and denoting � :� iL, then Eqs. (2.10) and (2.11) can be
equivalently written as a single complex matrix equation

 dH � ���1M��dH: (2.13)

Furthermore, from (2.9) and (2.10) we have d�Q�
Q>� � �2�d�L. Thus, from (2.8), we can introduce an-
other real field z � z�x; y� such that �d� � dz and obtain

 Q�Q> � �2zL: (2.14)

This relation and Eqs. (2.9) and (2.12) imply that we can
express Eq. (2.13) as

 2�z� ���dH � �H �H>��dH; (2.15)

with (2.8) and (2.9), this is equivalent to (2.7). In addition,
from (2.15) we can obtain

 dH>�dH � dH>��dH � 0; (2.16)

where we omit the wedge symbol ‘‘^’’ in exterior products
of differential forms for simplicity.

Now we introduce a complex parameter t and define

 A�t� :� I � t�H �H>��;

�I is the �2d� n�-dim unit matrix�;
(2.17)

 ��t� :� t��t��1dH; (2.18)
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 ��t� :� 1� 2t�z� ���;

��t��1 � ��t��2�1� 2t�z� ���	;
(2.19)

 ��t� :� ��1� 2zt�2 � �2�t�2	1=2; (2.20)

then Eq. (2.15) can be rewritten as

 tdH � A�t���t�: (2.21)

From Eqs. (2.16), (2.17), and (2.21), we can obtain d��t� �
��t����t�; this is just the complete integrability condition
of the following linear differential equation:

 dF�t� � ��t��F�t�; (2.22)

where F�t� � F�x; y; t� is a �2d� n� � �2d� n� matrix
complex function of x, y, and t.

Equation (2.22) does not define F�t� uniquely, so we
suppress some subsidiary conditions consistent with the
above equations and the requirement that F�t� be holomor-
phic in a neighborhood of t � 0. From (2.21) and (2.22)
and the relation 2t��1dz � ���t��1d��t� we have

 dF�0� � 0; d� _F�0� �H�F�0�	 � 0;

d���t�F�t���F�t�	 � 0; d�F�t�>�A�t�F�t�	 � 0;

where _F�t� :� @F�t�=@t, F�t�� :� F��t�y, ‘‘y’’ denotes the
Hermitian conjugation, and �t is the complex conjugation of
t. These equations and (2.22) determine F�t� up to right-
multiplication by an arbitrary nondegenerate �2d� n� �
�2d� n� matrix function of t, so we can use this freedom
and choose the integral constants consistently such that
 

F�0� � I; (2.23a)
_F�0� � H�J��; (2.23b)

 

��t�F�t���F�t� � �; (2.24a)

F�t�>�A�t�F�t� � �: (2.24b)

We call Eqs. (2.22), (2.23), and (2.24) an HE-type linear
system for the two-dimensional heterotic string theory. The
F-potential F�t� is essentially a generating function for the
hierarchies of potentials given in Ref. [8].

Besides, we can establish another linear system of the
two-dimensional string theory. Now, for another complex
parameter w, we define

 

~A�w� :� w� �H �H>��; (2.25)

 

~��w� :� ~��w��1dH; (2.26)

 

~��w� :� w� 2�z� ���;

~��w��1 � ~��w��2�w� 2�z� ���	;
(2.27)

 

~��w� :� ��w� 2z�2 � �2��2	1=2: (2.28)

Then Eq. (2.15) can be rewritten as

 dH � ~A�w�~��w�; (2.29)

by derivations similar to the above, we have

 d ~F�w� � ~��w�� ~F�w�; (2.30)

and require consistently that ~F�w� be analytic around w �
0 and satisfy
 

~��w� ~F�w��� ~F�w� � �; (2.31a)

~F�w�>� ~A�w� ~F�w� � �; (2.31b)

where ~F�w� � ~F�x; y; w� is another �2d� n� � �2d� n�
matrix complex function of x, y, and w.

