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A rather nonstandard quantum representation of the canonical commutation relations of quantum
mechanics systems, known as the polymer representation, has gained some attention in recent years, due
to its possible relation with Planck scale physics. In particular, this approach has been followed in a
symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different
aspects of the relation between the ordinary Schrödinger theory and the polymer description. The paper
has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary
Schrödinger theory and show that the polymer description arises as an appropriate limit. In the second part
we consider the continuum limit of this theory, namely, the reverse process in which one starts from the
discrete theory and tries to recover back the ordinary Schrödinger quantum mechanics. We consider
several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmo-
logical model.
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I. INTRODUCTION

The so-called polymer quantum mechanics, a nonregular
and somewhat ‘‘exotic’’ representation of the canonical
commutation relations (CCR) [1], has been used to explore
both mathematical and physical issues in background in-
dependent theories such as quantum gravity [2,3]. A no-
table example of this type of quantization, when applied to
mini-superspace models has given way to what is known as
loop quantum cosmology [4,5]. As in any toy model situ-
ation, one hopes to learn about the subtle technical and
conceptual issues that are present in full quantum gravity
by means of simple, finite dimensional examples. This
formalism is not an exception in this regard. Apart from
this motivation coming from physics at the Planck scale,
one can independently ask for the relation between the
standard continuous representations and their polymer
cousins at the level of mathematical physics. A deeper
understanding of this relation becomes important on its
own.

The polymer quantization is made of several steps. The
first one is to build a representation of the Heisenberg-Weyl
algebra on a kinematical Hilbert space that is ‘‘background
independent,’’ and that is sometimes referred to as the
polymeric Hilbert space H poly. The second and most
important part, the implementation of dynamics, deals
with the definition of a Hamiltonian (or Hamiltonian con-
straint) on this space. In the examples studied so far, the

first part is fairly well understood, yielding the kinematical
Hilbert space H poly that is, however, nonseparable. For the
second step, a natural implementation of the dynamics has
proved to be a bit more difficult, given that a direct defi-
nition of the Hamiltonian Ĥ of, say, a particle on a potential
on the space H poly is not possible since one of the main
features of this representation is that the operators q̂ and p̂
cannot be both simultaneously defined (nor their analogues
in theories involving more elaborate variables). Thus, any
operator that involves (powers of) the not defined variable
has to be regulated by a well-defined operator which
normally involves introducing some extra structure on
the configuration (or momentum) space, namely, a lattice.
However, this new structure that plays the role of a regu-
lator cannot be removed when working in H poly and one is
left with the ambiguity that is present in any regularization.
The freedom in choosing it can be sometimes associated
with a length scale (the lattice spacing). For ordinary
quantum systems such as a simple harmonic oscillator,
which has been studied in detail from the polymer view-
point, it has been argued that if this length scale is taken to
be ‘‘sufficiently small,’’ one can arbitrarily approximate
standard Schrödinger quantum mechanics [2,3]. In the case
of loop quantum cosmology, the minimum area gap A0 of
the full quantum gravity theory imposes such a scale, that
is then taken to be fundamental [4].

A natural question is to ask what happens when we
change this scale and go to even smaller ‘‘distances,’’
that is, when we refine the lattice on which the dynamics
of the theory is defined. Can we define consistency con-
ditions between these scales? Or even better, can we take
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the limit and find thus a continuum limit? As has been
shown recently in detail, the answer to both questions is in
the affirmative [6]. There, an appropriate notion of scale
was defined in such a way that one could define refine-
ments of the theory and pose in a precise fashion the
question of the continuum limit of the theory. These results
could also be seen as handing a procedure to remove the
regulator when working on the appropriate space. The
purpose of this paper is to further explore different aspects
of the relation between the continuum and the polymer
representation. In particular in the first part we put forward
a novel way of deriving the polymer representation from
the ordinary Schrödinger representation as an appropriate
limit. In Sec. II we derive two versions of the polymer
representation as different limits of the Schrödinger theory.
In Sec. III we show that these two versions can be seen as
different polarizations of the ‘‘abstract’’ polymer represen-
tation. These results, to the best of our knowledge, are new
and have not been reported elsewhere. In Sec. IV we pose
the problem of implementing the dynamics on the polymer
representation. In Sec. V we motivate further the question
of the continuum limit (i.e., the proper removal of the
regulator) and recall the basic constructions of [6].
Several examples are considered in Sec. VI. In particular
a simple harmonic oscillator, the polymer free particle, and
a simple quantum cosmology model are considered. The
free particle and the cosmological model represent a gen-
eralization of the results obtained in [6] where only sys-
tems with a discrete and nondegenerate spectrum were
considered. We end the paper with a discussion in
Sec. VII. In order to make the paper self-contained, we
will keep the level of rigor in the presentation to that found
in the standard theoretical physics literature.

II. QUANTIZATION AND POLYMER
REPRESENTATION

In this section we derive the so-called polymer repre-
sentation of quantum mechanics starting from a specific
reformulation of the ordinary Schrödinger representation.
Our starting point will be the simplest of all possible phase
spaces, namely � � R2 corresponding to a particle living
on the real line R. Let us choose coordinates �q; p� thereon.
As a first step we shall consider the quantization of this
system that leads to the standard quantum theory in the
Schrödinger description. A convenient route is to introduce
the necessary structure to define the Fock representation of
such a system. From this perspective, the passage to the
polymeric case becomes clearest. Roughly speaking, by a
quantization one means a passage from the classical alge-
braic bracket, the Poisson bracket,

 fq; pg � 1; (1)

to a quantum bracket given by the commutator of the
corresponding operators,

 �q̂; p̂� � i@1̂: (2)

These relations, known as the CCR, become the most
common cornerstone of the (kinematics of the) quantum
theory; they should be satisfied by the quantum system,
when represented on a Hilbert space H .

There are alternative points of departure for quantum
kinematics. Here we consider the algebra generated by the
exponentiated versions of q̂ and p̂ that are denoted by

 U��� � ei��q̂�=@; V��� � ei��p̂�=@;

where � and � have dimensions of momentum and length,
respectively. The CCR now become

 U��� � V��� � e��i���=@V��� � U���; (3)

and the rest of the product is

 U��1� �U��2� � U��1 � �2�;

V��1� � V��2� � V��1 � �2�:

The Weyl algebra W is generated by taking finite linear
combinations of the generators U��i� and V��i� where the
product (3) is extended by linearity,

 

X
i

�AiU��i� � BiV��i��:

From this perspective, quantization means finding an uni-
tary representation of the Weyl algebra W on a Hilbert
space H 0 (that could be different from the ordinary
Schrödinger representation). At first it might look weird
to attempt this approach given that we know how to quan-
tize such a simple system; what do we need such a com-
plicated object as W for? It is infinite dimensional,
whereas the set S � f1̂; q̂; p̂g, the starting point of the
ordinary Dirac quantization, is rather simple. It is in the
quantization of field systems that the advantages of the
Weyl approach can be fully appreciated, but it is also useful
for introducing the polymer quantization and comparing it
to the standard quantization. This is the strategy that we
follow.

A question that one can ask is whether there is any
freedom in quantizing the system to obtain the ordinary
Schrödinger representation. On a first sight it might seem
that there is none given the Stone–Von Neumann unique-
ness theorem. Let us review what would be the argument
for the standard construction. Let us ask that the represen-
tation we want to build up is of the Schrödinger type,
namely, where states are wave functions of configuration
space  �q�. There are two ingredients to the construction
of the representation, namely, the specification of how the
basic operators �q̂; p̂� will act, and the nature of the space
of functions that  belongs to, that is normally fixed by the
choice of inner product on H , or measure � on R. The
standard choice is to select the Hilbert space to be

 H � L2�R; dq�;
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the space of square-integrable functions with respect to the
Lebesgue measure dq (invariant under constant transla-
tions) on R. The operators are then represented as

 q̂ �  �q� � �q ��q� and p̂ �  �q� � �i@
@
@q
 �q�:

(4)

Is it possible to find other representations? In order to
appreciate this freedom we go to the Weyl algebra and
build the quantum theory thereon. The representation of
the Weyl algebra that can be called of the ‘‘Fock type’’
involves the definition of an extra structure on the phase
space �: a complex structure J. That is, a linear mapping
from � to itself such that J2 � �1. In 2 dimensions, all the
freedom in the choice of J is contained in the choice of a
parameter d with dimensions of length. It is also conve-
nient to define k � p=@ that has dimensions of 1=L. We
have then,

 Jd: �q; k�� ��d2k; q=d2�:

This object together with the symplectic structure,
���q; p�; �q0; p0�� � qp0 � pq0, define an inner product
on � by the formula gd��; �� � ���; Jd�� such that

 gd��q; p�; �q0; p0�� �
1

d2 qq
0 �

d2

@
2 pp

0;

which is dimensionless and positive definite. Note that with
this quantity one can define complex coordinates ��; ��� as
usual:

 � �
1

d
q� i

d
@
p; �� �

1

d
q� i

d
@
p;

from which one can build the standard Fock representation.
Thus, one can alternatively view the introduction of the
length parameter d as the quantity needed to define (di-
mensionless) complex coordinates on the phase space. But
what is the relevance of this object (J or d)? The definition
of complex coordinates is useful for the construction of the
Fock space since from them one can define, in a natural
way, creation and annihilation operators. But for the
Schrödinger representation we are interested in here, it is
a bit more subtle. The subtlety is that within this approach
one uses the algebraic properties of W to construct the
Hilbert space via what is known as the Gel’fand-Naimark-
Segal (GNS) construction. This implies that the measure in
the Schrödinger representation becomes nontrivial and
thus the momentum operator acquires an extra term in
order to render the operator self-adjoint. The representa-
tion of the Weyl algebra is then, when acting on functions
��q� [7],

 Û��� ���q� :� �ei�q=@���q�

and

 V̂��� ���q� :� e��=d
2��q��=2���q� ��:

The Hilbert space structure is introduced by the definition
of an algebraic state (a positive linear functional) !d:
W ! C that must coincide with the expectation value in
the Hilbert space taken on a special state referred to as the
vacuum: !d�a� � hâivac, for all a 2W . In our case this
specification of J induces such a unique state!d that yields

 hÛ���ivac � e��1=4��d2�2=@2� (5)

and

 hV̂���ivac � e��1=4���2=d2�: (6)

Note that the exponents in the vacuum expectation values
correspond to the metric constructed out of J: d2�2

@
2 �

gd��0; ��; �0; ��� and �2

d2 � gd���; 0�; ��; 0��. Wave func-
tions belong to the space L2�R; d�d�, where the measure
that dictates the inner product in this representation is
given by

 d�d �
1

d
����
�
p e��q

2=d2�dq:

In this representation, the vacuum is given by the identity
function �0�q� � 1 that is, just as any plane wave, nor-
malized. Note that for each value of d > 0, the representa-
tion is well defined and continuous in � and �. Note also
that there is an equivalence between the q-representation
defined by d and the k-representation defined by 1=d.

How can we recover then the standard representation in
which the measure is given by the Lebesgue measure and
the operators are represented as in (4)? It is easy to see that
there is an isometric isomorphism K that maps the
d-representation in H d to the standard Schrödinger rep-
resentation in H schr by

  �q� � K ���q� �
e�q

2=2d2

d1=2�1=4
��q� 2H schr � L2�R; dq�:

Thus we see that all d-representations are unitarily equiva-
lent. This was to be expected in view of the Stone–
Von Neumann uniqueness result. Note also that the vacuum
now becomes

  0�q� �
1

d1=2�1=4
e�q

2=2d2
;

so even when there is no information about the parameter d
in the representation itself, it is contained in the vacuum
state. This procedure for constructing the GNS-
Schrödinger representation for quantum mechanics has
also been generalized to scalar fields on arbitrary curved
space in [8]. Note, however, that so far the treatment has all
been kinematical, without any knowledge of a
Hamiltonian. For the simple harmonic oscillator of mass
m and frequency !, there is a natural choice compatible

with the dynamics given by d �
������
@

m!

q
, in which some

calculations simplify (for instance for coherent states),
but in principle one can use any value of d.
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Our study will be simplified by focusing on the funda-
mental entities in the Hilbert space H d, namely, those
states generated by acting with Û��� on the vacuum
�0�q� � 1. Let us denote those states by

 ���q� � Û��� ��0�q� � ei�q=@:

The inner product between two such states is given by

 h��;��id �
Z

d�de
�i�q=@ei�q=@ � e������

2d2=4@2
: (7)

Note incidentally that, contrary to some common belief,
the ‘‘plane waves’’ in this GNS Hilbert space are indeed
normalizable.

Let us now consider the polymer representation. For
that, it is important to note that there are two possible
limiting cases for the parameter d: (i) the limit 1=d � 0
and (ii) the case d � 0. In both cases, we have expressions
that become ill defined in the representation or measure, so
one needs to be careful.

A. The 1=d � 0 case

The first observation is that from the expressions (5) and
(6) for the algebraic state !d, we see that the limiting cases
are indeed well defined. In our case we get !A :�
lim1=d!0!d such that

 !A�Û���� � ��;0 and !A�V̂���� � 1: (8)

From this, we can indeed construct the representation by
means of the GNS construction. In order to do that and to
show how this is obtained we shall consider several ex-
pressions. One has to be careful though, since the limit has
to be taken with care. Let us consider the measure on the
representation that behaves as

 d�d �
1

d
����
�
p e�q

2=d2
dq �

1

d
����
�
p dq

so the measure tends to a homogeneous measure, but
whose ‘‘normalization constant’’ goes to zero, so the limit
becomes somewhat subtle. We shall return to this point
later.

Let us now see what happens to the inner product
between the fundamental entities in the Hilbert space
H d given by (7). It is immediate to see that in the 1=d �
0 limit the inner product becomes

 h��;��id � ��;�; (9)

with ��;� being Kronecker’s delta. We see then that the
plane waves ���q� become an orthonormal basis for the
new Hilbert space. Therefore, there is a delicate interplay
between the two terms that contribute to the measure in
order to maintain the normalizability of these functions; we
need the measure to become damped (by 1=d) in order to
avoid that the plane waves acquire an infinite norm (as
happens with the standard Lebesgue measure), but on the

other hand the measure, that for any finite value of d is a
Gaussian, becomes more and more spread.

It is important to note that, in this limit, the operators
Û��� become discontinuous with respect to �, given that
for any given �1 and �2 (different), its action on a given
basis vector  ��q� yields orthogonal vectors. Since the
continuity of these operators is one of the hypotheses of
the Stone–Von Neumann theorem, the uniqueness result
does not apply here. The representation is inequivalent to
the standard one.

Let us now analyze the other operator, namely, the action
of the operator V̂��� on the basis ���q�:

 V̂��� ����q� � e���
2=2d2��i���=@�e��=d

2�i�=@�q;

which in the limit 1=d � 0 goes to

 V̂��� ����q�� ei���=@����q�

that is continuous on�. Thus, in the limit, the operator p̂ �
�i@@q is well defined. Also, note that in this limit the
operator p̂ has ���q� as its eigenstate with eigenvalue
given by �:

 p̂ ����q�� ����q�:

To summarize, the resulting theory obtained by taking the
limit 1=d � 0 of the ordinary Schrödinger description,
that we shall call the ‘‘polymer representation of
type A,’’ has the following features: the operators U���
are well defined but not continuous in �, so there is no
generator (no operator associated to q). The basis vectors
�� are orthonormal (for � taking values on a continuous
set) and are eigenvectors of the operator p̂ that is well
defined. The resulting Hilbert space H A will be the (A-
version of the) polymer representation. Let us now con-
sider the other case, namely, the limit when d � 0.

B. The d � 0 case

Let us now explore the other limiting case of the
Schrödinger/Fock representations labeled by the parameter
d. Just as in the previous case, the limiting algebraic state
becomes !B :� limd!0!d such that

 !B�Û���� � 1 and !B�V̂���� � ��;0: (10)

From this positive linear function, one can indeed construct
the representation using the GNS construction.

First let us note that the measure, even when the limit has
to be taken with due care, behaves as

 d�d �
1

d
����
�
p e�q

2=d2
dq � ��q�dq;

that is, as Dirac’s delta distribution. It is immediate to see
that, in the d � 0 limit, the inner product between the
fundamental states ���q� becomes

 h��;��id � 1: (11)
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This in fact means that the vector 	 � �� ��� belongs to
the kernel of the limiting inner product, so one has to mod
out by these (and all) zero norm states in order to get the
Hilbert space.

