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We study the importance of lattice refinement in achieving a successful inflationary era. We solve, in the
continuum limit, the second order difference equation governing the quantum evolution in loop quantum
cosmology, assuming both a fixed and a dynamically varying lattice in a suitable refinement model. We
thus impose a constraint on the potential of a scalar field, so that the continuum approximation is not
broken. Considering that such a scalar field could play the role of the inflaton, we obtain a second
constraint on the inflationary potential so that there is consistency with the cosmic microwave background
data on large angular scales. For a m2�2=2 inflationary model, we combine the two constraints on the
inflaton potential to impose an upper limit on m, which is severely fine-tuned in the case of a fixed lattice.
We thus conclude that lattice refinement is necessary to achieve a natural inflationary model.
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I. INTRODUCTION

Loop quantum gravity (LQG) provides a method of
quantizing gravity in a background independent, nonper-
turbative way. Quantum gravity is essential when curvature
becomes large, as, for example, in the early stages of the
evolution of the universe. Applying LQG in a cosmological
context leads to loop quantum cosmology (LQC) [1],
which is a symmetry reduction of the infinite dimensional
phase space of the full theory, allowing us to study certain
aspects of the theory analytically. In particular, it has been
shown that classical big bang [2] and black hole singular-
ities [3] are removed in LQC, in a well-defined manner.
The discreteness of spatial geometry, a key element of the
full theory, leads to successes in LQC which do not hold in
the Wheeler-DeWitt (WDW) quantum cosmology.

In LQC, the quantum evolution is governed by a second
order difference equation, rather than the second order
differential equation of the WDW theory. This is at the
heart of LQC’s success at removing singularities [2,3]. Of
equal importance is the continuum limit of these equations,
which can lead to a behavior which is qualitatively differ-
ent from the classical cosmological evolution [4]. As the
universe becomes large and enters the semiclassical re-
gime, the WDW differential equation becomes a very good
approximation to the difference equation of LQC.

By deriving the effective equations of motion in the
continuum limit, a semiclassical approach can be used to
investigate possible phenomenological signatures of the
theory. In particular, it was hoped that LQC would help
overcome the extreme fine-tuning necessary to achieve
successful inflation in general relativity [5]. However, it
has been shown [6] that semiclassical corrections are in-
sufficient to alleviate this difficulty. There remains the
possibility that effects due to the underlying discrete nature
of LQC may come to inflation’s aid. Here, we will explore
this possibility and show that the discrete nature of the

early universe naturally introduces constraints on a subse-
quent inflationary era.

It has been suggested, by heuristic considerations, that
for LQC to be considered physical the scale at which the
discrete structure of space-time becomes significant must
shrink as the universe expands [7]. This lattice refinement
has been put on a more rigorous footing in Ref. [8]. In
particular, Ref. [8] has analyzed implications of lattice
refinement for the semiclassical behavior of the dynamical
difference equations. Studying the effect of different
choices for the lattice spacings on the solutions of the
Hamiltonian constraint, the authors of Ref. [8] deduced
the stability properties of the various refinement models.
Combining the stability analysis with a confirmation of the
appropriate classical limit, the suitable refinement models
were constrained [8].

In what follows, in addition to discussing the effects of
LQC on an inflationary era, we will show that lattice
refinement is necessary to support a massive scalar field
(in our context the inflaton), and we will generalize to
matter components with an arbitrary scale factor depen-
dence. In particular, we will argue that lattice refinement
renders a successful inflationary era more natural.

In Section II, we briefly discuss elements of LQC which
we will later use. We are interested in isotropic models
described in terms of one dynamical parameter. In
Section III, we quantize the theory and derive the
Hamiltonian constraint. We then take its continuum limit,
assuming that the regulating length (which is proportional
to the length of the holonomy) is constant. We also discuss
quantization ambiguities. In Section III C, we investigate
solutions of the full Hamiltonian constraint for large scales,
which is indeed the WDW equation for a massive scalar
field. In Section IV, we discuss lattice refinement and we
deduce the constraints imposed on the inflationary poten-
tial. In Section V, we briefly discuss nonflat geometries. We
round up our conclusions in Section VI.
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II. ELEMENTS OF LOOP QUANTUM
COSMOLOGY

