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Decay of massive scalar hair on brane black holes
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We study analytically the intermediate and late-time behavior of the massive scalar field in the
background of static spherically symmetric brane black hole solutions. The intermediate asymptotic
behavior of the scalar field reveals the dependence on the field’s parameter mass as well as the multipole
moment /, while the late-time behavior has the power-law decay rate independent of those factors.
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I. INTRODUCTION

Recently there has been growing interest in studying
models whose basic idea is that our universe is only a
submanifold on which the standard model is confined to
inside a higher dimensional spacetime. In the above model
only geometric degrees of freedom can propagate in extra
dimensions. By making the volume of extra dimensions
spacetime large, one was able to lower a fundamental
quantum gravity scale to the electrovac scale of TeV order.
One can also construct the black hole solutions in the
brane-world models. The difficulties in those attempts
stem from the fact that, in general, brane dynamics gen-
erate Weyl curvatures which in turn backreact on the brane
dynamics.

In order to simplify this attitude one can look for the
analytic solutions to the projected Einstein equations on
the brane [1]. Similar kinds of solutions were also revealed
in Ref. [2]. On the other hand, it is interesting to pose the
question of whether a brane on which the four-dimensional
black hole is situated can be found by looking for a slice
that intersects a bulk black hole. It was revealed [3,4] that
brane solutions with a black hole geometry cannot be
found by slicing a bulk with G(D — 2, k) symmetry if the
brane is vacuum and not totally geodesic. In Ref. [5] a
localized static but nonvacuum brane black hole solution of
a slice of a G(D — 2, k) bulk was presented. Recently, in
Ref. [6] the possibility of finding a regular Randall-
Sundrum (RS) brane world on which a static spherically
symmetric black hole surrounded by realistic matter is
located by slicing a fixed five-dimensional bulk black
hole spacetime was presented.

The decay of black hole hair is a very interesting prob-
lem on its own. Late-time behavior of various fields in the
spacetime of a collapsing body is of great importance for
the black hole’s physics due to the fact that, regardless of
details of the collapse or the structure and properties of the
collapsing body, the resultant black hole can be described
only by a few parameters such as mass, charge, and angular
momentum; black holes have no hair. In Ref. [7] Price
studied for the first time the neutral external perturbations
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and found that the late-time behavior is dominated by the
factor =" for each multipole moment /. For the decay
along null infinity and along the future event horizon, it
was found [8] that the power laws are of the forms u~(*2
and v~ ("3, where u and v are the outgoing Eddington-
Finkelstein (ED) and ingoing ED coordinates. In Ref. [9]
the scalar perturbations on Reissner-Nordtrom (RN) back-
ground for the case when | Q | <M were studied and the
dependence on time, ~?/*?_ was shown, while for | Q |=
M the late-time behavior at fixed r is governed by #~(/*2),
Charged hair decayed slower than neutral hair [10-12],
while the late-time tails in gravitational collapse of a self-
interacting field in the background of the Schwarzschild
solution were reported by Burko [13] and the late-time tails
in the RN solution at intermediate late time were consid-
ered in Ref. [14]. The very late-time tails of the massive
scalar fields in the Schwarzschild and nearly extremal RN
black holes were elaborated in Refs. [15,16]. It was re-
vealed that the oscillatory tail of the scalar field has the
decay rate of 1%/ at asymptotically late time. The power-
law tails in the evolution of a charged massless scalar field
around a fixed background of the dilaton black hole were
studied in Ref. [17], while the case of the massive scalar
field was treated in [18]. The problems of the late-time
behavior of massive Dirac fields were studied in the space-
time of the Schwarzschild black hole [19], while in the
spacetime of the RN black hole was analyzed in Ref. [20].