Let us now analyze the other operator, namely, the action
of the operator V̂��� on the vacuum �0�q� � 1, which for
arbitrary d has the form

 

~�� :� V̂��� ��0�q� � e��=d
2��q��=2�:

The inner product between two such states is given by

 h ~��; ~��id � e��1=4d2������2 :

In the limit d! 0, h ~��; ~��id ! ��;�. We can see then
that it is these functions that become the orthonormal,
‘‘discrete basis’’ in the theory. However, the function
~���q� in this limit becomes ill defined. For example, for
�> 0, it grows unboundedly for q > �=2, is equal to one
if q � �=2, and zero otherwise. In order to overcome these
difficulties and make more transparent the resulting theory,
we shall consider the other form of the representation in
which the measure is incorporated into the states (and the
resulting Hilbert space is L2�R; dq�). Thus the new state:

  ��q� �: K � �V̂��� ��0�q�� �
1

�d
����
�
p
�1=2

e��1=2d2��q���2 :

(12)

We can now take the limit and what we get is

 lim
d�0

 ��q� :� �1=2�q;��;

where by �1=2�q;�� we mean something like ‘‘the square
root of the Dirac distribution.’’ What we really mean is an
object that satisfies the following property:

 �1=2�q; �� � �1=2�q; �� � ��q;����;�:

That is, if� � � then it is just the ordinary delta, otherwise
it is zero. In a sense these objects can be regarded as half-
densities that can not be integrated by themselves, but
whose product can. We conclude then that the inner prod-
uct is

 h �;  �i �
Z
R

dq � ��q� ��q� �
Z
R

dq��q; ����;�

� ��;�; (13)

which is just what we expected. Note that in this represen-
tation, the vacuum state becomes  0�q� :� �1=2�q; 0�,
namely, the half-delta with support in the origin. It is
important to note that we are arriving in a natural way to
states as half-densities, whose squares can be integrated
without the need of a nontrivial measure on the configura-
tion space. Diffeomorphism invariance arises then in a
natural but subtle manner.

Note that as the end result we recover the Kronecker
delta inner product for the new fundamental states:

 
��q� :� �1=2�q;��:

Thus, in this new B-polymer representation, the Hilbert
space H B is the completion with respect to the inner
product (13) of the states generated by taking (finite) linear
combinations of basis elements of the form 
�:

 ��q� �
X
i

bi
�i�q�: (14)

Let us now introduce an equivalent description of this
Hilbert space. Instead of having the basis elements be
half-deltas as elements of the Hilbert space where the inner
product is given by the ordinary Lebesgue measure dq, we
redefine both the basis and the measure. We could consider,
instead of a half-delta with support �, a Kronecker delta or
characteristic function with support on �:

 
0��q� :� �q;�:

These functions have a similar behavior with respect to the
product as the half-deltas, namely, 
0��q� � 


0
��q� � ��;�.

The main difference is that neither 
0 nor their squares are
integrable with respect to the Lebesgue measure (having
zero norm). In order to fix that problem we have to change
the measure so that we recover the basic inner product (13)
with our new basis. The needed measure turns out to be the
discrete counting measure on R. Thus any state in the ‘‘half
density basis’’ can be written (using the same expression)
in terms of the ‘‘Kronecker basis.’’ For more details and
further motivation see the next section.

Note that in this B-polymer representation, both Û and V̂
have their roles interchanged with that of the A-polymer
representation: while U��� is discontinuous and thus q̂ is
not defined in the A-representation, we have that it is V���
in the B-representation that has this property. In this case, it
is the operator p̂ that cannot be defined. We see then that
given a physical system for which the configuration space
has a well-defined physical meaning, within the possible
representation in which wave functions are functions of the
configuration variable q, the A- and B-polymer represen-
tations are radically different and inequivalent.

Having said this, it is also true that the A- and B-
representations are equivalent in a different sense, by
means of the duality between q- and p-representations
and the d$ 1=d duality: The A-polymer representation
in the q-representation is equivalent to the B-polymer
representation in the p-representation, and conversely.
When studying a problem, it is important to decide from
the beginning which polymer representation (if any) one
should be using (for instance in the q-polarization). This
has as a consequence an implication on which variable is
naturally ‘‘quantized’’ (even if continuous): p for A and q
for B. There could be for instance a physical criteria for
this choice. For example, a fundamental symmetry could
suggest that one representation is more natural than an-
other one. This indeed has been recently noted by Chiou in
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[9], where the Galileo group is investigated and where it is
shown that the B-representation is better behaved.

In the other polarization, namely, for wave functions of
p, the picture gets reversed: q is discrete for the A-
representation, while p is for the B case. Let us end this
section by noting that the procedure of obtaining the
polymer quantization by means of an appropriate limit of
Fock-Schrödinger representations might prove useful in
more general settings in field theory or quantum gravity.

III. POLYMER QUANTUM MECHANICS:
KINEMATICS

In previous sections we have derived what we have
called the A- and B-polymer representations (in the
q-polarization) as limiting cases of ordinary Fock repre-
sentations. In this section, we shall describe, without any
reference to the Schrödinger representation, the ‘‘abstract’’
polymer representation and then make contact with its two
possible realizations, closely related to the A and B cases
studied before. What we will see is that one of them (the A
case) will correspond to the p-polarization while the other
one corresponds to the q-representation, when a choice is
made about the physical significance of the variables.

We can start by defining abstract kets j�i labeled by a
real number �. These shall belong to the Hilbert space
H poly. From these states, we define a generic ‘‘cylinder
states’’ that correspond to a choice of a finite collection of
numbers �i 2 R with i � 1; 2; . . . ; N. Associated to this
choice, there are N vectors j�ii, so we can take a linear
combination of them

 j i �
XN
i�1

aij�ii: (15)

The polymer inner product between the fundamental kets
is given by

 h�j�i � ��;�: (16)

That is, the kets are orthogonal to each other (when � � �)
and they are normalized (h�j�i � 1). Immediately, this
implies that, given any two vectors j�i �

PM
j�1 bjj�ji and

j i �
PN
i�1 aij�ii, the inner product between them is

given by

 h�j i �
X
i

X
j

�bjaih�jj�ii �
X
k

�bkak;

where the sum is over k that labels the intersection points
between the set of labels f�jg and f�ig. The Hilbert space
H poly is the Cauchy completion of finite linear combina-
tion of the form (15) with respect to the inner product (16).
H poly is nonseparable. There are two basic operators on
this Hilbert space: the ‘‘label operator’’ "̂,

 "̂j�i :� �j�i;

and the displacement operator ŝ���,

 ŝ���j�i :� j�� �i:

The operator "̂ is symmetric and the operator(s) ŝ���
defines a one-parameter family of unitary operators on
H poly, where its adjoint is given by ŝy��� � ŝ����. This
action is however, discontinuous with respect to � given
that j�i and j�� �i are always orthogonal, no matter how
small is �. Thus, there is no (Hermitian) operator that could
generate ŝ��� by exponentiation.

So far we have given the abstract characterization of the
Hilbert space, but one would like to make contact with
concrete realizations as wave functions, or by identifying
the abstract operators "̂ and ŝ with physical operators.

Suppose we have a system with a configuration space
with coordinate given by q, and p denotes its canonical
conjugate momenta. Suppose also that for physical reasons
we decide that the configuration coordinate q will have
some ‘‘discrete character’’ (for instance, if it is to be
identified with position, one could say that there is an
underlying discreteness in position at a small scale). How
can we implement such requirements by means of the
polymer representation? There are two possibilities, de-
pending on the choice of ‘‘polarizations’’ for the wave
functions, namely, whether they will be functions of con-
figuration q or momenta p. Let us the divide the discussion
into two parts.

A. Momentum polarization

In this polarization, states will be denoted by

  �p� � hpj i;

where

  ��p� � hpj�i � ei��p=@�:

How are then the operators "̂ and ŝ represented? Note that
if we associate the multiplicative operator

 V̂��� �  ��p� � ei��p=@�ei��p=@� � ei������=@�p

�  ������p�;

we see then that the operator V̂��� corresponds precisely to
the shift operator ŝ���. Thus we can also conclude that the
operator p̂ does not exist. It is now easy to identify the
operator q̂ with

 q̂ �  ��p� � �i@
@
@p

 ��p� � �ei��p=@� � � ��p�;

namely, with the abstract operator "̂. The reason we say
that q̂ is discrete is because this operator has as its eigen-
value the label � of the elementary state  ��p�, and this
label, even when it can take value in a continuum of
possible values, is to be understood as a discrete set, given
that the states are orthonormal for all values of �. Given
that states are now functions of p, the inner product (16)
should be defined by a measure � on the space on which
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the wave functions are defined. In order to know what these
two objects are, namely, the quantum ‘‘configuration’’
space C and the measure thereon,1 we have to make use
of the tools available to us from the theory of C	-algebras.
If we consider the operators V̂���, together with their
natural product and 	-relation given by V̂	��� � V̂����,
they have the structure of an AbelianC	-algebra (with unit)
A. We know from the representation theory of such
objects that A is isomorphic to the space of continuous
functionsC0��� on a compact space �, the spectrum of A.
Any representation of A on a Hilbert space as multi-
plication operator will be on spaces of the form
L2��; d��. That is, our quantum configuration space is
the spectrum of the algebra, which in our case corresponds
to the Bohr compactification Rb of the real line [10]. This
space is a compact group and there is a natural probability
measure defined on it, the Haar measure �H. Thus, our
Hilbert space H poly will be isomorphic to the space,

 H poly;p � L2�Rb; d�H�: (17)

In terms of ‘‘quasi periodic functions’’ generated by
 ��p�, the inner product takes the form

 h �j �i :�
Z
Rb

d�H
� ��p� ��p�

:� lim
L�1

1

2L

Z L

�L
dp � ��p� ��p� � ��;�: (18)

Note that in the p-polarization, this characterization cor-
responds to the A-version of the polymer representation of
Sec. II (where p and q are interchanged).