III. PARAMETRIZED SYMMETRY
TRANSFORMATIONS

By virtue of solutions F�t�, ~F�w� of linear systems
(2.22), (2.23), (2.24), (2.30), and (2.31), we can explicitly
construct parametrized symmetry transformations for the
two-dimensional heterotic string theory.

We consider the following infinitesimal transformation
� � ��l� of potential H:

 �H �
1

l
�F�l�TF�l��1 � T	�; (3.1)

where l is a (finite) real parameter, F�l� is a solution of
(2.22), (2.23), and (2.24) with t being replaced by l, T �
Ta	

a 2 o�d; d� n� (the Lie algebra of the orthogonal
group O�d; d� n�), Ta are generators of o�d; d� n�, and
	a are infinitesimal real constants. Thus we have the
relation

 T>���T � 0: (3.2)

Now we prove that (3.1) is a hidden symmetry trans-
formation of the motion equation (2.15) and conditions
(2.9). First, from (2.24a), (3.1), and (3.2) and T� � Ty �
T> in the real Lie algebra o�d; d� n�, we have
 

�H � �Hy �
1

l
�F�l�TF�l��1 � T	

��
1

l
��F�l���1T>F�l�� � T>	

�
1

l
F�l��TF�l��1�F�l���1

� F�l��1�F�l���1T>	F�l��

�
��l�
l
F�l��T���T>�F�l�� � 0: (3.3)

From (2.12) and (2.14), Eq. (3.3) implies that �M> � �M
and �z � 0.

In addition, Eqs. (2.12), (2.17), and (3.3) give M �
�1=4l��A�l� � A�l��� and �M � �1=2���H � �H>�, then
from (2.24b), (3.1), and (3.2) and we have
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�M�M�M��M�
1

8l2
��F�l�TF�l��1��F�l�>�1T>F�l�>���A�l��A�l��� �A�l��A�l���F�l�TF�l��1

��F�l�>�1T>F�l�>��	�

�
1

4l2
�A�l�F�l�TF�l��1�F�l�TF�l��1A�l��A�l��F�l�>�1T>F�l�>���F�l�>�1T>F�l�>�A�l�	�

�
�1

4l2
��F�l�>�1�TF�l��1��F�l�>�1T>�F�l��1���l�2F�l�T�F�l�>�

���l�2F�l��T>F�l�>�	�� 0; (3.4)

where the relations

 A�l� � A�l� � 2�1� 2lz�; A�l�A�l� � ��l�2 (3.5)

have been used. Equation (3.4) implies that, under the
transformation (3.1), the condition (2.9b) is preserved and
�� � 0.

Now we investigate the equation satisfied by �H. From
(2.22) and (3.1), it follows that d��H� � �1=l��
���l��; F�l�TF�l��1	�, this and (2.15) and (2.18) further
followed by
 

2�z� ���d��H� � �H �H>��d��H� �
1

l
��H �H>�

��; F�l�TF�l��1	��l�: (3.6)

On the other hand, from (2.17), (2.21), (2.24b), (3.1), and
(3.2) we have
 

��H � �H>��dH �
1

l2
�F�l�TF�l��1�

��F�l�>�1T>F�l�>	�A�l���l�

� �
1

l
��H �H>��; F�l�TF�l��1	��l�:

Substituting this into Eq. (3.6), we finally obtain
 

2�z� ���d��H� � �H �H>��d��H�

� ��H � �H>��dH: (3.7)

Equations (3.3), (3.4), and (3.7) show that H � �H with
�H given by (3.1) satisfies the same Eq. (2.15) and con-
ditions (2.9a) and (2.9b) as H does, i.e. (3.1) is indeed a
symmetry transformation for the motion equations of two-
dimensional heterotic string theory.