We deal with isotropic models described in terms of the
scalar field a�t�, thus there is only one kinematical degree
of freedom. In connection variables, it is parametrized by
the triad component ~p conjugate to the connection compo-
nent ~c. Their relation to the metric variable a is [9]

 j~pj � a2 and ~c � k� � _a; (1)

where over-dot denotes derivatives with respect to cosmo-
logical time, � is the Barbero-Immirzi parameter, repre-
senting a quantum ambiguity parameter of the theory, and
k depends on the intrinsic spatial curvature (k � 0;�1).
We will concentrate on flat universes, thus k � 0. The triad
has an orientation, determined by the sign of ~p, and since
the scale factor has no orientation, we used an absolute
value in the above equation. The triad ~p incorporates
information about the three-geometry through the scale
factor a, while the connection ~c has information about
the curvature, which in our case (flat and isotropic geome-
try) is contained in the extrinsic curvature proportional to
_a. The canonical variables ~c, ~p are related through

 f~c; ~pg �
��
3
V0; (2)

where � � 8�G and V0 is the volume of the elementary
cell V adapted to the fiducial triad. Defining

 p � V2=3
0 ~p and c � V1=3

0 ~c; (3)

with the triad component p determining the physical vol-
ume of the fiducial cell, and the connection component c
determining the rate of change of the physical edge length
of the fiducial cell, one obtains

 fc; pg �
��
3
; (4)

independent of the volume of the fiducial cell.
To proceed in the quantum theory, one follows the

procedure used in the full LQG theory. Thus, in LQC one
takes ei�0c=2, with�0 an arbitrary real number and p as the
elementary classical variables, which have well-defined
operator analogues [9].

Using the Dirac bra-ket notation and setting ei�0c=2 �
hcj�i, the eigenstates of p̂ are the basis vectors j�i:

 p̂j�i �
��@j�j

6
j�i: (5)

Using the volume operator V̂ � jp̂j3=2, representing the
volume of the elementary cell V , with eigenvalues V� �
���@j�j=6�3=2, one gets [4]

 V̂j�i �
�
��@j�j

6

�
3=2
j�i: (6)

Notice that since we will be concerned with the large scale

behavior of the LQC equations, we will typically neglect
the sign ambiguity that arises because the triads can have
two different orientations. We thus avoid numerous factors
of sgn��� appearing in subsequent equations.

To define the inverse volume operator, one has to trace
over SU(2) valued holonomies. Since there is a freedom in
choosing the irreducible representation to perform the
trace, an ambiguity, labeled by J, arises. More precisely,
the half-integer J stands for the spin of the representation.
At this point, it is important to note that the same ambiguity
arises in the gravitational part of the Hamiltonian con-
straint, since one has again to trace over SU(2) valued
holonomies. Usually one quantizes the gravitational part
of the Hamiltonian constraint using the fundamental J �
1=2 representation, and the ambiguity is only investigated
for the matter part. This issue is further discussed in
Section III B.

Let us use the J � 1=2 irreducible representation of
SU(2). The inverse volume operator is diagonal in the
j�i basis and is given by [9]

 

dV�1j�i �
�������� 6

��@�0

�
V1=3
���0

� V1=3
���0

���������3
j�i; (7)

where �0 is proportional to the length of the holonomy. At
this point, we would like to stress that the regulating length
�0 is the crucial parameter in the quantum corrections. In
Eq. (7) the eigenvalues are bounded and approach zero
near the classical singularity, in contrast to the classical
case where the eigenvalues diverge at the singularity � �
0. The eigenvalues reach their maximum at a characteristic
scale equal to �0, while at larger � they approach the
classical values and below �0 they are suppressed com-
pared to their classical analogues [7]. The inverse volume
is cut off for small volumes and, as it has been shown [10],
the generalization to higher J will push the cutoff region to
larger volumes.

III. HAMILTONIAN CONSTRAINT

The dynamics are determined completely by the
Hamiltonian operator, the gravitational part of which, in
the fundamental representation, is [7]