The intense growing interest in the unification scheme
such as superstring/M theory also triggered interest in hair
decays in the spacetimes of n-dimensional black holes. As
far as n-dimensional static black holes are concerned, the
no-hair theorem for them is quite well established [21].
The mechanism of decaying black hole hair in the higher
dimensional static black hole case concerning the evolu-
tion of the massless scalar field in the n-dimensional
Schwarzshild spacetime was determined in Ref. [22]. It
was found that for odd-dimensional spacetime the field
decay had a power falloff like ~?*"=2 where n is the
dimension of the spacetime. This tail was independent of
the presence of the black hole. For even dimensions the
late-time behavior is also in the power-law form, but in this
case it is due to the presence of the black hole r~?/737=8),
The late-time tails of massive scalar fields in the spacetime
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of the n-dimensional static charged black hole were elabo-
rated in Ref. [23], where because of tremendous difficulties
in solving analytically differential equations of motion for
the field, numerical simulations for the spacetime dimen-
sion n = 5 and n = 6 were performed.

The main purpose of our paper will be to clarify what
kind of mass-induced behaviors play the dominant role in
the asymptotic late-time tails as a result of decaying the
massive scalar hair in the background of a brane black
hole. The intermediate and late-time tails of the fields
corresponding to the massive scalar ones have not been
studied before in the context of brane black hole physics.
On the other hand, our purpose is to see what effects brane
black hole parameters will have on the decay of the mas-
sive scalar hair on them.

The paper is organized as follows. In Sec. II we give the
analytic arguments concerning the decay of scalar massive
hair in the background of the considered black holes.
Section III will be devoted to a summary and discussion.

II. THE DECAY OF SCALAR HAIR IN THE
BACKGROUND OF THE BLACK HOLE BRANE
SOLUTION

A. Casadio-Fabbri-Mazzacurati (CFM) brane black
hole solution

In Ref. [2] it was revealed that projecting the vacuum
n + 1-dimensional Einstein equations on a timelike mani-
fold of codimension one leads us to the analogs of the
momentum and Hamiltonian constraints in the Arnowitt-
Deser-Misner (ADM) decomposition of the metric. Now
their role is to select our admissible field configurations
along hypersurfaces of constant coordinate. Further, it was
argued that this Hamiltonian constraint is a weaker require-
ment than the purely n-dimensional vacuum equations, and
it is equivalent to the relation for the n-dimensional Ricci
tensor R;; = E;;, where E;; is the projection of the n +
I-dimensional Weyl tensor on the brane [24].

Our general setting will be brane black hole solutions
proposed in Ref. [2]. Two families of analytic spherically

1

symmetric solutions with the condition that g,, # — 2
n

parametrized by ADM mass and the post-Newtonian
(PPN) parameter 3, were found. The parameter S affects
the perihelion shift and the Nordtvedt effect [25]. In our
considerations we shall use the general form of the spheri-
cally symmetric line element,

1

ds* = —A(r)dt* + B0)

dr? + r2dQ>2. (D

The momentum constraints are identically satisfied by the
metric coefficients, and the Hamiltonian constraints can be
written out for them [2]. Setting A(r) = (1 — ZTM) the re-
sulting metric yields
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2M -
ds?=—(1—-="2\d2 + ( 2r 7 dr? + r?dQ?,
)T a0 -

2

where y = 48 — 1. One can see that for 8 = 1 this solu-
tion reduces to the Schwarzschild black hole solution.
Next, to find the pattern of the decay of massive scalar
hair in the underlying brane black hole spacetime, we
define the tortoise coordinates y as

B dr
AG PR

This change of variables enables one to rewrite the line
element in the following form:

ds®> = A(r)(—dr* + dy?) + r*dQ>. 4

dy (3)

As we shall consider the scalar massive wave equation
(V. VE = m*)fp =0 5)

in the spherically symmetric background, it will not be
amiss to resolve the field into spherical harmonics,

&=Z%%@ﬂﬁm¢x ©)

1,6

where Y f is a scalar spherical harmonic on the unit two-
sphere. It leads to the following equations of motion for
each multipole moment,

b= ¢,y}' + Vi =0, @)

where V is the effective potential.