Similarly, by using the solution ~F�s� of (2.30) and (2.31),
we can construct another parametrized infinitesimal sym-
metry transformation of the studied string theory as

 

~�H � �s� ~F�s�T ~F�s��1 � T	�; (3.8)

where s is a finite real parameter.
The set of symmetry transformations of the two-

dimensional heterotic string theory can be further enlarged.
In addition to (3.1) and (3.8), we propose two other infini-
tesimal transformations

 �H � �
 _F�l�F�l��1�; (3.9)

 

~�H � �s�s _~F�s� ~F�s��1 � 1
2	�; (3.10)

where l, s both are finite real parameters and 
, � are
infinitesimal real constants.

From (2.24a) and (3.9),
 

�H � �Hy � �
� _F�l�F�l��1���F�l���1 _F�l��	

� 
��l��1 @
@l
��l��

� �
2


��l�2
�z�1� 2lz� � 2l�2	�; (3.11)

this and (2.12) and (2.14) imply ��M�> � �M and �z �


��l�2
�z�1� 2lz� � 2l�2	.

Moreover, since M � 1
2 �H �

�H� and ��M�> � �M by
(3.11), we have
 

�M � 1
2��H �� �H� � 1

2��H
y ��H>�; (3.12a)

��M�M�M��M�> � �M�M�M��M: (3.12b)

Thus from (2.24b), (3.5), and (3.12a), it follows that

 

�M�M�M��M �
1

8l
���Hy � �H>���A�l� � A�l�� � �A�l� � A�l����Hy � �H>��	�

�
1

4l
��H>�A�l� � �Hy�A�l� � A�l��Hy�� A�l��H>�	�

�


4l

�
�
@
@l
F�l���1�F�l��1���

@
@l
F�l�>�1�F�l��1�

�
1

��l�2

�
A�l��

@
@l
F�l�>�1�F�l��1A�l��� A�l��

@
@l
F�l���1�F�l��1A�l��

��
;
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then from (2.24b), (3.5), and (3.12b) we obtain

 �M�J��M�J� �M�J���M�J� �
1

2
��M�J��M�J� �M�J���M�J� � ��M�J��M�J� �M�J���M�J��>	

� �


8l

��
@
@l
A�l� �

@
@l
A�l�

�
�

1

��l�2

�
A�l�

@
@l
A�l�A�l� � A�l�

@
@l
A�l�A�l�

��
�

� �



8l��l�2

�
2��l�2

@
@l
�A�l� � A�l�� �

@
@l
���l�2��A�l� � A�l��

�
� �

2


��l�2
�2�: (3.13)

This result shows that the transformation (3.9) preserves
the condition (2.9b) provided �� � 


��l�2
�, and we can also

verify, by direct calculations, that �d���� � d��z� as
desired.

Now we consider the equation satisfied by the trans-
formed fields. From (2.15), (2.18), (2.19), (3.11), and
(3.13), we have

 2��z�����dH � 2
�z� �����l��1dH

�


l
�H �H>����l�: (3.14)

Moreover, from (2.18), (2.19), (2.22), and (3.9) we obtain

 d�H � 
 _��l� � 
���l��; _F�l�F�l��1	�: (3.15)

Multiplying (3.15) from the left by 2�z� ��� and using
(2.15) and (3.15) again, it follows that
 

2�z� ���d�H � 
��H �H>��; _F�l�F�l��1	��l�

� �H �H>��d�H: (3.16)

On the other hand, from (2.17), (2.21), (2.24b), and (3.9) we
have
 

��H � �H>��dH � �
l�1� _F�l�F�l��1�

��F�l�>�1 _F�l�>	�A�l���l�

� 
��H �H>��; _F�l�F�l��1	��l�

� 
l�1�H �H>����l�: (3.17)

Finally, (3.14), (3.16), and (3.17) give

 2��z� ����dH � 2�z� ���d�H

� ��H � �H>��dH� �H �H>��d�H: (3.18)

The above results show that (3.9) is indeed a symmetry
transformation of Eq. (2.15) with conditions (2.9a) and
(2.9b).