B. q-polarization

Let us now consider the other polarization in which
wave functions will depend on the configuration coordi-
nate q:

  �q� � hqj i:

The basic functions, that now will be called ~ ��q�, should
be, in a sense, the dual of the functions  ��p� of the
previous subsection. We can try to define them via a
‘‘Fourier transform’’:

 

~ ��q� :� hqj�i � hqj
Z
Rb

d�Hjpihpj�i;

which is given by

 

~ ��q� :�
Z
Rb

d�Hhqjpi ��p�

�
Z
Rb

d�He
�i�pq=@�ei��p=@� � �q;�: (19)

That is, the basic objects in this representation are
Kronecker deltas. This is precisely what we had found in
Sec. II for the B-type representation. How now are the
basic operators represented, and what is the form of the
inner product? Regarding the operators, we expect that
they are represented in the opposite manner as in the
previous p-polarization case, but that they preserve the
same features: p̂ does not exist (the derivative of the
Kronecker delta is ill defined), but its exponentiated ver-
sion V̂��� does:

 V̂��� �  �q� �  �q� ��;

and the operator q̂ that now acts as multiplication has as its
eigenstates, the functions ~ ��q� � ��;q:

 q̂ � ~ ��q� :� � ~ ��q�:

What is now the nature of the quantum configuration space
Q? And what is the measure thereon d�q that defines the
inner product we should have:

 h ~ ��q�; ~ ��q�i � ��;�:

The answer comes from one of the characterizations of the
Bohr compactification: we know that it is, in a precise
sense, dual to the real line when equipped with the discrete
topology Rd. Furthermore, the measure on Rd will be the
‘‘counting measure.’’ In this way we recover the same
properties we had for the previous characterization of the
polymer Hilbert space. We can thus write

 H poly;x :� L2�Rd; d�c�: (20)

This completes a precise construction of the B-type poly-
mer representation sketched in the previous section. Note
that if we had chosen the opposite physical situation,
namely, that q, the configuration observable, be the quan-
tity that does not have a corresponding operator, then we
would have had the opposite realization: In the
q-polarization we would have had the type A-polymer
representation and the type-B for the p-polarization. As
we shall see both scenarios have been considered in the
literature.

Up to now we have only focused our discussion on the
kinematical aspects of the quantization process. Let us now
consider in the following section the issue of dynamics and
recall the approach that had been adopted in the literature,
before the issue of the removal of the regulator was reex-
amined in [6].

1Here we use the standard terminology of ‘‘configuration
space’’ to denote the domain of the wave function even when,
in this case, it corresponds to the physical momenta p.
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IV. POLYMER QUANTUM MECHANICS:
DYNAMICS

As we have seen, the construction of the polymer rep-
resentation is rather natural and leads to a quantum theory
with different properties than the usual Schrödinger coun-
terpart such as its nonseparability, the nonexistence of
certain operators, and the existence of normalized eigen-
vectors that yield a precise value for one of the phase space
coordinates. This has been done without any regard for a
Hamiltonian that endows the system with a dynamics,
energy, and so on.

First let us consider the simplest case of a particle of
mass m in a potential V�q�, in which the Hamiltonian H
takes the form

 H �
1

2m
p2 � V�q�:

Suppose furthermore that the potential is given by a non-
periodic function, such as a polynomial or a rational func-
tion. We can immediately see that a direct implementation
of the Hamiltonian is out of our reach, for the simple
reason that, as we have seen, in the polymer representation
we can either represent q or p, but not both. What has been
done so far in the literature? The simplest thing possible:
approximate the nonexisting term by a well-defined func-
tion that can be quantized and hope for the best. As we
shall see in next sections, there is indeed more that one can
do.

At this point there is also an important decision to be
made: which variable q or p should be regarded as ‘‘dis-
crete’’? Once this choice is made, then it implies that the
other variable will not exist: if q is regarded as discrete,
then p will not exist and we need to approximate the
kinetic term p2=2m by something else; if p is to be the
discrete quantity, then q will not be defined and then we
need to approximate the potential V�q�. What happens with
a periodic potential? In this case one would be modelling,
for instance, a particle on a regular lattice such as a phonon
living on a crystal, and then the natural choice is to have q
not well defined. Furthermore, the potential will be well
defined and there is no approximation needed.

In the literature both scenarios have been considered.
For instance, when considering a quantum mechanical
system in [2], the position was chosen to be discrete, so
p does not exist, and one is then in the A-type for the
momentum polarization (or the B-type for the
q-polarization). With this choice, it is the kinetic term
that has to be approximated, so once one has done this,
then it is immediate to consider any potential that will thus
be well defined. On the other hand, when considering loop
quantum cosmology (LQC), the standard choice is that the
configuration variable is not defined [4]. This choice is
made given that LQC is regarded as the symmetric sector
of full loop quantum gravity where the connection (that is
regarded as the configuration variable) can not be pro-

moted to an operator and one can only define its exponen-
tiated version, namely, the holonomy. In that case, the
canonically conjugate variable, closely related to the vol-
ume, becomes ‘‘discrete,’’ just as in the full theory. This
case is, however, different from the particle in a potential
example. First we could mention that the functional form
of the Hamiltonian constraint that implements dynamics
has a different structure, but the more important difference
lies in that the system is constrained.

Let us return to the case of the particle in a potential and
for definiteness, let us start with the auxiliary kinematical
framework in which q is discrete, p can not be promoted,
and thus we have to approximate the kinetic term p̂2=2m.
How is this done? The standard prescription is to define, on
the configuration space C, a regular ‘‘graph’’ ��0

. This
consists of a numerable set of points, equidistant, and
characterized by a parameter �0 that is the (constant)
separation between points. The simplest example would
be to consider the set ��0

� fq 2 Rjq � n�0; 8 n 2
Zg.

This means that the basic kets that will be considered
j�ni will correspond precisely to labels �n belonging to
the graph ��0

, that is, �n � n�0. Thus, we shall only
consider states of the form

 j i �
X
n

bnj�ni: (21)

This ‘‘small’’ Hilbert space H ��0
, the graph Hilbert space,

is a subspace of the ‘‘large’’ polymer Hilbert space H poly,
but it is separable. The condition for a state of the form (21)
to belong to the Hilbert space H ��0

is that the coefficients

bn satisfy
P
njbnj

2 <1.
Let us now consider the kinetic term p̂2=2m. We have to

approximate it by means of trigonometric functions that
can be built out of the functions of the form ei�p=@. As we
have seen in previous sections, these functions can indeed
be promoted to operators and act as translation operators
on the kets j�i. If we want to remain in the graph �, and
not create ‘‘new points,’’ then one is constrained to con-
sidering operators that displace the kets by just the right
amount. That is, we want the basic shift operator V̂��� to be
such that it maps the ket with label j�ni to the next ket,
namely j�n�1i. This can indeed be achieved by fixing,
once and for all, the value of the allowed parameter � to
be � � �0. We have, then,

 V̂��0� � j�ni � j�n ��0i � j�n�1i;

which is what we wanted. This basic ‘‘shift operator’’ will
be the building block for approximating any (polynomial)
function of p. In order to do that we notice that the function
p can be approximated by

 p 

@

�0
sin
�
�0p
@

�
�

@

2i�0
�ei��0p=@� � e�i��0p=@��;
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where the approximation is good for p� @=�0. Thus, one
can define a regulated operator p̂�0

that depends on the
‘‘scale’’ �0 as

 p̂ �0
� j�ni :�

@

2i�0
�V��0� � V���0�� � j�ni

�
i@

2�0
�j�n�1i � j�n�1i�: (22)

In order to regulate the operator p̂2, there are (at least) two
possibilities, namely, to compose the operator p̂�0

with
itself or to define a new approximation. The operator p̂�0

�

p̂�0
has the feature that shifts the states two steps in the

graph to both sides. There is however another operator that
only involves shifting once:

 p̂ 2
�0
� j�ni :�

@
2

�2
0

�2� V̂��0� � V̂���0�� � j�ni

�
@

2

�2
0

�2j�ni � j�n�1i � j�n�1i�; (23)

which corresponds to the approximation p2 
 2@2

�2
0
�

�1� cos��0p=@��, valid also in the regime p� @=�0.
With these considerations, one can define the operator
Ĥ�0

, the Hamiltonian at scale �0, that in practice ‘‘lives’’
on the space H ��0

, as

 Ĥ �0
:�

1

2m
p̂2
�0
� V̂�q�; (24)

that is a well-defined, symmetric operator on H ��0
.