We shall analyze the time evolution of the massive scalar
field in the background of a brane black hole by means of
the spectral decomposition method. As was claimed in
Refs. [14,26] it was shown that the asymptotic tail is
connected with the existence of a branch cut situated along
the interval —m = @ = m. An oscillatory inverse power-
law behavior of the massive scalar field arises from the
integral of the Green function G(y,y'; w) around the
branch cut. In our paper we denote it by G.(y, y';t) and
our main aim will be to find an analytical form of its
integral. The time evolution of the massive scalar field
may be written in the following form:

Py, 1) = f dy'[G(y, ;) (y/, 0) + G, (v, y's )p(y', 0)],

®)

for t > 0, where the Green function G(y, y';¢) is given by

the relation
9% 92
— ——+ V|G, ;1) =801 — ). 9
r e Vet = swat =y ©

In what follows, our main task will be to find the brane
black hole Green function. Using the Fourier transform
[26] G(y,y';w) = [§ diG(y,y';1)e'" one can reduce
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Eq. (9) to an ordinary differential equation. The Fourier
transform is well defined for Imw = 0, while the corre-
sponding inverse transform yields

Gyin =5 [T dwGtyi@e a0
27 J—cotie
for some positive number €. By virtue of the above, the
Fourier component of the Green function G(y, y'; ) can be
written in terms of two linearly independent solutions for
the homogeneous equation. Namely, one has

d? )
<d—y2+w2—v>¢i=o, i=12 (1
As far as the boundary conditions for ¢; are concerned,
they are described by purely ingoing waves crossing the
outer horizon H, of the brane black hole i, = ¢ 'Y as
y — —o0. On the other hand, ¢, should be damped ex-

ponentially at i, namely, ¢, = e Vm=e’y g y— 0. A

convenient form of the equation of motion for the massive
scalar field can be obtained by the transformation as fol-
lows:

(1 -3

(1= 2120 =3

i = 3 12)

where i = 1, 2. On expanding Eq. (11) in a power series of
M /r, neglecting terms of order O((M/r)?) and higher, we
finally achieve the relation

2, @EG ) —m G A y)
RS
V2

d2
Pg‘i‘[&)z_m

}f =0. (13)

The two basic solutions which are needed to construct the
Green function, with the condition that | @ |= m, are given
by ¢y = M, ;(2ér) and i, = W, ;(2@r), with the fol-
lowing parameters:

a=+1/4+1(+1),

= 0*®(G+y)—m*E1+y)
26
@’ =m?— 0> (14)

Consequently it leads to the following spectral Green
function:

oy Lo TG, @)y, de™)
Gy ys0) = o ]ﬁm dw[ Woe™)
_ lZ’l(y’ (D)&Z(yl’ (;)):|€—iwt

W(o)

=1f" dwf(@)e~ ", (15)
27 J—m

First we shall take into account the intermediate asymp-
totic behavior of the massive scalar field. The range of
parameters is M < r < t < M/(mM)?. The intermediate
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asymptotic contribution to the Green function integral
gives the frequency equal to @ = O(/m/t), which in
turn implies that k << 1. Having in mind that « results
from the 1/r term in the massive scalar field equation of
motion, it depicts the effect of backscattering off the space-
time curvature, and in the case under consideration the
backscattering is negligible. Finally we are left with the
result

2AN(2p)TG + &)
AT QTG — &)
X (r'r)1/DVE 2, (16)

f(@) = [1 + eCartm]

where we have used the fact that @r << 1, and the form of
f(®) can be approximated by means of the fact that
M(a, b,z) =1 as z tends to zero. The resulting Green
function reduces to the following:

2O T(=2@)0G + W (@ + 1)
NG ATQaTE - )
X (1 + e(2,a+l)7ri)(rr/)(l/2)+/2

Gc(r’ r/;t) =

m\(1/2)+4
X <7> J/2)+ p(mt). (17)

Taking into account the limit when 7 >> 1/m, one draws
the conclusion that the spectral Green function implies

AT T(=2@)0G + @)@ + 1)
ave  ATeATE - @)
X (1 + e(z,a+l)wi)(rr/)(1/2)+,amﬂt—1—;1

G.(r,r's1) =

X cos<mt - g(g + 1)). (18)

Equation (18) depicts the oscillatory inverse power-law
behavior. In our case the intermediate times of the
power-law tail depend only on g, which in turn is a
function of the multipole moment /.