Similarly, we can prove that (3.10), which gives ~�z �
�s

~��s�2
�z�s� 2z� � 2�2	 and ~�� � �s2

~��s�2
�, is also a symme-

try transformation of Eqs. (2.15), (2.9a), and (2.9b).

IV. INFINITE-DIMENSIONAL ALGEBRA
STRUCTURES OF THE SYMMETRIES

From the structures of the transformations (3.1) and
(3.8), we expand the right-hand sides of them in powers

of l and s, respectively, as
 

�H �
X1
k�0

lk��k�H; (4.1a)

~�H �
X1
m�1

sm ~��m�H; (4.1b)

where the analytic property of F�l�, ~F�s� around l � 0, s �
0 is noted. Each of ��k� and ~��m� satisfies the same equa-
tions and conditions as � and ~� do, thus we have, in fact,
constructed infinite many infinitesimal hidden symmetry
transformations of the considered theory. The algebraic
structures of these transformations can be obtained as
follows. Noticing the dependence of (3.1) and (3.8) on
the parameters l, s and the infinitesimal constants 	a in
T, we denote the corresponding transformations by �	�l�,
~�	�s�, respectively. Thus we have

 

��	�l�;���l
0�	H�

1

l
����l

0�F�l�F�l��1;F�l�T	F�l�
�1	�

�
1

l0
��	�l�F�l0�F�l0��1;F�l0�T�F�l0��1	�;

(4.2)

 ��	�l�; ~���s�	H �
1

l
�~���s�F�l�F�l��1; F�l�T	F�l��1	�

� s��	�l� ~F�s� ~F�s�
�1; ~F�s�T� ~F�s��1	�;

(4.3)

 

�~�	�s�; ~���s0�	H��s�~���s0� ~F�s� ~F�s��1; ~F�s�T	 ~F�s��1	�

�s0�~�	�s� ~F�s0� ~F�s0��1;

~F�s0�T� ~F�s0��1	�; (4.4)

where T	 � 	aTa, ��l0�F�l��F�l;H���l0�H��F�l;H�,
etc.

To obtain the above commutators explicitly, we need the
variations of F�l�, ~F�s� induced by ��l0�H, ~��s0�H. It may
be verified by tedious but straightforward calculations that
we can take

 �	�l
0�F�l� �

l
l� l0

�F�l0�T	F�l
0��1 � F�l�T	F�l�

�1	F�l�;

(4.5)
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~� 	�s�F�l� �
ls

1� ls
� ~F�s�T	 ~F�s��1 � F�l�T	F�l�

�1	F�l�;

(4.6)

 �	�l� ~F�s� �
1

1� ls
�F�l�T	F�l�

�1 � ~F�s�T	 ~F�s��1	 ~F�s�;

(4.7)

 

~� 	�s0� ~F�s� �
s0

s� s0
� ~F�s0�T	 ~F�s0��1

� ~F�s�T	 ~F�s��1	 ~F�s�; (4.8)

such that F�l� � �	�l0�F�l�, F�l� � ~�	�s�F�l� satisfy the
same Eq. (2.22) and conditions (2.23) and (2.24) as F�l�
does; while ~F�s� � �	�l� ~F�s�, ~F�s� � ~�	�s

0� ~F�s� satisfy
the same Eq. (2.30) and conditions (2.31) as ~F�s� does.

Substituting (4.5), (4.6), (4.7), and (4.8) into (4.2), (4.3),
and (4.4), using (3.1) and (3.8) again and writing �	�l�H �
	a�a�l�H, etc., we obtain

 ��	�l�; ���l0�	H �
	a�b

l� l0
Ccab�l�c�l�H � l

0�c�l0�H�;

(4.9)

 ��	�l�; ~���s�	H �
	a�b

1� ls
Ccab�ls�c�l�H� ~�c�s�H�;

(4.10)

 �~�	�s�; ~���s0�	H �
	a�b

s� s0
Ccab�s

0 ~�c�s�H� s~�c�s0�H�;

