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We construct a conserved, symmetric energy-momentum (pseudo-)tensor for Chern-Simons modified
gravity, thus demonstrating that the theory is Lorentz invariant. The tensor is discussed in relation to other
gravitational energy-momentum tensors and analyzed for the Schwarzschild, Reissner-Nordstrom, and
Friedmann-Robertson-Walker solutions. To our knowledge this is the first confirmation that the Reissner-
Nordstrom and Friedmann-Robertson-Walker metrics are solutions of the modified theory.
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I. INTRODUCTION

The possibility of modifying a four dimensional theory
with a three dimensional Chern-Simons (CS) term was
first investigated in [1], where such a term was added to
electrodynamics. There, it was found that the extra term
created a birefringence of the vacuum, leading to plane
waves traveling with two polarizations whose velocities
differ from c (Lorentz violation) and from each other
(parity violation).

In ensuing work [2], a similar modification of general
relativity (GR) was proposed. In order to carry out such a
construction for gravity, one must decide how to embed a
three dimensional CS term into four dimensional GR. This
is done with the aid of an embedding coordinate, v�. In
contrast to CS electrodynamics, there is no birefringence of
the vacuum, though there are parity violating effects that
cause gravitational wave polarizations to carry different
intensities. Moreover, it was argued that the theory allows
the construction of a symmetric and conserved two-index
object which could serve as an energy-momentum
(pseudo-)tensor.1 For these reasons it was suggested that
the apparent Lorentz violation of the theory is ‘‘dynami-
cally suppressed.’’

In this paper we use the Noether/Belinfante procedure to
construct a symmetric, conventionally conserved, energy-
momentum tensor for CS modified gravity. The existence
of such a tensor signals the absence of Lorentz violation in
the theory. The methods are similar to those used in the
construction of the so-called Papapetrou energy-
momentum tensor for GR in [3,4]. We find that, while
the constructed tensor initially appears not to be conserved,
a subsidiary condition on solutions of the theory forces the
tensor’s nonvanishing divergence to zero.

II. A BRIEF REVIEW OF CS MODIFIED GRAVITY

This section is a brief review of [2], where four dimen-
sional CS modified gravity was examined. The Lagrangian
density of the theory is

 L �
1

16�G

� �������
�g
p

R�
1

4
��x��RR

�
; (1)

where ��x� is a prescribed, nondynamical, external field
that breaks diffeomorphism symmetry, �RR �
�R����R����, and �R���� �

1
2 �

���	R���	. One gener-
ally takes ��x� � v�x�, and timelike v� � �

1
� ; 0; 0; 0�,

with 1
� constant. This ensures the persistence of some

familiar GR solutions and also maintains the close analogy
with three dimensional CS theories. We note that �RR �
2@�K

� is a total derivative, where

 K� � 2���	
�12�
�
��@	��
� �

1
3�

�
���

�
	���
�	; (2)

and �
�	 is the Christoffel connection. Upon integrating the
Lagrangian by parts, it may be rewritten

 L 0 � LEH �
1

32�G
�v�K

��; (3)

where LEH is the Einstein-Hilbert Lagrangian. Thus the
translation noninvariance of (1) is confined to a surface
term in the action. By varying the Lagrangian (plus matter
degrees of freedom) with respect to g, one finds the equa-
tions of motion

 G�� � C�� � 8�GT��: (4)

G�� is the usual Einstein tensor, T�� is the energy-
momentum tensor for matter, and C�� is the following
four dimensional analogue of the Cotton tensor,

 C�� � �
1

2
�������
�g
p �v���

���	r�R
�
	 � �

���	r�R
�
	�

� v������
�R���� � �R�����	: (5)

Taking the divergence of this equation gives
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form as tensors and for this reason are referred to as pseudo-
tensors. See the discussion in Sec. III for more on this issue.
Henceforth, all references to gravitational energy-momentum
tensors should be understood to be references to pseudotensors.
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 r�C�� �
1

8
�������
�g
p v��RR:

However, via the Bianchi identity, r�G�� � 0, and for
diffeomorphism-invariant matter terms, r�T�� � 0.
Therefore we have a consistency condition for solutions
to (4):

 

�RR � 0: (6)

CS modified gravity theories have been studied as mod-
els for parity violation [5] and leptogenesis [6,7] in the
early universe. CS models have also been used as effective
theories where the CS term is radiatively generated via
fermions coupling to gravity in a parity violating way [8].