 Ĉ g �
2i

�2
@�3�3

0

tr
X
ijk

�ijk�ĥiĥjĥ
�1
i ĥ�1

j ĥk�ĥ
�1
k ; V̂	��p̂�; (8)

where

 ĥ i � cos
�
�0c

2

�
� i�i sin

�
�0c

2

�
; (9)

denote the holonomies, with �i the Pauli spin matrices; the
trace is taken over the SU(2) indices. We quantize this by
setting
 

p̂j�i � pj�i andde�0c=2j�i � e�0�d=d��j�i � j���0i: (10)
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The action of the self-adjoint Hamiltonian constraint op-

erator, Ĥ g � �Ĉg � Ĉyg �=2, on the basis states, j�i, is
 

Ĥ gj�i �
3

4�2�3
@�3

0

f�R��� � R��� 4�0�	j�� 4�0i

� 4R���j�i

� �R��� � R��� 4�0�	j�� 4�0ig; (11)

where

 R��� � ���@=6�3=2jj���0j
3=2 � j���0j

3=2j: (12)

We impose the constraint equation on the physical wave-
functions j�i, which are those annihilated by the con-
straint operator, i.e., they have to fulfill the Wheeler-
DeWitt equation, since the classical expression must van-
ish. Such states can be expanded using the basis states as
j�i �

P
������j�i, with summation over values of �

and where the dependence of the coefficients on � repre-
sents the matter degrees of freedom. Since the states j�i
are eigenstates of the triad operator, the coefficients �����
represent the state in the triad representation. Thus, quan-
tizing the Friedmann equation along the lines of the con-
straint in the full LQG theory, one gets the following
difference equation [11]
 

�jV��5�0
� V��3�0

j � jV���0
� V���0

j	���4�0
���

� 4jV���0
V���0

j�����

� �jV��3�0
� V��5�0

j � jV���0
� V���0

j	���4�0
���

� �
4�2�3

@�3
0

3
H���������; (13)

where the matter Hamiltonian Ĥ� is assumed to act
diagonally on the basis states with eigenvalue H����.
Equation (13) is indeed the quantum evolution (in internal
time �) equation. There is no continuous variable (the
scale factor in classical cosmology), but a label � with
discrete steps. The wave-function ����� depending on
internal time � and matter fields � determines the depen-
dence of matter fields on the evolution of the universe.

A. Continuum limit

We consider the continuum (i.e., �
 �0) limit of the
Hamiltonian constraint operator acting on the physical

states, i.e., Ĥ gj�i. Expanding around the small regulating
length, �0, we get
 

V����0
� V��	�0

�
3

2

�
��@

6

�
3=2
�0�1=2

�
�� 	�

�0

4�

� ��2 � 	2� �
�2

0

24�2 ��
3 � 	3�

�O

�
�3

0

�3

�
� higher orders

�
: (14)

From Eqs. (13) and (14) we obtain, in the small �0 limit,
that
 

9

2�2�3
@

�
��@

6

�
3=2
��2

0 �1=2

�
���4�0

��� � 2�����

����4�0
��� �

�0

�
f���4�0

��� ����4�0
���g

�
�2

0

�2 f���4�0
��� ����4�0

���g

�
�2

0

24�2 f���4�0
��� � 2����� ����4�0

���g

�O

�
�3

0

�3

��
� �H���������: (15)

The above second order difference equation distinguishes
the components of the wave-functions in different lattices
of spacing 4�0. Assuming that � does not vary much on
scales of the order of 4�0 (known as preclassicality [12]),
one can smoothly interpolate between the points on the
discrete function ����� and approximate them by the
continuous function ���;��. Under this assumption, the
difference equation is very well approximated by a differ-
ential equation for a continuous wave-function. As we will
discuss later, it is this assumption that can break down at
large scales, leading to deviations from the classical
behavior.

Let us consider the parameter �0 entering in the regu-
larization of the Hamiltonian constraint to be a constant
real number (the case of lattice refinement will be ad-
dressed in Section IV). In other words, let us assume a
fixed spatial lattice throughout the whole evolution of the
universe. Expanding the wave-function ���� 4�0; �� in
Taylor series we obtain
 

���� 4�0; �� � ���;�� �
@���;��

@�
�4�0�

�
1

2

@2���;��

@�2 �16�2
0�

�O

�
�3

0

@3���;��

@�3

�
�O

�
�4

0

@4���;��

@�4

�
� � � � : (16)

Applying Eq. (16) in the difference equation Eq. (15) we
get
 

36

�2�3
@

�
��@

6

�
3=2
� ����
�
p @2���;��

@�2 �
@2

@�2 �
����
�
p

���;���
�

�O��0� �O��2
0� � � � � � �H����

����
�
p

���;��;

(17)

where � � � denote higher order corrections in �0.
Classically, the matter part of the Hamiltonian constraint
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for a massive scalar field is just