Notice that the operator is also defined on H poly, but there
its physical interpretation is problematic. For example, it
turns out that the expectation value of the kinetic term
calculated on most states (states which are not tailored to
the exact value of the parameter �0) is zero. Even if one
takes a state that gives ‘‘reasonable’’ expectation values of
the �0-kinetic term and uses it to calculate the expectation
value of the kinetic term corresponding to a slight pertur-
bation of the parameter �0, one would get zero. This
problem, and others that arise when working on H poly,
forces one to assign a physical interpretation to the
Hamiltonian Ĥ�0

only when its action is restricted to the
subspace H ��0

.

Let us now explore the form that the Hamiltonian takes
in the two possible polarizations. In the q-polarization, the
basis, labeled by n, is given by the functions 
n�q� �
�q;�n

. That is, the wave functions will only have support
on the set ��0

. Alternatively, one can think of a state as
completely characterized by the ‘‘Fourier coefficients’’ an:
 �q� $ an, which is the value that the wave function  �q�
takes at the point q � �n � n�0. Thus, the Hamiltonian
takes the form of a difference equation when acting on a
general state  �q�. Solving the time independent

Schrödinger equation Ĥ �  � E amounts to solving the
difference equation for the coefficients an.

The momentum polarization has a different structure. In
this case, the operator p̂2

�0
acts as a multiplication operator,

 p̂ 2
�0
�  �p� �

2@2

�2
0

�
1� cos

�
�0p
@

��
 �p�: (25)

The operator corresponding to q will be represented as a
derivative operator

 q̂ �  �p� :� i@@p �p�:

For a generic potential V�q�, it has to be defined by means
of spectral theory defined now on a circle. Why on a circle?
For the simple reason that by restricting ourselves to a
regular graph ��0

, the functions of p that preserve it (when
acting as shift operators) are of the form e�im�0p=@� for m
integer. That is, what we have are Fourier modes, labeled
bym, of period 2�@=�0 in p. Can we pretend then that the
phase space variable p is now compactified? The answer is
in the affirmative. The inner product on periodic functions
 �0
�p� of p coming from the full Hilbert space H poly and

given by

 h��p�j �p�ipoly � lim
L�1

1

2L

Z L

�L
dp ���p� �p�

is precisely equivalent to the inner product on the circle
given by the uniform measure

 h��p�j �p�i�0
�

�0

2�@

Z �@=�0

��@=�0

dp ���p� �p�

with p 2 ���@=�0; �@=�0�. As long as one restricts
attention to the graph ��0

, one can work in this separable
Hilbert space H ��0

of square-integrable functions on S1.

Immediately, one can see the limitations of this descrip-
tion. If the mechanical system to be quantized is such that
its orbits have values of the momenta p that are not small
compared with �@=�0 then the approximation taken will
be very poor, and we do not expect either the effective
classical description or its quantization to be close to the
standard one. If, on the other hand, one is always within the
region in which the approximation can be regarded as
reliable, then both classical and quantum descriptions
should approximate the standard description.

What exactly ‘‘close to the standard description’’ means
needs, of course, some further clarification. In particular
one is assuming the existence of the usual Schrödinger
representation in which the system has a behavior that is
also consistent with observations. If this is the case, the
natural question is: How can we approximate such descrip-
tion from the polymer picture? Is there a fine enough graph
��0

that will approximate the system in such a way that all
observations are indistinguishable? Or even better, can we
define a procedure that involves a refinement of the graph
��0

such that one recovers the standard picture?
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It could also happen that a continuum limit can be
defined but does not coincide with the ‘‘expected one.’’
But there might be also physical systems for which there is
no standard description, or it just does not make sense. Can
in those cases the polymer representation, if it exists,
provide the correct physical description of the system
under consideration? For instance, if there exists a physical
limitation to the minimum scale set by �0, as could be the
case for a quantum theory of gravity, then the polymer
description would provide a true physical bound on the
value of certain quantities, such as p in our example. This
could be the case for loop quantum cosmology, where there
is a minimum value for physical volume (coming from the
full theory), and phase space points near the ‘‘singularity’’
lie at the region where the approximation induced by the
scale �0 departs from the standard classical description. If
in that case the polymer quantum system is regarded as
more fundamental than the classical system (or its standard
Wheeler-DeWitt quantization), then one would interpret
this discrepancies in the behavior as a signal of the break-
down of classical description (or its ‘‘naive’’ quantization).

In the next section we present a method to remove the
regulator �0 which was introduced as an intermediate step
to construct the dynamics. More precisely, we shall con-
sider the construction of a continuum limit of the polymer
description by means of a renormalization procedure.

V. THE CONTINUUM LIMIT

This section has two parts. In the first one we motivate
the need for a precise notion of the continuum limit of the
polymeric representation, explaining why the most direct,
and naive, approach does not work. In the second part, we
shall present the main ideas and results of the paper [6],
where the Hamiltonian and the physical Hilbert space in
polymer quantum mechanics are constructed as a contin-
uum limit of effective theories, following Wilson’s renor-
malization group ideas. The resulting physical Hilbert
space turns out to be unitarily isomorphic to the ordinary
H s � L2�R; dq� of the Schrödinger theory.

Before describing the results of [6] we should discuss
the precise meaning of reaching a theory in the continuum.
Let us for concreteness consider the B-type representation
in the q-polarization. That is, states are functions of q and
the orthonormal basis 
��q� is given by characteristic
functions with support on q � �. Let us now suppose we
have a Schrödinger state ��q� 2H s � L2�R; dq�. What
is the relation between ��q� and a state in H poly;x? We are
also interested in the opposite question, that is, we would
like to know if there is a preferred state in H s that is
approximated by an arbitrary state  �q� in H poly;x. The
first obvious observation is that a Schrödinger state ��q�
does not belong to H poly;x since it would have an infinite
norm. To see that, note that even when the would-be state
can be formally expanded in the 
� basis as

 ��q� �
X
�

����
��q�;

where the sum is over the parameter � 2 R, its associated
norm in H poly;x would be

 j��q�j2poly �
X
�

j����j2 ! 1;

which blows up. Note that in order to define a mapping P:
H s !H poly;x, there is a huge ambiguity since the values
of the function ��q� are needed in order to expand the
polymer wave function. Thus we can only define a map-
ping in a dense subset D of H s where the values of the
functions are well defined (recall that in H s the value of
functions at a given point has no meaning since states are
equivalence classes of functions). We could for instance
ask that the mapping be defined for representatives of the
equivalence classes in H s that are piecewise continuous.
From now on, when we refer to an element of the space
H s we shall be referring to one of those representatives.
Notice then that an element of H s does define an element
of Cyl	�, the dual to the space Cyl�, that is, the space of
cylinder functions with support on the (finite) lattice � �
f�1; �2; . . . ; �Ng, in the following way:

 ��q�: Cyl� ! C

such that
 

��q�� �q�� � ��j i :�
X
�

����h
�j
XN
i�1

 i
�i
ipoly�

�
XN
i�1

���i� i <1; (26)

Note that this mapping could be seen as consisting of two
parts: First, a projection P�: Cyl	 ! Cyl� such that
P���� � ���q� :�

P
i���i�
�i

�q� 2 Cyl�. The state
�� is sometimes refereed to as the ‘‘shadow of ��q� on
the lattice �.’’ The second step is then to take the inner
product between the shadow ���q� and the state  �q�with
respect to the polymer inner product h��j ipoly� . Now this
inner product is well defined. Notice that for any given
lattice � the corresponding projector P� can be intuitively
interpreted as some kind of ‘‘coarse graining map’’ from
the continuum to the lattice �. In terms of functions of q the
projection is replacing a continuous function defined on R

with a function over the lattice �  R which is a discrete
set simply by restricting � to �. The finer the lattice the
more points that we have on the curve. As we shall see in
the second part of this section, there is indeed a precise
notion of coarse graining that implements this intuitive
idea in a concrete fashion. In particular, we shall need to
replace the lattice �with a decomposition of the real line in
intervals (having the lattice points as end points).
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Let us now consider a system in the polymer represen-
tation in which a particular lattice �0 was chosen, say with
points of the form fqk 2 Rjqk � ka0; 8 k 2 Zg,
namely, a uniform lattice with spacing equal to a0. In
this case, any Schrödinger wave function (of the type that
we consider) will have a unique shadow on the lattice �0. If
we refine the lattice � � �n by dividing each interval in 2n

new intervals of length an � a0=2n we have new shadows
that have more and more points on the curve. Intuitively, by
refining infinitely the graph we would recover the original
function ��q�. Even when at each finite step the corre-
sponding shadow has a finite norm in the polymer Hilbert
space, the norm grows unboundedly and the limit cannot be
taken, precisely because we can not embed H s into
H poly. Suppose now that we are interested in the reverse
process, namely, starting from a polymer theory on a lattice
and asking for the ‘‘continuum wave function’’ that is best
approximated by a wave function over a graph. Suppose
furthermore that we want to consider the limit of the graph
becoming finer. In order to give precise answers to these
(and other) questions we need to introduce some new
technology that will allow us to overcome these apparent
difficulties. In the remaining part of this section we shall
recall these constructions for the benefit of the reader.
Details can be found in [6] (which is an application of
the general formalism discussed in [11]).

The starting point in this construction is the concept of a
scale C, which allows us to define the effective theories and
the concept of continuum limit. In our case a scale is a
decomposition of the real line in the union of closed-open
intervals that cover the whole line and do not intersect.
Intuitively, we are shifting the emphasis from the lattice
points to the intervals defined by the same points with the
objective of approximating continuous functions defined
on R with functions that are constant on the intervals
defined by the lattice. To be precise, we define an embed-
ding, for each scale Cn from H poly to H s, by means of a
step function:

 

X
m

��man�
man�q� !
X
m

��man�
�m�q� 2H s;

with 
�n�q� a characteristic function on the interval �m �
�man; �m� 1�an�. Thus, the shadows (living on the lattice)
were just an intermediate step in the construction of the
approximating function; this function is piecewise constant
and can be written as a linear combination of step functions
with the coefficients provided by the shadows.

The challenge now is to define in an appropriate sense
how one can approximate all the aspects of the theory by
means of this constant by pieces function. Then the strat-
egy is that, for any given scale, one can define an effective
theory by approximating the kinetic operator by a combi-
nation of the translation operators that shift between the
vertices of the given decomposition, in other words by a
periodic function in p. As a result one has a set of effective

theories at given scales which are mutually related by
coarse graining maps. This framework was developed in
[6]. For the convenience of the reader we briefly recall part
of that framework.

Let us denote the kinematic polymer Hilbert space at the
scale Cn as H Cn , and its basis elements as e�i;Cn , where
�i � �ian; �i� 1�an� 2 Cn. By construction this basis is
orthonormal. The basis elements in the dual Hilbert space
H 	

Cn
are denoted by!�i;Cn ; they are also orthonormal. The

states !�i;Cn have a simple action on Cyl, !�i;Cn��x0;q� �


�i;Cn�x0�. That is, if x0 is in the interval �i of Cn the result
is one and it is zero if it is not there.

Given any m � n, we define d	m;n: H 	
Cn
!H 	

Cm
as the

‘‘coarse graining’’ map between the dual Hilbert spaces,
that sends the part of the elements of the dual basis to zero
while keeping the information of the rest: d	m;n�!�i;Cn� �

!�j;Cm if i � j2n�m, in the opposite case d	m;n�!�i;Cn� � 0.
At every scale the corresponding effective theory is

given by the Hamiltonian Hn. These Hamiltonians will
be treated as quadratic forms, hn: H Cn ! R, given by

 hn� � � �2
Cn
� ;Hn �; (27)

where �2
Cn

is a normalizaton factor. We will see later that
this rescaling of the inner product is necessary in order to
guarantee the convergence of the renormalized theory. The
completely renormalized theory at this scale is obtained as

 hren
m :� lim

Cn!R
d?m;nhn; (28)

and the renormalized Hamiltonians are compatible with
each other, in the sense that

 d?m;nhren
n � hren

m :

In order to analyze the conditions for the convergence in
(28) let us express the Hamiltonian in terms of its eigen-
covectors end eigenvalues. We will work with effective
Hamiltonians that have a purely discrete spectrum ( labeled
by �)Hn ���;Cn � E�;Cn��;Cn . We shall also introduce, as
an intermediate step, a cutoff in the energy levels. The
origin of this cutoff is in the approximation of the
Hamiltonian of our system at a given scale with a
Hamiltonian of a periodic system in a regime of small
energies, as we explained earlier. Thus, we can write

 h�cutoff
m �

X�cutoff

��0

E�;Cm��;Cm ���;Cm; (29)

where the eigen-covectors ��;Cm are normalized according
to the inner product rescaled by 1

�2
Cn

, and the cutoff can vary

up to a scale-dependent bound, �cutoff � �max�Cm�. The
Hilbert space of covectors together with such inner product
will be called H ?ren

Cm
.

In the presence of a cutoff, the convergence of the
microscopically corrected Hamiltonians, Eq. (28) is
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equivalent to the existence of the following two limits. The
first one is the convergence of the energy levels,

 lim
Cn!R

E�;Cn � Eren
� : (30)

Second is the existence of the completely renormalized
eigen-covectors,

 lim
Cn!R

d?m;n��;Cn � �ren
�;Cm
2H ?ren

Cm
 Cyl?: (31)

We clarify that the existence of the above limit means that
�ren
�;Cm
��x0;q� is well defined for any �x0;q 2 Cyl. Notice

that this pointwise convergence, if it can take place at all,
will require the tuning of the normalization factors �2

Cn
.

Now we turn to the question of the continuum limit of
the renormalized covectors. First we can ask for the exis-
tence of the limit

 lim
Cn!R

�ren
�;Cn
��x0;q� (32)

for any �x0;q 2 Cyl. When this limits exists there is a
natural action of the eigen-covectors in the continuum
limit. Below we consider another notion of the continuum
limit of the renormalized eigen-covectors.

When the completely renormalized eigen-covectors ex-
ist, they form a collection that is d?-compatible,
d?m;n�ren

�;Cn
� �ren

�;Cm
. A sequence of d?-compatible normal-

izable covectors define an element of H� ?ren
R , which is the

projective limit of the renormalized spaces of covectors

 H� ?ren
R

:� lim� Cn!RH
?ren
Cn

: (33)

The inner product in this space is defined by

 �f�Cng; f�Cng�
ren
R

:� lim
Cn!R

��Cn ;�Cn�
ren
Cn
:

The natural inclusion of C10 in H� ?ren
R is by an antilinear

map which assigns to any � 2 C10 the d?-compatible
collection �shad

Cn
:�

P
�i!�i

���L��i�� 2H ?ren
Cn
 Cyl?;

�shad
Cn

will be called the shadow of � at scale Cn and acts
in Cyl as a piecewise constant function. Clearly other types
of test functions like Schwartz functions are also naturally

included in H� ?ren
R . In this context a shadow is a state of the

effective theory that approximates a state in the continuum
theory.

Since the inner product in H� ?ren
R is degenerate, the

physical Hilbert space is defined as

 H ?
phys

:�H� ?ren
R = ker��; ��ren

R ; H phys :�H ??
phys:

The nature of the physical Hilbert space, whether it is
isomorphic to the Schrödinger Hilbert space, H s, or not, is
determined by the normalization factors �2

Cn
which can be

obtained from the conditions asking for compatibility of
the dynamics of the effective theories at different scales.

The dynamics of the system under consideration selects the
continuum limit.

Let us now return to the definition of the Hamiltonian in
the continuum limit. First consider the continuum limit of
the Hamiltonian (with cutoff) in the sense of its pointwise
convergence as a quadratic form. It turns out that if the
limit of Eq. (32) exists for all the eigen-covectors allowed
by the cutoff, we have h�cutoff ren

R
:�H poly;x ! R defined by

 h�cutoff ren
R ��x0;q� :� lim

Cn!R
h�cutoff ren
n ���x0;q�Cn�: (34)

This Hamiltonian quadratic form in the continuum can be
coarse grained to any scale and, as can be expected, it
yields the completely renormalized Hamiltonian quadratic
forms at that scale. However, this is not a completely
satisfactory continuum limit because we can not remove
the auxiliary cutoff �cutoff . If we tried, as we include more
and more eigen-covectors in the Hamiltonian the calcula-
tions done at a given scale would diverge and doing them in
the continuum is just as divergent. Below we explore a
more successful path.