Solutions

The Schwarzschild, Reissner-Nordstrom, and all
Friedmann-Robertson-Walker (FRW) metrics have vanish-
ing C�� in their usual coordinatizations and hence are
solutions of CS modified gravity. However, the most gen-
eral black hole solution, the Kerr metric, has nonvanishing
C�� and is not a solution of CS modified gravity. This can
be seen easily by noting �RR � 0 for the Kerr metric. The
discovery of an appropriate generalization of the Kerr
metric is an outstanding problem. The only non-GR
(C�� � 0) solutions yet discovered are gravitational waves
[2]. Unlike their GR counterparts, parity violating effects
cause the two CS modified wave polarizations to travel
with different intensities.

Though CS modified gravity is not invariant under gen-
eral diffeomorphisms, we may identify a smaller equiva-
lence class of coordinate transformations. In [2] it is shown
that constant shifts in time and arbitrary space reparamet-
rizations are symmetries of the CS modified action. Thus
we may view solutions related by these coordinate trans-
formations as identical.

III. A WORD ON GRAVITATIONAL ENERGY-
MOMENTUM TENSORS

The issue of ordinarily conserved energy-momentum
tensors for gravity has been controversial since the birth
of GR. Einstein’s own ‘‘tensor’’ was nonsymmetric and not
a tensor (almost all, including the type derived in this
paper, are coordinate dependent ‘‘pseudotensors’’), draw-
ing criticism from leading physicists of the day (these
criticisms are nicely reviewed in [9]). The problem with
a local definition of gravitational energy-momentum is that
there always exists a coordinate system where the energy
and momentum densities vanish at a point, viz.
Riemannian normal coordinates. In GR, local energy-
momentum can be ‘‘gauged’’ away. Since Einstein’s pseu-
dotensor, various other pseudotensors have appeared in the
literature including those of Tolman [10], Landau and
Lifshitz [11], Papapetrou [3,4], Weinberg [12], and
Møller [13]. None but Møller’s are coordinate invariant.

Also, many involve an auxiliary Minkowski metric � �
diag��1; 1; 1; 1�, and all but Møller’s give physically sen-
sible results only when restricted to ‘‘quasi-Cartesian’’
coordinate systems. (‘‘Quasi-Cartesian’’ is defined as
ds2 ! �dt2 � dx2 � dy2 � dz2 asymptotically or, less
restrictively, that all four coordinates be noncompact.
This definition is still a point of debate and is of funda-
mental importance when one tries to apply these pseudo-
tensors to cosmological models.)

There are other problems. Aguirregabiria et al. [14] have
shown that the Einstein, Tolman, Landau and Lifshitz,
Papapetrou and Weinberg (ETLLPW) pseudotensors are
identical for any Kerr-Schild metric. Many standard solu-
tions can be put in Kerr-Schild form, including the
Schwarzschild, Reissner-Nordstrom, Kerr, and Kerr-
Newman metrics. However, Virbhadra later showed [15]
that ETLLPW each give different results for the energy
contained in a sphere of radius r when applied to the most
general, nonstatic, spherically symmetric metric in
‘‘Schwarzschild Cartesian coordinates’’ [�r; �; �� !
�x; y; z� in the usual way]. Furthermore, the Einstein pseu-
dotensor is the only one whose result for the energy con-
tained in a sphere of radius r agrees for the Schwarzschild
metric when compared in Kerr-Schild coordinates and
Schwarzschild Cartesian coordinates.

For a short time, it seemed that these problems might be
solved by using the concept of quasilocal energy-
momentum: energy and momentum associated to closed,
spacelike 2-surfaces surrounding a region [16]. In this way,
some of the issues that plague local, pointwise definitions
of gravitational energy-momentum are circumvented.
However, Bergqvist has investigated seven different defi-
nitions of quasilocal mass [17]. Computing them on cross
sections of the event horizon in a Kerr spacetime and
spheres in a Reissner-Nordstrom spacetime, he found that
no two of the seven definitions give the same result.

Despite these problems, though, many authors have
given compelling physical arguments for the existence of
truly localizable gravitational energy-momentum [18,19].
These details remain largely unresolved in GR and all other
metric theories of gravity. They have been famously con-
fusing for a long time. N. Rosen calculated the Einstein and
Landau-Lifshitz pseudotensors for cylindrical gravitational
waves [20]. He erroneously used cylindrical coordinates
and found that the waves carry zero energy and momen-
tum. These results had many, including Einstein, briefly
convinced that gravitational waves did not exist and were
merely a coordinate artifact.

At the very least, it is widely agreed that, while these
issues are unclear locally, all pseudotensors generally give
correct results when applied at infinity for asymptotically
flat spacetimes in quasi-Cartesian coordinates (there are
important exceptions; see e.g. [21]).