 H � � �
�P2

�

2a3 � a
3V���

�
; (18)

with momentum P� and potential V���. To quantize the
above Hamiltonian constraint we use

 P̂ ���p;�� � �i@
@��p;��
@�

and

�̂��p;�� � ���p;��;

(19)

while the expressions for the volume and inverse volume

operators, V̂ and dV�1, are given by Eqs. (6) and (7),
respectively. Taking then the continuum limit, one obtains
 

Ĥ����;�� � �3
�

6@

��3

�
1=2
��3=2 @

2���;��

@�2

�

�
��@

6

�
3=2
�3=2V������;��

�O��0� � � � � : (20)

From Eqs. (17) and (20), the full Hamiltonian constraint,

�Ĥ g � Ĥ��j�i � 0, reads
 ����
�
p @2���;��

@�2 �
@2

@�2 �
����
�
p

���;���

� 3��3=2 @
2���;��

@�2 �
�2�3

@

36
V����3=2���;��

�O��0� � � � � � 0; (21)

or, equivalently, in terms of p with

 p � ��@�=6; (22)

one obtains
 ����
p
p @2��p;��

@p2 �
@2

@p2 �
����
p
p

��p;��� � 3p�3=2 @
2��p;��

@�2

�
6

�@2 p
3=2V�����p;�� �O��0� � � � � � 0; (23)

which is just a particular factor ordering of the Wheeler-
DeWitt equation for a massive scalar field.

B. Ambiguities

Thus far we have neglected any quantization ambigu-
ities, which can have significant consequences for the
predictions of LQC [6,10]. As was discussed in
Section II, there is a fundamental ambiguity arising from
our choice of representation for the holonomies. It is
possible to account for this ambiguity in the eigenvalues
of the inverse volume operator [10], however constructing
the gravitational part of the Hamiltonian constraint in non-
fundamental (J � 1=2) representations results in a higher
order difference equation [7]. For J � 1 the difference

equation has fundamental step-size equal to 2�0, and it
is of order 8J � 8 [11]. Being of higher order, spurious
solutions may arise [11] suggesting that representations of
higher order than the fundamental representation may not
lead to the correct quantum theory. While it may appear
more natural to choose the same representation for both the
matter and gravitational parts of the Hamiltonian con-
straint, there is no a priori reason this should be the case.
Here we set J � 1=2 in the gravitational part of the con-
straint since it is the most tractable, while leaving it un-
specified in the matter part, to remain as general as
possible.

The J ambiguity arises only in the inverse volume
eigenvalues, which are given in general by [7]

 

dV�1j�i �
�������� 9

��@�0LJ�J� 1��2J� 1�

�
XJ

m��J

mV2L=3
��2m�0

��������3=�2�1�L��
j�i; (24)

where 0< L< 1 is a second quantization ambiguity com-
ing from the classical Poisson bracket [7]

 fc; jpjLg �
1

3
��Lsgn�p�jpjL�1: (25)

Taking the �
 �0 limit, Eq. (24) implies
 dV�1j�i �

�
1�
�L� 2��3J2 � 3J� 1��2

0

5�2

�O

�
�4

0

�4

�
� � � �

�
jpj�3=2j�i: (26)

There are also ambiguities arising from the classical matter
Hamiltonian we choose to quantize [6,13]. Classically,

 H � � �
� P2

�

2a3�n�1�
a3n �

1

a3m a
3�m�1�V���

�
(27)

is identical to Eq. (18), however they will differ in the
quantum regime. Equation (26) implies

 �V̂ dV�1�nj�i �
�

1�
n�L� 2��3J2 � 3J� 1��2

0

5�2

�O

�
�4

0

�4

�
� � � �

�
j�i: (28)

Equations (26) and (28) imply that all quantum ambiguities
are of order O��2

0=�
2�; thus they do not affect the results

of Section III A.