We can use the renormalized inner product to induce an

action of the cutoff Hamiltonians on H� ?ren
R

 h�cutoff ren
R �f�Cng� :� lim

Cn!R
h�cutoff ren
n ���Cn ; ��

ren
Cn
�;

where we have used the fact that ��Cn; ��
ren
Cn
2H Cn . The

existence of this limit is trivial because the renormalized
Hamiltonians are finite sums and the limit exists term by
term.

These cutoff Hamiltonians descend to the physical
Hilbert space

 h�cutoff ren
R ��f�Cng�� :� h�cutoff ren

R �f�Cng�

for any representative f�Cng 2 �f�Cng� 2H ?
phys.

Finally we can address the issue of removal of the cutoff.

The Hamiltonian hren
R : H� ?ren

R ! R is defined by the limit

 hren
R

:� lim
�cutoff!1

h�cutoff ren
R

when the limit exists. Its corresponding Hermitian form in
H phys is defined whenever the above limit exists. This
concludes our presentation of the main results of [6]. Let us
now consider several examples of systems for which the
continuum limit can be investigated.

VI. EXAMPLES

In this section we shall develop several examples of
systems that have been treated with the polymer quantiza-
tion. These examples are simple quantum mechanical sys-
tems, such as the simple harmonic oscillator and the free
particle, as well as a quantum cosmological model known
as loop quantum cosmology.
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A. The simple harmonic oscillator

In this part, let us consider the example of a simple
harmonic oscillator (SHO) with parameters m and !,
classically described by the following Hamiltonian:

 H �
1

2m
p2 �

1

2
m!2x2:

Recall that from these parameters one can define a length
scale D �

�������������
@=m!

p
. In the standard treatment one uses this

scale to define a complex structure JD (and an inner
product from it), as we have described in detail that
uniquely selects the standard Schrödinger representation.

At scale Cn we have an effective Hamiltonian for the
SHO given by

 HCn �
@

2

ma2
n

�
1� cos

anp
@

�
�

1

2
m!2x2: (35)

If we interchange position and momentum, this
Hamiltonian is exactly that of a pendulum of mass m,
length l and subject to a constant gravitational field g:

 Ĥ Cn � �
@

2

2ml2
d2

d2 �mgl�1� cos�;

where those quantities are related to our system by

 l �
@

m!an
; g �

@!
man

;  �
pan
@
:

That is, we are approximating, for each scale Cn, the
SHO by a pendulum. There is, however, an important
difference. From our knowledge of the pendulum system,
we know that the quantum system will have a spectrum for
the energy that has two different asymptotic behaviors, the
SHO for low energies and the planar rotor in the higher
end, corresponding to oscillating and rotating solutions,
respectively.2 As we refine our scale and both the length of
the pendulum and the height of the periodic potential
increase, we expect to have an increasing number of oscil-
lating states (for a given pendulum system, there is only a
finite number of such states). Thus, it is justified to consider
the cutoff in the energy eigenvalues, as discussed in the last
section, given that we only expect a finite number of states
of the pendulum to approximate SHO eigenstates. With
these considerations in mind, the relevant question is
whether the conditions for the continuum limit to exist
are satisfied. This question has been answered in the affir-
mative in [6]. What was shown there was that the eigen-
values and eigenfunctions of the discrete systems, which
represent a discrete and nondegenerate set, approximate
those of the continuum, namely, of the standard harmonic

oscillator when the inner product is renormalized by a
factor �2

Cn
� 1=2n. This convergence implies that the con-

tinuum limit exists as we understand it. Let us now con-
sider the simplest possible system, a free particle, that has
nevertheless the particular feature that the spectrum of the
energy is continuous.

B. Free polymer particle

In the limit !! 0, the Hamiltonian of the simple har-
monic oscillator (35) goes to the Hamiltonian of a free
particle, and the corresponding time independent
Schrödinger equation, in the p-polarization, is given by

 

�
@

2

ma2
n

�
1� cos

anp
@

�
� ECn

�
~ �p� � 0;

where we now have that p 2 S1, with p 2 �� �@
an
; �@an �.

Thus, we have

 ECn �
@

2

ma2
n

�
1� cos

anp
@

�
� ECn;max � 2

@
2

ma2
n
: (36)

At each scale the energy of the particle we can describe is
bounded from above and the bound depends on the scale.
Note that in this case the spectrum is continuous, which
implies that the ordinary eigenfunctions of the Hilbert are
not normalizable. This imposes an upper bound in the
value that the energy of the particle can have, in addition
to the bound in the momentum due to its
‘‘compactification.’’

Let us first look for eigen-solutions to the time indepen-
dent Schrödinger equation, that is, for energy eigenstates.
In the case of the ordinary free particle, these correspond to
constant momentum plane waves of the form e��ipx=@� and
such that the ordinary dispersion relation p2=2m � E is
satisfied. These plane waves are not square-integrable and
do not belong to the ordinary Hilbert space of the
Schrödinger theory, but they are still useful for extracting
information about the system. For the polymer free particle
we have

 

~ Cn�p� � c1��p� PCn� � c2��p� PCn�;

where PCn is a solution of the previous equation consider-
ing a fixed value of ECn . That is,

 PCn � P�ECn� �
@

an
arccos

�
1�

ma2
n

@
2 ECn

�
:

The inverse Fourier transform yields, in the ‘‘x representa-
tion’’,

  Cn�xj� �
1�������
2�
p

Z �@=an

��@=an

~ �p�e�ian=@�pjdp

�
@
�������
2�
p

an
�c1e

ixjPCn=@ � c2e
�ixjPCn=@�; (37)

with xj � anj for j 2 Z. Note that the eigenfunctions are

2Note that both types of solutions are, in the phase space,
closed. This is the reason behind the purely discrete spectrum.
The distinction we are making is between those solutions inside
the separatrix, that we call oscillating, and those that are above it
that we call rotating.
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still delta functions (in the p representation) and thus not
(square) normalizable with respect to the polymer inner
product, that in the p polarization is just given by the
ordinary Haar measure on S1, and there is no quantization
of the momentum (its spectrum is still truly continuous).

Let us now consider the time dependent Schrödinger
equation,

 i@@t ~��p; t� � Ĥ � ~��p; t�;

which now takes the form

 

@
@t

~��p; t� �
�i@
man

�1� cos�anp=@�� ~��p; t�

that has as its solution

 

~��p; t� � e��i@=man��1�cos�anp=@��t ~ �p� � e��iECn=@�t ~ �p�

for any initial function ~ �p�, where ECn satisfies the dis-
persion relation (36). The wave function ��xj; t�, the
xj-representation of the wave function, can be obtained
for any given time t by Fourier transforming with (37) the
wave function ~��p; t�.

In order to check out the convergence of the microscopi-
cally corrected Hamiltonians we should analyze the con-
vergence of the energy levels and of the proper covectors.
In the limit n! 1, ECn ! E � p2=2m so we can be
certain that the eigenvalues for the energy converge
(when fixing the value of p). Let us write the proper
covector as �Cn � � Cn; ��

ren
Cn
2H ?ren

Cn
. Then we can

bring microscopic corrections to scale Cm and look for
convergence of such corrections

 �ren
Cm
�
:

lim
n!1

d?m;n�Cn:

It is easy to see that given any basis vector e�i 2H Cm
the following limit

 �ren
Cm
�e�i;Cm� � lim

Cn!1
�Cn�dn;m�e�i;Cm��

exists and is equal to

 �shad
Cm
�e�i;Cm� � �d

?�Schr��e�i;Cm� � �Schr�iam�;

where �shad
Cm

is calculated using the free particle
Hamiltonian in the Schrödinger representation. This ex-
pression defines the completely renormalized proper cov-
ector at the scale Cm.

C. Polymer quantum cosmology

In this section we shall present a version of quantum
cosmology that we call polymer quantum cosmology. The
idea behind this name is that the main input in the quan-
tization of the corresponding mini-superspace model is the
use of a polymer representation as here understood.
Another important input is the choice of fundamental
variables to be used and the definition of the Hamiltonian

constraint. Different research groups have made different
choices. We shall take here a simple model that has re-
ceived much attention recently, namely, a Friedman-
Robertson-Walker cosmology with k � 0 and coupled to
a massless scalar field ’. As we shall see, a proper treat-
ment of the continuum limit of this system requires new
tools under development that are beyond the scope of this
work. We will thus restrict ourselves to the introduction of
the system and the problems that need to be solved.