We shall restrict the calculations of energy and momen-
tum to infinity. The existence of the local tensor signals
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Lorentz invariance of the theory, but the tensor itself will
never be used for any physical computation. Though we
are skeptical, there might be some local sense in which our
energy-momentum tensor is valid, perhaps when restricted
to Kerr-Schild metrics, for example.

The energy-momentum tensor that we derive for CS
modified gravity is closely analogous to the Papapetrou
tensor of GR. Like the Papapetrou tensor, it is nicely
derived by a Noether argument followed by a Belinfante
symmetrization.

IV. THE BELINFANTE PROCEDURE FOR
LORENTZ-INVARIANT THEORIES

We assume a Lorentz-invariant Lagrangian of some field
(possibly nonscalar, Lorentz indices are suppressed) �,
and show how to construct a symmetric, conserved
energy-momentum tensor. We consider the possibility
that the Lagrangian involves second derivatives, L �
L��; @�; @@��. In terms of the quantities, � � @L

@� , �� �
@L

@�@���
, and ��� � @L

@�@�@���
, the (nonsymmetric) canonical

tensor derived via Noether’s theorem is

 ���C � ��@��� ���@�@
��� @��

��@��� ���L

(7)

and the equations of motion are

 @��
� � �� @�@��

��: (8)

One seeks to decompose the tensor as2

 ���C � ���B � @�X
���	�; (9)

with ���B symmetric and @�X���	� a manifestly conserved,
so-called ‘‘superpotential.’’ Then ���B will be our con-
served, symmetric Belinfante improved energy-
momentum tensor. It is well known that this can generally
be done in Lorentz-invariant theories. The result is
 

���B � ���@���� 2@�����@���� ���L� ��������

� @�����@��� � @��@����������

� ��������@���: (10)

��	 are the spin matrices for � with Lorentz indices
suppressed. By (9)

 @��
��
B � @��

��
C � 0; (11)

i.e., the symmetric tensor is conserved.
It should be noted that the existence of a conserved,

symmetric energy-momentum tensor implies Lorentz in-
variance of the S matrix ([22], Sec. 7.4). To see this, we
note that the tensor density

 M �� � x���B � x
���B (12)

is conserved in the sense that @M�� � 0. Thus, we
obtain the time-independent tensor

 J�� �
Z

M0��d3x �
Z
d3x�x��0�

B � x
��0�

B �; (13)

in addition to the time-independent energy-momentum
coordinates

 P� �
Z
�0�
B d

3x; (14)

where H � P0 is the energy. If we define the ‘‘rotation’’
generators as Jk �

1
2 "ijkJ

ij and the ‘‘boost’’ generators as
Kk � Jk0, we obtain the following commutation relations:

 �H; Jk	 � 0; �Pj; Ji	 � �i"ijkPk;

�H;Kk	 � �iPk; �Pj; Kk	 � �i�
j
kH;

(15)

which imply Lorentz invariance of the S matrix ([22],
Sec. 3.3).

V. ENERGY-MOMENTUM TENSOR FOR CS
MODIFIED GRAVITY

In CS modified gravity, we have the Lagrangian L �
LEH � �L, where LEH is the usual, Lorentz-invariant,
Einstein-Hilbert term and �L � 1

4 �v�x
���RR. We use

the abbreviated notation L � L��; @�; @@��, where �
is understood to be the spacetime metric with indices sup-
pressed. Though we no longer have manifest translational
invariance, we can still construct a conserved (nonsym-
metric) energy-momentum tensor because the translation-
noninvariant part of the Lagrangian leads to a surface term.
Under some infinitesimal transformation,

 �L � ���� ��@����� � �
��@�@�����: (16)

Using the equations of motion, it follows that

 �L � @���
���� ���@���� @��

����	: (17)

For an infinitesimal translation, �� � @��, and Eq. (16)
gives

 �L � �@��� ��@�@
��� ���@�@�@

��

� @�L�
dL

dx�
� @�L�

v�

4
�RR

� @�

�
���L�

v�

2
K�

�
: (18)

Equating (17) and (18),
 

@�

�
��@��� ���@�@

��� @��
��@��

� ���L�
v�

2
K�

�
� 0; (19)

and so we have a conserved energy-momentum tensor
2We use the conventions T�ab	 � 1

2 �T
ab � Tba� and T�ab� �

1
2 �T

ab � Tba�.
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��� � ��@��� ���@�@
��� @��

��@��� ���L

�
v�

2
K�: (20)

We label this as ��� � ���C �
v�
2 K

�, where ���C is the
usual formula (7) for the energy-momentum tensor for
translationally invariant Lagrangians. It should be noted
that the �’s present in this equation are derivatives of the
full, Lorentz-noninvariant Lagrangian. By implementing a
similar Belinfante procedure as in the previous section, one
can massage ���C such that

 ���C � ���B � @�X
���	� � A��; (21)

where ���B is as in Eq. (10), @�X���	� is a superpotential,
and A�� contains only terms that are proportional to �RR
and derivatives of �RR. Because of the dynamical consis-
tency condition (6), A�� � 0 for solutions and

 ��� � ���B � @�X
���	� �

v�

2
K� (22)

and

 0 � @��
�� � @��

��
B �

v�

2
@�K

�: (23)

By (6), @�K� � 0, and so ���B is a conserved, symmetric,
energy-momentum tensor. We again note that this
Papapetrou pseudotensor, like many other gravitational
pseudotensors, necessitates a background Minkowski met-
ric � � ��1; 1; 1; 1�, and therefore should only be used in
quasi-Cartesian, asymptotically flat coordinates. The ten-
sor is given by replacing � in Eq. (10) by the spacetime
metric, gab:

 ���B � �fabg��@��gab � 2@��fabg���@��gab � ���L

� �@��fabg������
ab g� � @���

fabg��@�gab�

� @��@��fabg�������
ab g� �

fabg�������
ab @�g�;

(24)

where �fabg� � @L
@�@�gab�

and similarly for �fabg��. The

gravitational spin matrices are
 ���
ab g � ��

����a � �
����a �g�b � ��

����b � �
����b �g�a:

(25)

By linearity, �fabg� � �fabg�EH � �fabg�CS , where

 �fabg�EH �
@� 1

16�G
�������
�g
p

R�

@�@�gab�
and

�fabg�CS �
@� 1

64�G ��x�
�RR�

@�@�gab�
;

and similarly for �fabg��. It is straightforward (though
lengthy) to calculate that
 

�fabg�CS �
��x�

32�G
������

�Rb��a � ����
�Ra��b � �b��

�R���a

� �a��
�R���b � �a��

�Rb��� � �b��
�Ra��b� (26)

and

 �fabg��CS �
��x�

64�G
��Rb��a � �Ra��b � �Rb��a � �Ra��b�:

(27)

We would like to reiterate that, although we have for-
mulated a symmetric, conserved, local energy-momentum
pseudotensor, we do not believe in any local physical
interpretation. The utility of this tensor is twofold: it can
be used to calculate the total energy, momentum, and
angular momentum for spacetimes of the theory, and its
existence signals that a seemingly Lorentz violating theory
is actually Lorentz invariant.

VI. COMPARISON WITH THE WEINBERG
TENSOR

We briefly digress on another method for computing an
energy-momentum tensor in CS modified gravity that was
investigated in [2]. The vacuum equations of motion are

 G�� � C�� � 0: (28)

Now, take a quasi-Cartesian coordinate system with h�� �
g�� � ���. Expanding the above equation in powers of h,

 G�1��� � C
�1�
�� � 8�Gt��; (29)

where

 t�� � �
1

8�G
�G�� � C�� �G

�1�
�� � C

�1�
��	 (30)

and the superscripts denote the order in h. The tensor t��
has most of the properties we might want from a gravita-
tional energy-momentum tensor: it is symmetric, ordina-
rily conserved [because of the linear Bianchi identity and
the linear version of (6)], and quadratic in h (though it is
not, as usual, coordinate invariant). In GR, the energy-
momentum tensor derived as (30) is referred to as the
Weinberg tensor (see [12]). To compute the total energy,
momentum, or angular momentum of a gravitational sys-
tem, we may integrate the left-hand side of (29), which is
also sometimes referred to as the Weinberg tensor. One can
explicitly verify that doing so gives the Arnowitt, Deser,
and Misner (ADM) total energy and momentum [23].