However, a different pattern of decay is expected when
k >> 1, for the late-time behavior, when the backscattering
off the curvature is important. Consequently, f(®) when
x >> 1 may be rewritten in the following form:

I+ 2001 - 24)
2

X [Jo5(N8kdr)J o5 (N8KT)

— Ly (VBk@r)_,;(V8kar)]

(C(1 + 2/)PT(-2/)0( + i — )

2ATCATG — 7 — )

X (rr’)l/szzﬂ[Jzﬂ(\/SKE)r)Jzﬂ(\/8K(Z)r’)

+ ¢RIV, (V8K (V8Kk@r)], (19)

f(@) = ()12

where we have used the limit M, ;(2@&r) = I'(1 +24) X
(2cbr)'/2K*ﬂJﬂ(\/8K(I)r) [27]. The first part of the above
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equation (19), the late-time tail, is proportional to ¢~ !, and
it occurs that we shall concentrate on the second term of the
right-hand side of Eq. (19). For the case when « >> 1 it can
be brought to the form written as

M (m . .
Gy, 730) = 5 / dwe T eid,(20)
—m

where we have defined

) 1+ (_I)Zﬂe—Zﬂ'iK
ip —
N @y

while M provides the relation as follows:
1y — (T +2)T(20)
2aTQ2R)
X [Jzﬂ(VSKd)r)]zﬂ(Vng)r/)
+ Izﬂ(\/8K(Dr)I2ﬂ(\/8K(I)r’)]. (22)

(rr’)1/2

At very late time both terms e’ and €< are rapidly
oscillating. This means that the scalar waves are mixed
states consisting of the states with multipole phases back-
scattered by spacetime curvature. Most of the ones which
have the inverse phase cancel each other. In such a case,
one can find the value of G(;) by means of the saddle point
method. It could be found that the value 27k — wt is
stationary at the value of w, which is equal to the follow-
ing:

0o = [w(wz(ﬁj 5+ yz)j/z_mmw(l + 'y))):|1/3. o)

By virtue of the saddle point method, on evaluating the
adequate expressions, we derive the resultant spectral
Green function

G (r, r'; 1) = 2:6m*3 ()3 [2Mm?]"/3(mt) = /0
X sin(m)(r, m)(r', m). (24)

One can observe that the dominant role in the late-time
behavior is played by the term proportional to —5/6.

The other case can be obtained if one considers B(r) =
(1- @) for the other model of a brane black hole. It
implies the following line element:

2 2
ds® = —iz<y— 1+ 1——2YM> ar+
Y r (1=

+ r?2dQ>. (25)

For this case vy =28 — 1. For 8 =1 one also has the
Schwarzschild limit.

It is convenient to introduce the coordinate changes in
the manner
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1/2
v = Ll 6)

(')’ -1+ \/@)1/2(1 _ Z’YfM)]/zt

where i = 1, 2. Let us expand Eq. (11) as a power series of
M /r neglecting terms of order O((M/r)?) and higher. It
yields

2 w*(dyM(1 + p?) — m*2My
r

I+ 1
—(; )}§=0, @7)

d2
Wf + |:(,l)2')/2p2 - m

where p? = (y — 1)> + 3.

Equation (27) can be brought to the form of the
Whittaker one with the two basic solutions that are needed
to construct the Green function, with the condition that |
w|=m,ie., § =M, ;2dr) and ¢, = W, ;(26r). The
parameters of the Whittaker function imply

A=A+ 10+,
2& ’

@ = m? — w2y?p.

It is easy to see from the preceding case that the stationarity
of 27k — wt can be obtained for the parameter equal to

245 +y)—m*E0+ 1/3
o — [W(w FGE+y) —mG( 7)))} Q)
2\/§m

Finally, the asymptotic late-time Green function reads
2./6 2/3 5/6
Gl 1) = o ()
vy = D* +3]
+ 14yM)]"3(mt) /0
X sin(mt)fi(r, m)g(r', m). (30)

[m*(4yM(y — 1)?

One can observe that, as in previous cases, the dominant
role in the asymptotic late-time decay of SI scalar hair in
the spacetime of a brane black hole is played by the
oscillatory tail with the decay rate proportional to r~5/°.

