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The heat kernel in curved space-time is computed to fourth order in a strict expansion in the number of
covariant derivatives. The computation is made for arbitrary non-Abelian gauge and scalar fields and for
the Riemann connection in the coordinate sector. The expressions obtained hold for arbitrary tensor
representations of the matter field. Complete results are presented for the diagonal matrix elements and for
the trace of the heat kernel operator. In addition, Chan’s formula is extended to curved space-time. As a
byproduct, the bosonic effective action is also obtained to fourth order.
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I. INTRODUCTION

The heat kernel operator, the exponential of the Klein-
Gordon operator, is a useful tool in quantum field theory
since it is ultraviolet finite, one valued, and gauge covariant
and allows to obtain the propagator and the effective action
[1–4]. Quite different applications of the heat kernel (such
as spectral densities, index theorems, �-function, quantum
anomalies, chiral gauge theories, effective theories of
QCD, Casimir effect, black hole entropies, membranes,
etc.) are illustrated in [5–14]. The exact evaluation of the
heat kernel is not possible in general (see however, [15–19]
for particular cases). Nevertheless the series expansion in
powers of the proper time is available with computable
coefficients, the so-called Hadamard-Minakshisundaram-
DeWitt-Seeley (HMDS) or heat kernel coefficients [4,20].
These coefficients have been computed with different
techniques in several setups and to dimension ten [21–
27]. For reviews on spectral geometry and field theory on
curved space see [28–36]. For an alternative approach
based on covariant perturbation theory see [37].
Extensions to finite temperature can be found in [38,39].
Expansions around non c-number mass terms are given in
[40– 42]. The extension to noncommutative quantum field
theory has been presented in [43].

In [44] we investigated a different expansion for the
diagonal matrix elements of the heat kernel operator where
the terms are classified by their number of covariant de-
rivatives. This can be regarded as a resummation of the
HMDS coefficients to all orders in the (non-Abelian) mass
term, which needs not be small. There, explicit results were
presented for boundaryless compact flat manifolds to four
derivatives for the diagonal matrix elements and to six
derivatives for the trace of the heat kernel operator, for
Klein-Gordon operators with arbitrary non-Abelian gauge
and scalar external fields. In the present work we extend
those results to the case of curved manifolds endowed with
the Levi-Civita connection in the coordinate sector.

The scope and ideas involved as well as some definitions
are given in Sec. II. In particular, we avoid the standard
approach of reducing tensor fields (e.g., the photon field) to
scalars by introduction of a tetrad [34]. That approach

allows to use the heat kernel formulas derived for coordi-
nate scalars but at the price of complicating the internal
space (due to the new tetrad index) with its corresponding
modified connection. Instead, we provide formulas which
are equally simple regardless of the tensor representation
of the fields (on which the Klein-Gordon operator is acting)
using only the original gauge connection in the sector of
internal indices and the Levi-Civita connection in the
coordinate sector.

In Sec. III we discuss the shortcomings of Chan’s ap-
proach in the curved case and develop our own approach
based on the use of covariant symbols [45,46]. The cova-
riant symbols are in fact multiplicative operators (with
respect to x) which define a faithful representation of the
algebra of pseudodifferential operators. This technique is
similar to that of symbols for pseudodifferential operators
[20,47–49] and shares with it the feature of providing
diagonal matrix elements of generic operators, not neces-
sarily related to the heat kernel, since it is not based on
recurrence relations. However there is an important differ-
ence between both techniques: in the standard method of
symbols covariance is not manifest prior to momentum
integration whereas with covariant symbols covariance
(under both gauge and coordinate transformations) is
manifest at every step of the calculation. In that section
results are provided for the diagonal matrix elements to
four derivatives. These results are presented in compact
form using the technique of labeled operators, also used in
[44]. In this notation the mass term carries a label indicat-
ing its position in the expression; in this way it becomes
effectively a c-number and momentum integrals can be
carried out explicitly.

Explicit formulas for the derivative expansion of the
trace of the heat kernel operator are presented in Sec. IV.
This is of interest in the computation of the effective
action. It is noted that many, in fact most, of the new terms
introduced by the curvature can be eliminated by a suitable
redefinition of the mass term in the Klein-Gordon operator.

In Sec. V we obtain the expressions for the diagonal
matrix elements and trace of the heat kernel in the form
first derived by Chan [50] for the effective action to four
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derivatives and extended in [51] to six derivatives. This is
done following a rather indirect path since Chan’s deriva-
tion is not used. Instead a Chan’s form is proposed and the
coefficients are adjusted to reproduce the results previously
derived using covariant symbols. The question of whether
Chan’s elegant method can be used in curved manifolds is
left open. In any case, as expected from the experience in
the flat case, Chan’s form is truly much more compact.
Drawbacks are that the expressions are less explicit be-
cause one parametric integral is left undone, and for the
same reason there is a by parts integration ambiguity in the
formulas.

Section VI is devoted to computing the bosonic effective
action in an explicit way, with the help of labeled opera-
tors. The necessary momentum integrals can be done with
dimensional regularization. They are given in [52] using
the MS scheme.