C. Wheeler-DeWitt solutions

From Eq. (23) we see that for large scales the equation
we want to solve is the standard Wheeler-DeWitt equation,
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 ����
p
p @2��p;��

@p2 �
@2

@p2 �
����
p
p

��p;��� � �p3=2V�����p;��

� 0; (29)

where

 � �
6

�@2 : (30)

At this point we approximate the dynamics of � to be such
that

 V��� � p
�3=2V�; (31)

with V� a constant. For an inflaton field during slow-roll
inflation, V���  const., so we expect 
  3=2 in this era
(which should be during the continuum epoch to be com-
patible with observations). By separation of variables
��p;�� � ��p�����, we get

 

����
p
p d2��p�

dp2 �
d2

dp2 �
����
p
p

��p�� � �p
V���p�  0: (32)

Equation (32) has solutions

 ��p� � C1p
1=4J ��

3
p
=�2
�3�

�
2
������
2�
p �������

V�
p

2
� 3
p�2
�3�=4

�
� C2p1=4Y ��

3
p
=�2
�3�

�
2
������
2�
p �������

V�
p

2
� 3
p�2
�3�=4

�
; (33)

where J and Y are Bessel functions of the first and second
kind, respectively, and C1 and C2 are integration constants.
It is clear that for 
 > 1=2, the period of the solution
decreases with increasing �. Without lattice refinement
(to be discussed in the next section) the discrete nature of
the underlying lattice would eventually be unable to sup-
port the oscillations, and the assumption of preclassicality
will break down, implying that the discrete nature of space-
time becomes significant on very large scales.

We can see this rigorously by using the Bessel function
expansions

 J 	�x� !

�������
2

�x

s
cos

�
x�

	�
2
�
�
4

�
;

Y	�x� !

�������
2

�x

s
sin
�
x�

	�
2
�
�
4

�
;

for large x, which give
 

��p�

�����������������������
2
�3

�
������
2�
p �������

V�
pvuut p��2
�1�=8

�
C1 cos

�
x�

���
3
p
�

2�2
�3�
�
�
4

�

�C2 sin
�
x�

���
3
p
�

2�2
�3�
�
�
4

��
; (34)

where x � 2
������
2�
p �������

V�
p
�2
� 3��1p�2
�3�=4. The zeros of

��p� are at

 tan
�
x�

�
2�
� 2�

�
�
4

�
� �

C1

C2
; (35)

which gives the scale of the nth zero to be

 pn �
�
�2
� 3��

2
������
2�
p �������

V�
p �

4=�2
�3�
�C� n	4=�2
�3�; (36)

with

 C � tan�1

�
�
C1

C2

�
1

�
�

���
3
p

2�2
� 3�
�

1

2
�

1

4
(37)

a constant. Note that we take the nth zero of tan�x� to be at
x � �2n� 1��=2.

We are interested in the separation between two succes-
sive zeros in the limit of large n (large p), which is given by

 �p � lim
n!1
�pn�1 � pn�

�
2�������

2�
p �������

V�
p p�1�2
�=4 �O�p��2
�1�=2�: (38)

For �0 constant, it is clear that for � � 0 (� � 0 corre-
sponds to the case where the wave-function is linear and
hence has an infinite period), there will be a scale at which
�p is of the order of 2��@�0=3 (i.e., when �� is of the
order of 4�0), at which point the assumption that the wave-
function is smooth on scales of the order of 4�0 breaks
down and the semiclassical description is no longer valid.
If we want the end of inflation to be describable using
classical general relativity then it must end before this scale
is reached. During slow-roll inflation the scalar field po-
tential is approximately constant so we can set 
  3=2.

For �p > 2��@�0=3, Eqs. (22), (30), and (38), lead to
the following constraint for the scale, af, at the end of
inflation:

 af <
3�

2��0

������������
3�V�

p ; (39)

where we have also used that a � jpj1=2 � ���@j�j=6�1=2.
We can then calculate the maximum number of e-foldings,
Ncl � ln�af=ai�, where ai is the initial scale, which can
occur within the classical era, given by

 ai 
 �2��@�0=3�1=2: (40)

Thus, from Eqs. (39) and (40) the number of e-foldings Ncl

must satisfy the constraint

 Ncl � ln
�

3�

2�
�����������������������
2V�@�

3�3
0

q �
: (41)

Setting [4] �0 � 3
���
3
p
=2 and �  0:24, the above con-

straint, Eq. (41), on the number of e-foldings in units of
@ � 1 reads
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 Ncl � ln
�

0:27�������
V�

p
l2Pl

�
; (42)

with lPl �
����������
8�G
p

. Thus, to have Ncl e-foldings of inflation
with negligible quantum gravity effects, the potential must
satisfy

 V� � 0:07e�2Ncll�4
pl : (43)

If we, conservatively, say that only half of inflation takes
place in the classical era, the above constraint leads to

 V� � 10�28l�4
pl : (44)

Clearly, the above constraint becomes even tighter if we
increase the number of e-foldings during the classical era.
Considering lattice refinement we will see that this strong
constraint on the value of the inflaton potential (during
slow-roll) becomes considerably less fine-tuned.