B. Dadhich-Maartens-Papadopoulous-Rezania
(DMPR) brane black hole solution

One can also mention the other case of the static spheri-
cally symmetric black hole localized on a three-brane in
five-dimensional gravity in the Randall-Sundrum model
[28]. Taking into account the effective field equations on
the brane, one gets the following brane black hole metric

[1]:

M 2 2
ds® = _<1 T ~qz 2>dt2 * j/[” 2
MPV MPr (1 - m + Mq%rz)
+ r2d0?, 31)
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where ¢ is a dimensionless tidal parameter arising from the
projection onto the brane of the gravitational field in the
bulk, and M » is a fundamental five-dimensional Planck
mass while M, is the effective Planck mass in the brane
world. Typically, one has that M » < M. In what follows
we shall concentrate on the negative tidal charge which is
claimed [1] to be the more natural case. Thus, the roots of
goo = 0 are, respectively, ;. and r_, namely,

M M3
re = ~2<1i 1——q2~p2>=M<li 1+%>,
M2 M2AL M

(32)

where ¢ = QM3

Let us assume further that the observer and the initial
data are situated far away from the considered black hole.
On evaluating what follows, it is convenient to make the
change of variables. Namely, it implies

¢
(1 =21 =)

i = (33)

where i = 1, 2. In terms of the new variables, we expand
Eq. (11) as a power series of . /r neglecting terms of order
O((r-/r)?) and higher. Thus it provides the following:

d? Qo> =m*)(ry +r) W1+ 1)
W§+|:w2_m2+ w mrr r-) K }f

=0. (34)

Equation (34) may be solved by means of Whittaker’s
functions. Just two basic solutions are needed to construct
the Green function, with the condition that | @ |= m, i.e.,
=M, 4(2ar) and =W, 4 (2@r). Their parameters
are given in the manner

G=VIATI0T D, k=(r + r_)GZ - w)

@2 = m? — w2 (35)

The arguments in the preceding section can be repeated
providing the form of G (r, r; r) for the intermediate late-
time decay of massive scalar hair with new Whittaker
function parameters given by relation (35). One can also
see that the intermediate late-time decay of hair does not
depend on brane black hole parameters; it depends only on
the scalar field mass and the multipole moment /. As far as
the late-time behavior is concerned, the spectral Green
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function for the late-time behavior of the massive scalar
field in the brane black hole spacetime can be obtained
using reasoning presented in Ref. [29], putting a coupling
constant in dilaton gravity a = 1 and taking the exact
values of 7., r_. Namely, it can be written as

G (r, ;1) = \2m*/3(m)>/o(M)' /3 (m1)=/0)
X sin(mt)(r, m)g(r', m). (36)

III. CONCLUSIONS

In our paper we have elaborated the problem of the
asymptotic tail behavior of self-interacting scalar fields in
the background of various types of brane black holes. We
are interested in what kinds of mass-induced behaviors
play the dominant role in the asymptotic intermediate
and late-time tail results from the decay of massive hair
on the considered brane black holes. In our research we
took two kinds of brane black hole solutions presented in
Refs. [1,2]. In the case of intermediate asymptotic behavior
we obtained the oscillatory power-law dependence which
in turn depends on the multiple number of the wave mode
as well as the field parameter m. However, as in ordinary
black hole analysis, this is not the final pattern of the decay
rate. The decay rate which is the same for all kinds of black
holes occurs at very late times. It stems from the resonance
backscattering off the spacetime curvature. This decay rate
is independent of the angular momentum parameter / as
well as the mass of hair on the brane black hole.

Our main result is that the asymptotic late-time behavior
is of the form r75/%, exactly the same as for static spheri-
cally symmetric black holes in Einstein or modified
Einstein gravity (it happened that in dilaton gravity with
an arbitrary coupling constant « the late-time behavior is
of the same form [29]). Having in mind the late-time decay
rate of massive scalar fields in the background of static
spherically symmetric black holes related to Einstein-
Maxwell theory or the low-energy string theory, this kind
of behavior should be more or less expected. It will not be
amiss to investigate the decay rate of black hair connected
with other spins. The investigation in this direction is in
progress and will be published elsewhere.
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