Somewhat more explicit details on the calculation with
covariant symbols are given in Appendix A. The trace
cyclic property and integration by parts identities are de-
rived in Appendix B.

II. DERIVATIVE EXPANSION OF THE HEAT
KERNEL

We assume a compact boundaryless Riemannian mani-
fold of dimension d and Euclidean metric g���x� to repre-
sent the space-time upon Wick rotation. Further, for the
world sector indices1 we take the Levi-Civita connection
(i.e., torsionless and metric preserving). The Klein-Gordon
operator will act on wave functions  �x� (matter fields)
defined on the space-time manifold. The wave functions
are vectors with respect to some representation of a certain
gauge group. Without loss of generality we will assume
that  carries a single gauge (or internal) index.  is also
allowed to carry world indices, that is, we do not assume  
to be a world scalar.2 Following for instance [34], we use a
single covariant derivative r� which acts on all indices
with the appropriate connection, r � @� ��!. ���� is
the connection on world indices and !��x� the connection
on gauge indices, a matrix in internal space. Our conven-
tion for the Riemann tensor is such that, if  is a world
vector,

 �r�;r�� � � ��� � � R���� �; (2.1)

where

 ��� � @�!� � @�!� � �!�;!�� (2.2)

is the gauge field strength tensor. In addition, for the Ricci
tensor and scalar curvature

 R �� � R����; R �R��: (2.3)

In the previous formulas we use the same notation for
contravariant and covariant indices. We will follow this
convention throughout unless an ambiguity arises.

The Klein-Gordon operator is of the form

 K � g��r�r� � X: (2.4)

X�x� is a scalar field with respect to world indices and a
matrix with respect to the internal space. As is well known
the heat kernel operator e�K is ultraviolet finite for Re���>
0, and its matrix elements admit an asymptotic expansion
in powers of �. For the diagonal matrix elements

 hxje�Kjxi�
1

�4���d=2

X1
n�0

�nan�x�: (2.5)

The coefficients an are still operators with respect to gauge
and world indices since the brackets hxj, jxi refer only to x
space. To lowest orders, the well-known result is
 

a0 � 1; a1 � X� 1
6R;

a2 �
1
2X

2 � 1
6X�� �

1
12Z

2
�� �

1
6RX�

1
30R��

� 1
72R

2 � 1
180R

2
�� �

1
180R

2
���	: (2.6)

In these formulas (and hereafter) we use the following
notational convention: the covariant derivative of an object
is represented by adding a world index to it and further
covariant derivatives add further indices to the left. So for
instance,

 X���r�;X�; X����r�;�r�;X��; R����r�R��:

(2.7)

We have also introduced the quantity

 Z�� :� �r�;r��: (2.8)

Let us emphasize that Z�� is different from ���. The
operators Z�� and ��� are both multiplicative with respect
to x space and matrices in internal space, however, unlike
���, Z�� acts also on world indices (cf. (2.1)). This
implies, for instance, that Z�� and R�	 do not commute:

 �Z��;R�	� � R����R�	 � R��	�R��: (2.9)

Likewise, �Z��; X�� � ����; X�� � R����X�, etc. The
derivative of Z�� will also be needed,31In this work we will use the label world interchangeably with

coordinate or space-time in expressions like ‘‘world tensor,’’
‘‘world index,’’ etc., to refer to properties tied to indices
�; �; . . . , associated to natural bases, @=@x�, of the tangent
space of the Riemannian manifold.

2Of course one can choose to transform such world indices
into internal or gauge indices using a tetrad field. This is the
standard approach [34]. Our formulas hold whether this choice is
made or not.

3This is an exception to the index convention. The second term
in the definition of Z��� is required to make it a multiplicative
operator with respect to x. E.g.

 �Z���; X�� � �����; X�� � R�����X�:

Similar terms appear in higher derivatives, Z�	��, etc., [46].
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 Z��� :� �r�; Z��� �
1
2fr�; R����g: (2.10)

In our formulas we will use Z�� rather than ���.
Nevertheless, if desired one can always move the Z’s to
the right using their commutation properties and apply
them to the wave function  to produce �’s and R’s. (Of
course, the result so obtained will depend on the concrete
tensor representation of the wave function.) For instance,
the term Z2

��=12 in a2 is equivalent to more standard
�2
��=12 when the wave function happens to be a world

scalar. The advantage of using Z�1����n
is that the expres-

sions take the same form regardless of the world-tensor
representation of  and yet the original connections � and
! are used. (See footnote 2.) Fuller details can be found in
[46].

By dimensional counting it is clear that the standard heat
kernel expansion (2.5) is an expansion with coefficients
ordered by their mass dimension: if g�� carries dimension
0, r� carries dimension 1, and X carries dimension 2, the
coefficient an has dimension 2n. In what follows we will
set � � 1 since dimensional counting allows to restore the
parameter � at any time if needed.