IV. LATTICE REFINEMENT

In the derivation of the Hamiltonian constraint we have
assumed that the parameter �0 is a constant real number.
This parameter is related to the edge length used in holon-
omies. Since holonomies refer to embedded edges and
loops, a constant �0 corresponds to a fixed spatial lattice,
so that only edges of a given coordinate length are used,
and consequently the loop size remains the same as the
total volume increases. In what follows we relax the as-
sumption of a constant �0 and we investigate the conse-
quences, and thus the necessity, of a parameter ~� being
dependent on the phase space variable p, or equivalently,
on �.

Allowing the length scale of the holonomies to vary
dynamically, the form of the difference equation,
Eq. (13), changes. Since the parameter �0 determines the
step-size of the difference equation, assuming the lattice
size is growing, the step-size of the difference equation is
not constant in the original triad variables. The exact form
of the difference equation depends on the lattice refinement
used. Here we will take the particular case of

 �0 ! ~���� � �0�
�1=2: (45)

This type of lattice refinement is suggested by certain
intuitive heuristic approaches such as noting that the mini-
mum area used to regulate the holonomies should be a
physical area [14], or that the discrete step-size of the
difference equation should always be of the order of the
Planck volume [7]. This choice also results in a significant
simplification of the difference equation, compared to
more general lattice refinement schemes.

The basic operators are given by replacing �0 with ~�.
Upon quantization we have [14]

 ei
d~�c=2j�i�e�i ~��d=d��j�i; (46)

which is no longer a simple shift operator since ~� is a

function of �. If we change our basis to

 � � �0

Z d�
~�
�

2

3
�3=2; (47)

we find

 e�i ~��d=d��j�i � e�i�0�d=d��j�i � j���0i: (48)

Thus, the basis j�i is a much more natural choice than j�i.
The action of the volume operator on these basis states is

 V̂j�i �
3�
2

�
��@

6

�
3=2
j�i; (49)

and the self-adjoint Hamiltonian constraint operator acts as
[7]
 

Ĥ gj�i �
9j�j

16�3
0

�
@

6��3

�
1=2

�

�
1

2
fU��� �U��� 4�0�gj�� 4�0i

� 2U���j�i

�
1

2
fU��� �U��� 4�0�gj�� 4�0i

�
; (50)

where

 U��� � j���0j � j���0j: (51)

Notice that since � is dimensionless, so is �.
Following the same approach as previously, we expand

j�i �
P
������j�i and the Hamiltonian constraint be-

comes
 

1

2
j�� 4�0j�U��� 4�0� �U���	���4�0

���

� 2j�jU��������

�
1

2
j�� 4�0j�U��� 4�0� �U���	���4�0

���

� �
16�3

0

9

�
6��3

@

�
1=2

H���������: (52)

Now we take the continuum (�
 �0) limit of Eq. (52) to
get
 

@2

@�2 �����;��	 �
16

9

�
6��3

@

�
1=2

H�������;��

�O��0� � . . . � 0: (53)

In terms of � Eq. (53) reads
 

��1=2 @
@�

�
��1=2 @

@�
��3=2���;���

�
�

8

3

�
6��3

@

�
1=2

H�������;�� �O��0� � . . . � 0;

(54)

which is just a different factor ordering of the Wheeler-
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DeWitt equation, Eq. (21). Substituting in for H� from
Eq. (20), and for p from Eq. (22), we get
 

p�1=2 @
@p

�
p�1=2 @

@p
�p3=2��p;���

�
� 48p�3=2 @

2��p;��

@�2

�
96

�@2 V���p
3=2��p;�� �O��0� � . . . � 0: (55)

Thus, in the large scale limit the equation we have to solve
reads
 

p�1=2 @
@p

�
p�1=2 @

@p
�p3=2��p;���

�
� 	V���p3=2��p;�� � 0; (56)

where

 	 �
96

�@2 : (57)

This equation is analogous to Eq. (23) and thus we are
following the same procedure as in Section III C. We first
separate the wave-function ��p;�� into ��p;�� �
��p����� and we then approximate the dynamics of the
inflaton field by setting V��� � V�p