The system to be quantized corresponds to the phase
space of cosmological spacetimes that are homogeneous
and isotropic and for which the homogeneous spatial slices
have a flat intrinsic geometry (k � 0 condition). The only
matter content is a massless scalar field ’. In this case the
spacetime geometry is given by metrics of the form

 d s2 � �dt2 � a2�t��dx2 � dy2 � dz2�;

where the function a�t� carries all the information and
degrees of freedom of the gravity part. In terms of the
coordinates �a; pa; ’; p’� for the phase space � of the
theory, all the dynamics is captured in the Hamiltonian
constraint

 C :� �
3

8

p2
a

jaj
� 8�G

p2
’

2jaj3

 0:

The first step is to define the constraint on the kinematical
Hilbert space to find physical states and then a physical
inner product to construct the physical Hilbert space. First
note that one can rewrite the equation as:

 

3

8
p2
aa

2 � 8�G
p2
’

2
:

If, as is normally done, one chooses ’ to act as an internal
time, the right-hand side would be promoted, in the quan-
tum theory, to a second derivative. The left-hand side is,
furthermore, symmetric in a and pa. At this point we have
the freedom in choosing the variable that will be quantized
and the variable that will not be well defined in the polymer
representation. The standard choice is that pa is not well
defined and thus, a and any geometrical quantity derived
from it, is quantized. Furthermore, we have the choice of
polarization on the wave function. In this respect the
standard choice is to select the a-polarization, in which a
acts as multiplication and the approximation of pa, namely
sin��pa�=� acts as a difference operator on wave functions
of a. For details of this particular choice see [5]. Here we
shall adopt the opposite polarization, that is, we shall have
wave functions ��pa; ’�.

Just as we did in the previous cases, in order to gain
intuition about the behavior of the polymer quantized
theory, it is convenient to look at the equivalent problem
in the classical theory, namely, the classical system we
would get be approximating the non-well-defined observ-
able (pa in our present case) by a well-defined object
(made of trigonometric functions). Let us for simplicity
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choose to replace pa � sin��pa�=�. With this choice we
get an effective classical Hamiltonian constraint that de-
pends on �:

 C � :� �
3

8

sin��pa�2

�2jaj
� 8�G

p2
’

2jaj3

 0:

We can now compute effective equations of motion by
means of the equations: _F :� fF; C�g, for any observable
F 2 C1���, and where we are using the effective (first
order) action

 S� �
Z

d��pa _a� p’ _’� NC��;

with the choice N � 1. The first thing to notice is that the
quantity p’ is a constant of the motion, given that the
variable ’ is cyclic. The second observation is that _’ �

8�G p’
jaj3

has the same sign as p’ and never vanishes. Thus
’ can be used as a (n internal) time variable. The next
observation is that the equation for � _a

a�
2, namely, the effec-

tive Friedman equation, will have a zero for a nonzero
value of a given by

 a	 �
32�G

3
�2p2

’:

This is the value at which there will be bounce if the
trajectory started with a large value of a and was contract-
ing. Note that the ‘‘size’’ of the universe when the bounce
occurs depends on both the constant p’ (that dictates the
matter density) and the value of the lattice size �. Here it is
important to stress that for any value of p’ (that uniquely
fixes the trajectory in the �a; pa� plane), there will be a
bounce. In the original description in terms of Einstein’s
equations (without the approximation that depends on �),
there is no such bounce. If _a < 0 initially, it will remain
negative and the universe collapses, reaching the singular-
ity in a finite proper time. What happens within the effec-
tive description if we refine the lattice and go from � to
�n :� �=2n? The only thing that changes, for the same
classical orbit labeled by p’, is that the bounce occurs at a
‘‘later time’’ and for a smaller value of a	 but the qualita-
tive picture remains the same.

This is the main difference with the systems considered
before. In those cases, one could have classical trajectories
that remained, for a given choice of parameter �, within the
region where sin��p�=� is a good approximation to p. Of
course there were also classical trajectories that were out-
side this region but we could then refine the lattice and find
a new value �0 for which the new classical trajectory is well
approximated. In the case of the polymer cosmology, this is
never the case: Every classical trajectory will pass from a
region where the approximation is good to a region where
it is not; this is precisely where the ‘‘quantum corrections’’
kick in and the universes bounces.

Given that in the classical description, the ‘‘original’’
and the ‘‘corrected’’ descriptions are so different we expect

that, upon quantization, the corresponding quantum theo-
ries, namely, the polymeric and the Wheeler-DeWitt, will
be related in a nontrivial way (if at all).

In this case, with the choice of polarization and for a
particular factor ordering we have

 

��
1

�
sin��pa�

@
@pa

�
2
�

32�
3
‘2
p
@2

@’2

�
���pa;’� � 0

as the polymer Wheeler-DeWitt equation.
In order to approach the problem of the continuum limit

of this quantum theory, we have to realize that the task is
now somewhat different than before. This is so given that
the system is now a constrained system with a constraint
operator rather than a regular nonsingular system with an
ordinary Hamiltonian evolution. Fortunately for the system
under consideration, the fact that the variable ’ can be
regarded as an internal time allows us to interpret the
quantum constraint as a generalized Klein-Gordon equa-
tion of the form

 

@2

@’2
� � �� ��

where the operator �� is ‘‘time independent.’’ This allows
us to split the space of solutions into ‘‘positive and negative
frequency,’’ introduce a physical inner product on the
positive frequency solutions of this equation and a set of
physical observables in terms of which to describe the
system. That is, one reduces in practice the system to one
very similar to the Schrödinger case by taking the positive
square root of the previous equation: @

@’� �
�����
�
p
���.

The question we are interested is whether the continuum
limit of these theories ( labeled by �) exists and whether it
corresponds to the Wheeler-DeWitt theory. A complete
treatment of this problem lies, unfortunately, outside the
scope of this work and will be reported elsewhere [12].

VII. DISCUSSION

Let us summarize our results. In the first part of the
article we showed that the polymer representation of the
canonical commutation relations can be obtained as the
limiting case of the ordinary Fock-Schrödinger represen-
tation in terms of the algebraic state that defines the rep-
resentation. These limiting cases can also be interpreted in
terms of the naturally defined coherent states associated to
each representation labeled by the parameter d, when they
become infinitely ‘‘squeezed.’’ The two possible limits of
squeezing lead to two different polymer descriptions that
can nevertheless be identified, as we have also shown, with
the two possible polarizations for an abstract polymer
representation. This resulting theory has, however, very
different behavior as the standard one: The Hilbert space
is nonseparable, the representation is unitarily inequivalent
to the Schrödinger one, and natural operators such as p̂ are
no longer well defined. This particular limiting construc-

POLYMER QUANTUM MECHANICS AND ITS CONTINUUM LIMIT PHYSICAL REVIEW D 76, 044016 (2007)

044016-15



tion of the polymer theory can shed some light for more
complicated systems such as field theories and gravity.

In the regular treatments of dynamics within the poly-
mer representation, one needs to introduce some extra
structure, such as a lattice on configuration space, to con-
struct a Hamiltonian and implement the dynamics for the
system via a regularization procedure. How does this re-
sulting theory compare to the original continuum theory
one had from the beginning? Can one hope to remove the
regulator in the polymer description? As they stand there is
no direct relation or mapping from the polymer to a con-
tinuum theory (in case there is one defined). As we have
shown, one can indeed construct in a systematic fashion
such relation by means of some appropriate notions related
to the definition of a scale, closely related to the lattice one
had to introduce in the regularization. With this important
shift in perspective, and an appropriate renormalization of
the polymer inner product at each scale one can, subject to
some consistency conditions, define a procedure to remove
the regulator, and arrive to a Hamiltonian and a Hilbert
space.

As we have seen, for some simple examples such as a
free particle and the harmonic oscillator one indeed recov-
ers the Schrödinger description back. For other systems,
such as quantum cosmological models, the answer is not as

clear, since the structure of the space of classical solutions
is such that the ‘‘effective description’’ introduced by the
polymer regularization at different scales is qualitatively
different from the original dynamics. A proper treatment of
these class of systems is underway and will be reported
elsewhere [12].

Perhaps the most important lesson that we have learned
here is that there indeed exists a rich interplay between the
polymer description and the ordinary Schrödinger repre-
sentation. The full structure of such a relation still needs to
be unravelled. We can only hope that a full understanding
of these issues will shed some light in the ultimate goal of
treating the quantum dynamics of background independent
field systems such as general relativity.
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CORICHI, VUKAŠINAC, AND ZAPATA PHYSICAL REVIEW D 76, 044016 (2007)

044016-16