(4.11)

where Ccab’s are structure constants of the Lie algebra
o�d; d� n�. Writing (4.1a) and (4.1b) in the explicitly 	
related forms as
 

�	�l�H � 	a
X1
k�0

lk��k�a H; (4.12a)

~�	�s�H � 	a
X1
m�1

sm ~��m�a H; (4.12b)

and then expanding both sides of (4.9), (4.10), and (4.11),
we finally obtain

 ���k�a ; �
�m�
b 	H � Ccab�

�k�m�
c H; k;m � 0;�1;�2; 
 
 
 ;

(4.13)

where ���m�a H :� ~��m�a H for m � 1. Thus, the infinite set
of symmetry transformations f��k�a ; k � 0;�1;�2; 
 
 
g

constitute an affine Kac-Moody o� dd; d� n� algebra (with-
out center charge).

Now we consider transformations (3.9) and (3.10). They
can be expanded as

 

�H � 

X1
k�0

lk��k�H; (4.14a)

~�H � �
X1
m�1

sm ~��m�H: (4.14b)

Thus we obtain another infinite set of symmetry trans-
formations f��k�; ~��m�; k � 0; 1; 2; 
 
 
 ; m � 1; 2; 
 
 
g of
the two-dimensional heterotic string theory. To calculate
their commutators, we first denote (3.9) and (3.10) by
�
�l�H, ~���s�H, respectively, and then have
 

��
�l�;�
0 �l
0�	H��


@
@l
��
0 �l

0�F�l�F�l��1��

�
0
@
@l0
��
�l�F�l0�F�l0��1��

�
��
0 �l0�F�l�F�l��1; _F�l�F�l��1	�

�
0��
�l�F�l0�F�l0��1; _F�l0�F�l0��1	�;

(4.15)

 

��
�l�; ~���s�	H � �

@
@l
�~���s�F�l�F�l��1��

� �s2 @
@s
��
�l� ~F�s� ~F�s�

�1��

� 
�~���s�F�l�F�l��1; _F�l�F�l��1	�

� �s2��
�l� ~F�s� ~F�s�
�1; _~F�s� ~F�s��1	�;

(4.16)

 

�~���s�; ~��0 �s
0�	H��s2 @

@s
�~��0 �s

0� ~F�s� ~F�s��1��

��0s02
@
@s0
�~���s� ~F�s0� ~F�s0��1��

��s2�~��0 �s
0� ~F�s� ~F�s��1; _~F�s� ~F�s��1	�

��0s02�~���s� ~F�s
0� ~F�s0��1;

_~F�s0� ~F�s0��1	�: (4.17)

As for �
�l
0�F�l�, �
�l� ~F�s�, etc., we propose

 �
�l
0�F�l� � 


l
l� l0

�l _F�l�F�l��1 � l0 _F�l0�F�l0��1	F�l�;

(4.18)

 

~���s�F�l� � �
ls

ls� 1

�
l _F�l�F�l��1

� s _~F�s� ~F�s��1 �
1

2

�
F�l�; (4.19)

 

�
�l� ~F�s� � 

1

ls� 1

�
s _~F�s� ~F�s��1

� l _F�l�F�l��1 �
1

2

�
~F�s�; (4.20)
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~� ��s
0� ~F�s� � �

s0

s� s0
�s _~F�s� ~F�s��1

� s0 _~F�s0� ~F�s0��1	 ~F�s�: (4.21)

By some lengthy but straightforward calculations, it can be
verified that (4.18) and (4.19) are symmetry transforma-
tions of Eq. (2.22) with conditions (2.23) and (2.24); while
(4.20) and (4.21) are symmetry transformations of
Eq. (2.30) with conditions (2.31).