�3=2 to get

 p�1=2 d

dp

�
p�1=2 d

dp
�p3=2��p��

�
� 	V�p


��p� � 0:

(58)

The solutions of Eq. (58) are

 ��p� � C1p�3=4J3=�2
�3�

�
4
����������
	V�

p
2
� 3

p�2
�3�=4

�
� C2p

�3=4Y3=�2
�3�

�
4
����������
	V�

p
2
� 3

p�2
�3�=4

�
: (59)

Expanding Eq. (59), as we did in Section III C, we obtain
 

��p�  p��9�2
�=8

��������������������
2
� 3

2
����������
	V�

p
�

s �
C1 cos

�
x�

3�
2�2
� 3�

�
�
4

�
�C2 sin

�
x�

3�
2�2
� 3�

�
�
4

��
; (60)

where

 x � 4
����������
	V�

q
�2
� 3��1p�2
�3�=4; (61)

with 	 defined in Eq. (57). The scale of the nth zero is

 pn �
�
�2
� 3��

4
����������
	V�

p �
4=�2
�3�

�C� n	4=�2
�3�; (62)

where

 C � tan�1

�
�C1

C2

�
1

�
�

3

2�2
� 3�
�

1

2
�

1

4
: (63)

Calculating the separation between two successive zeros,
we obtain

 �p � lim
p!1
�pn�1 � pn� �

�����������
	V�

p p�1�2
�=4: (64)

For the continuum limit to be valid, the wave-function must
vary slowly on scales of the order of�c � 4 ~�. Thus, using
p � ��@�=6, we arrive at the constraint

 �p > 4�0

�
��@

6

�
3=2
p�1=2: (65)

Forom Eqs. (64) and (65) we obtain the following con-
straint on V�:

 V� <
27�2

192�2
0�

3�2
@
p�3�2
�=2: (66)

For slow-roll inflation, V��� must be approximately con-
stant, thus 
  3=2. As previously, we use �0 � 3

���
3
p
=2

and �  0:24 to find the constraint on the inflationary
potential in units of @ � 1,

 V��� & 2:35� 10�2l�4
Pl ; (67)

where l2Pl � G@. Clearly, this is a milder constraint than the
one obtained for fixed lattices, Eq. (43).

V. OPEN/CLOSED (k � �1) GEOMETRIES

In the previous sections we looked at the k � 0 case
only. The reason for this is that there are several conceptual
difficulties associated with the quantization procedure in
the other cases, particularly for k � �1 [15,16]. These
difficulties arise because vectors no longer commute and
hence the four holonomies previously used to regulate the
Hamiltonian no longer form a closed loop. There are
methods of dealing with this (see Ref. [7] and references
therein) that lead to discrete evolution equations of the
same form as Eqs. (13) and (52), but with an extra term
involving the curvature.

The correct quantization should be able to reproduce the
Wheeler-DeWitt equation including a curvature term in a
suitable limit,

 

@2S��;��

@�2
� kS��;�� � ~��
S��;�� � 0; (68)

where S��;�� �
����
�
p

���;��. This no longer has general
solutions, however, during inflation when 
  1, analytic
solutions do exist:
 

T��� � C1AiryA���k� ����
�2=3�

� C2AiryB���k� ����
�2=3�; (69)

where T��� is the � dependent part of S��;�� (i.e.,
S��;�� � T�������). Using the Airy functions expan-
sions,
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 lim
x!1

AiryA��jxj� �
1����
�
p

x1=4
sin
�
2

3
x2=3 �

�
4

�
;

lim
x!1

AiryB��jxj� �
1����
�
p

x1=4
cos

�
2

3
x2=3 �

�
4

�
;

we obtain an explicit form for T���, which has zeros at the
scales

 �n � ��1=3

�
3�
2

�
2=3
�C� n�2=3 �

k
�
; (70)

where now

 C � tan�1��C2=C1� � 3=4 (71)

is again constant. Clearly then, the presence of a curvature
will not affect the large scale behavior of the scale between
subsequent zeros and so we expect the previous section to
hold for any quantization schemes that have a continuum
limit of the form of Eq. (68). As we have seen, changing
the factor ordering of the Wheeler-DeWitt equation often
means that analytical solutions are not available; in par-
ticular, adding a k

����
p
p

��p� term to Eq. (56) results in an
equation that cannot be solved exactly. However, the suc-
cess of this factor ordering (which arises from a non self-
adjoint Hamiltonian constraint) suggests that the results for
other cases may be similar.