We now demonstrate that our CS modified Papapetrou
tensor gives the same result for the total energy, momen-
tum, and angular momentum of a spacetime as (30). Taking
an asymptotically flat spacetime with h � O�1r�, we can
expand our expression for the energy-momentum tensor,
Eq. (24), to lowest order. The only finite contributions to
the total energy, momentum, and angular momentum of a
spacetime will be the lowest order terms in 1

r . These are
O� 1

r3� for energy and linear momentum and O� 1
r4� for angu-

lar momentum. All higher orders will die off at infinity. It is
easily derived that
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���B ��
fabg	; �fabg	�; gab� � ���B ��

fabg	
EH ; �fabg	�EH ; gab�

� O
�

1

r5

�
: (31)

���B ��
fabg	
EH ; �fabg	�EH ; gab� can be calculated rather straight-

forwardly, as in [4], using the equations of motion several
times to obtain a nice form. The result is

 

���B ��
fabg	
EH ; �fabg	�EH ; gab� � �

1

16�G
@
@	

�������
�g
p

����g
	 � �
�g�	 � �
	g�� � ��	g
�	

�

�������
�g
p

16�G
���
g�	C	
 � �

�
g�	C	
	: (32)

We can continue the expansion,
 

���B ��
fabg	; �fabg	�; gab� � ���B ��

fabg	
EH ; �fabg	�EH ; gab� � O

�
1

r5

�

� �
1

16�G
@
@	

�������
�g
p

����g
	 � �
�g�	 � �
	g�� � ��	g
�	

�

�������
�g
p

16�G
���
g�	C	
 � �

�
g�	C	
	 � O
�

1

r5

�

� �
1

16�G
��@�@�h � @@

�h� � @@�h� ��h�� � ����h � �
��@@�h�	

�
1

8�G
C���1� � O

�
1

r5

�

�
1

8�G
�G���1� � C���1�	 � O

�
1

r5

�
; (33)

and so

 

Z
V

d3x���B �
1

8�G

Z
V

d3x�G���1� � C���1�	: (34)

It is also immediate from (29) and (30) that

 

Z
V
t�� �

1

8�G

Z
V

d3x�G���1� � C���1�	; (35)

so that the total energy, momentum, and angular momen-
tum of a spacetime is the same calculated with the
Papapetrou tensor (e.g. E �

R
V d3x�00

B ) as with the
Weinberg tensor (E �

R
V d3xt00).

VII. ENERGY-MOMENTUM OF SOLUTIONS

The energy-momentum tensor (24) was calculated for
the Schwarzschild and Reissner-Nordstrom solutions using
quasi-Cartesian coordinates [�r; �;�� ! �x; y; z� in the
usual way]. We have shown (in this case, with MAPLE V7)
that for each of these solutions all terms in (24) that involve
�fabg�CS and �fabg��CS are zero. The energy-momentum tensor
evaluated for these solutions is thus unchanged from GR. It
is comforting to know that in CS modified gravity a black
hole with mass M, charge Q, and angular momentum zero
is still an admissible solution. A generalization of this
result to nonzero angular momentum black hole solutions
remains an open problem.

The most general (k � f0;�1; 1g) FRW solution has
vanishing �fabg�CS and �fabg��CS in ‘‘Cartesian coordinates’’:

 

ds2 � dt2 � a�t�2
�

kr2

1� kr2

�
x
r
dx�

y
r
dy�

z
r
dz
�

2

� dx2 � dy2 � dz2

�
; (36)

with r2 � x2 � y2 � z2. Therefore, the energy-momentum
tensor of FRW models in CS modified gravity is also
identical to its value in GR. Beginning with [24] various
authors have used the ETLLPW pseudotensors in such
coordinates to analyze the energy content (�00 � T00) of
both open and closed FRW solutions in GR. The merit of
these pseudotensors is debatable in this case, since the
spacetimes are not asymptotically flat. Nevertheless, such
analyses seem to give reasonable physical results that have
been suggested by other coordinate-invariant analyses (see
e.g. [25,26]). In [27–29] it is shown that ETLLPW all give
zero total energy for any finite volume of flat FRW models.
If such calculations turn out to have physical merit, their
results are directly applicable to CS modified gravity.

VIII. CONCLUSIONS

We have constructed a symmetric, conserved energy-
momentum tensor for CS modified gravity and evaluated it
on some sample spaces. We might now consider
Lagrangian (1) with � as a Lagrange multiplier instead of
a prescribed field. This theory is now explicitly diffeo-
morphism and Lorentz invariant because � now responds
to coordinate transformations, and therefore the theory
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admits a symmetric, conserved energy-momentum tensor.
Varying with respect to g again gives (4) as an equation of
motion, while varying with respect to � immediately gives
the consistency condition (6) as an equation of motion. By
making a coordinate transformation we may set ��x; t� / t,
and we obtain CS modified gravity as a coordinate choice
in this new theory. Thus the ‘‘Lorentz violation’’ of CS
modified gravity is just a choice of coordinates in the new
theory. Viewed in this light, it is not very surprising that CS
modified gravity does indeed admit a conserved energy-
momentum tensor that signals the absence of Lorentz
violation.
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