Substituting (4.18), (4.19), (4.20), and (4.21) into (4.15),
(4.16), and (4.17) and using (3.9) and (3.10) again, it
follows that

 

��
�l�;�
0 �l
0�	H � 


@
@l

�
l

l� l0
�l�
0 �l�H� l

0�
0 �l
0�H�

�

� 
0
@
@l0

�
l0

l0 � l
�l0�
�l

0�H

� l�
�l�H�
�
; (4.22)

 

��
�l�; ~���s�	H � 

@
@l

�
ls

ls� 1
�l���l�H � s�1 ~���s�H�

�

� �s2 @
@s

�
1

ls� 1
�l�
�l�H

� s�1 ~�
�s�H�
�
; (4.23)

 

�~���s�; ~��0 �s
0�	H � �s2 @

@s

�
s0

s� s0
�s�1 ~��0 �s�H

� s0�1 ~��0 �s
0�H�

�

� �0s02
@
@s0

�
s

s0 � s
�s0�1 ~���s0�H

� s�1 ~���s�H�
�
: (4.24)

By using (4.14a) and (4.14b) to expand both sides of (4.22),
(4.23), and (4.24), we obtain

 

���m�;��k�	H � �m� k���m�k�H;

m; k � 0;�1;�2; 
 
 
 ; (4.25)

where we have written ���k�H :� ~��k�H for k � 1. This
shows that the infinite set of symmetry transformations
f��k�; k � 0;�1;�2; 
 
 
g constitute the Virasoro algebra
(without central charge).

Next we investigate the commutators between the mem-
bers of f��m�g and f��k�g. For example, from (3.1), (3.9),
(4.5), and (4.18) we have, by some calculations

 

��
�l�; �a�s�	H � 

@
@l

�
l

l� s
�l�a�l�H � s�a�s�H�

�

� 

l

l� s
@
@l
�l�a�l�H�

� 

s

l� s
@
@s
�s�a�s�H�: (4.26)

Similarly, we can give out the expressions of
��
�l�; ~�a�s�	H, �~�
�l�; �a�s�	H, and �~�
�l�; ~�a�s�	H.
Then by using (4.12a), (4.12b), (4.14a), and (4.14b) to
expand both sides of these results, we finally obtain

 ���m�; ��k�a 	H � �k�
�m�k�
a H; m; k � 0;�1;�2; 
 
 
 :

(4.27)

The Eqs. (4.13), (4.25), and (4.27) show that the sym-
metry transformations (3.1), (3.8), (3.9), and (3.10) give a
representation of a semidirect product of the affine

o� dd; d� n� and Virasoro algebras. These give an expres-
sion that the infinite-dimensional symmetry structures of
the two-dimensional heterotic string theory contain not

only the Kac-Moody o� dd; d� n� algebra but also the
Virasoro algebra. The results demonstrate that the string
theory under consideration possesses more and richer sym-
metry structures than previously expected.

V. SUMMARY AND DISCUSSIONS

The symmetry structures of the two-dimensional heter-
otic string theory are further studied in this paper. A �2d�
n� � �2d� n�matrix complexH-potential is introduced in
(2.12) and the motion equations of the studied theory are
written as a complex form (2.15). Moreover, we establish a
pair of HE-type linear systems (2.22), (2.23), (2.24), (2.30),
and (2.31). We would like to indicate that although
Eqs. (2.22) and (2.30) are, in form, interrelated by t$ w �
1=t, the analytic properties of F�t� and ~F�w� as well as the
conditions (2.23), (2.24), and (2.31) do not have this inter-
relation, therefore as whole linear systems they are differ-
ent and give rise to different symmetries of the considered
theory. Based on these linear systems, we explicitly con-
struct symmetry transformations (3.1), (3.8), (3.9), and
(3.10). These symmetries are verified to constitute
infinite-dimensional Lie algebras, which is a semidirect

product of the Kac-Moody o� dd; d� n� and Virasoro
algebras.

Finite symmetry transformations relating to the above
infinitesimal ones and soliton solutions of the studied
theory need more and further investigations and will be
considered in some forthcoming works.
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