VI. DISCUSSION/CONCLUSIONS

We have studied phenomenological aspects of LQC. In
particular, we have investigated the effect of lattice refine-
ment, which as we will now argue, makes the conditions
for successful inflation more natural.

Let us consider that the scalar field � plays the role of
the inflaton. We will then combine the condition imposed
earlier on the potential V��� with the constraint so that the
perturbations induced by � are consistent with the cosmic
microwave background (CMB) measurements on large
angular scales. As a concrete example we will use a simple
inflationary model, namely V��� � m2�2=2.

The contribution of the inflaton field � with potential
V��� to the fractional over-density in Fourier space, at the
epoch of horizon crossing, k � aH, is given by

 
2
H�k� �

1

75�2M6
Pl

V3���

�V 0���	2

��������k�aH
; (72)

where V 0��� � dV=d� and the Planck mass is MPl �

�8�G��1=2 ’ 2:4� 1018 GeV. From the COBE-DMR
measurements, 
H  1:91� 10�5 [17], which implies
from Eq. (72) that

 

�V���	3=2

V 0���
 5:2� 10�4M3

Pl: (73)

To ensure the continuum approximation is not broken at
large scales, we found in previous sections (Sections III
and IV) that the potential must be V��� & x, where x

depends on whether we have static or dynamically varying
holonomy length scales. In the case of a fixed lattice and
assuming Ncl e-foldings of inflation within the classical
era, we found xfixed lattice � 7� 10�2e�2Ncl l�4

pl . While con-
sidering lattice refinement we got xlattice refinement��� &

10�2l�4
Pl .

We now consider the simple inflationary case V��� �
m2�2=2, favored by the latest WMAP measurements. In
this case, Eq. (73) implies

 m�2  1:5� 10�3M3
Pl; (74)

and the constraint on the potential so that the continuum
approximation is valid on large scales reads

 m2�2 & 2x: (75)

Equations (74) and (75) imply

 ) m & 103x=M3
Pl: (76)

For the fixed and varying lattices, the above constraint
reads

 m & 70�e�2Ncl�MPl (77a)

and

 m & 10MPl; (77b)

respectively. Clearly, for any significant proportion of in-
flation taking place in the classical era, Eq. (77a) is a very
strong, and therefore fine-tuned, constraint on the mass of
the inflaton field. The condition on the inflaton mass be-
comes however natural, Eq. (77b), once lattice refinement
is taken into account.

Equations (77) can be compared to restrictions on the
inflaton mass coming from the WMAP data [18] for the
same inflationary model as the one we consider here,
namely,

 � 5:24< log
� ����
�
p m

MPl

�
<�5:18: (78)

The fixed lattice case, Eq. (77a), is consistent with Eq. (78)
only if Ncl < 8:96, which would suggest that loop quantum
gravity effects should be observable in the spectrum of the
CMB temperature anisotropies. In the lattice refinement
case, however, no such incompatibility between theoretical
and observational constraint exists.

In conclusion, lattice refinement is required to naturally
obtain a successful inflationary model. In contrast to this
the fixed lattice case requires the number of e-foldings of
inflation that can be considered classical to be severely
fine-tuned to match the observational data, leading to the
conclusion that most of the inflationary era requires loop
quantum gravity corrections to be included. This is at odds
with the startling agreement between classical CMB cal-
culations and observation.

Finally, it is important to note that while ~� � �0��1=2

has been suggested as a natural choice for the scaling
behavior of the lattice [7,14], there is no rigorous justifi-
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cation for this choice. A different choice would result in a
different Hamiltonian constraint equation, Eq. (52), and all
the subsequent analysis would change. Dynamic lattice
refinement represents a large freedom in the formulation
of LQC that, at present, is fixed only by phenomenological
arguments. However, deriving the form of this refinement
from the exact LQG equations remains, at present, not
possible.

Last, but not least, we would like to bring to the attention
of the reader that an alternative approach to the one we
followed here is to perform a stability analysis of the
dynamical difference equations, as suggested in Ref. [8].
More precisely, to investigate the scale at which the lattice

is unable to support the continuum oscillations, one could
perform a von Neumann analysis of the difference equa-
tions on the grid [19]. Unfortunately, applying this method
to a refining lattice case is more complicated since plane
waves could no longer be used.
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