In this work we consider a different classification of
terms in the heat kernel, namely, operators are classified
by the number of covariant derivatives they carry, so r�
counts as order 1 while X and g�� count as order zero.
Thus, e.g., XX� is of first order, R���	 and Z�� of second
order, Z��� of third order, and so on. In this expansion

 hxjeKjxi�
1

�4��d=2

X1
n�0

An�x�; (2.11)

where the coefficient An collects all operators with 2n
derivatives and any number of X. In turn, the An can be
reexpanded using operators classified by their mass dimen-
sion,
 

A0 � 1� X� 1
2X

2 � � � � ;

A1 �
1
6R�

1
6X�� �

1
6RX� � � � ;

A2 �
1
12Z

2
�� �

1
30R�� �

1
72R

2 � 1
180R

2
��

� 1
180R

2
���	 � � � � :

(2.12)

(Of course, when � is not set to unity these coefficients are
also functions of �.)

In [44] we presented complete formulas (i.e., valid to all
orders in X) for A0, A1, and A2, as well as B0, B1, B2, and
B3 (defined below), for the flat case. Presently we extend
those results (except B3) to curved manifolds.

The key tool to write the result to all orders in X in
closed form is the use of labeled operators. For instance, all
terms in A1 of the type XnX��Xm, with n;m � 0; 1; . . . ,
can be collected as

 I2;2X�� �
�
eX1 � eX2

�X1 � X2�
2 � 2

eX1 � eX2

�X1 � X2�
3

�
X��: (2.13)

The label 1 in X1 indicates that the corresponding X should
be placed just before (i.e. to the left of) the fixed operator
X��, likewise, X2 indicates that X is to be put just after
(i.e., to the right of) the fixed operator. Upon a series
expansion in powers of X1 and X2

 

I2;2X�� � �
1
6�

1
12X1 �

1
12X2 �

1
40X

2
1 �

1
40X

2
2

� 1
30X1X2 � � � ��X��

� 1
6X�� �

1
12XX�� �

1
12X��X�

1
40X

2X��

� 1
40X��X

2 � 1
30XX��X� � � � : (2.14)

Likewise, X2
1X2X3X2

� would stand for X2X�XX�X, etc.
The labels always refer to the position of X’s with respect
to ‘‘fixed operators’’ such as X���, Z��, etc. Because X
commutes with R���	 we will not need to include the
Riemann tensor among the set of fixed operators. So for
instance, I2;2RX�� will be used to mean R multiplied by
I2;2X��.

The important point is that the labeled operators can be
treated as c-numbers, e.g., X1X2 � X2X1; the true position
of the labeled operator is given by its label. This is similar
to what happens within normal or chronological orders.
Labeled operators were introduced in [53,54].

The function I2;2 belongs to the family of functions
Ir1;...;rn , with arguments X1; . . . ; Xn. They are defined as

 Ir1;r2;...;rn
:�

Z
�

dz
2�i

ezNr1
1 N

r2
2 � � �N

rn
n ; (2.15)

where

 N � �z� X��1 (2.16)

and Ni � �z� Xi��1, and � is a positively oriented closed
simple path on the complex plane enclosing the eigenval-
ues of X (at the given point x). These functions enjoy a
number of properties described in [44]. In particular they
are entire functions of the Xi and can be computed by
recurrence relations starting from I1 � eX1 . They are not
linearly independent; integration by parts implies the rela-
tion

 Ir1;r2;...;rn �
Xn
j�1

rjIr1;r2;...;rj�1;...;rn : (2.17)

The trace of the heat kernel operator,

 Tr �eK� �
Z
ddx

���
g
p

trhxjeKjxi; (2.18)

is also of great interest in applications, such as the compu-
tation of the effective action (see Sec. VI). The trace tr
refers to gauge and world indices. The trace of the heat
kernel admits an asymptotic expansion with terms classi-
fied by their mass dimension:
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 Tr �eK��
1

�4��d=2

X1
n�0

Z
ddx

���
g
p

tr�bn�x��; (2.19)

with

 b0 � 1; b1 � X� 1
6R;

b2 �
1
2X

2 � 1
12Z

2
�� �

1
6RX�

1
72R

2 � 1
180R

2
�� �

1
180R

2
���	:

(2.20)

Likewise, the terms can be classified by their number of
derivatives

 Tr �eK��
1

�4��d=2

X1
n�0

Z
ddx

���
g
p

tr�Bn�x��: (2.21)

Because of the trace cyclic property and integration by
parts, there is an ambiguity in the definition of Bn�x�. This
allows to bring Bn�x� to a simpler form starting from An�x�.
In turn, functional derivation allows one to obtain An from
Bn

 An�x� �




X�x�

Z
ddx

���
g
p

tr�Bn�x��: (2.22)

Before closing this section, let us comment on the nature
of the derivative expansion in the present context. [We
reinstate � for this discussion.] As is well known, the
standard expansion in powers of � is an asymptotic one,
reliable for small � only. Intuitively, this is because the
coefficients an�x� are local, i.e., they depend on a finite
number of derivatives of the external fields (namely, the
metric, the gauge connection, and the scalar field X).
Consequently, the expansion at a given point x0 is not
sensitive to modifications of these external fields taking
place outside a fixed neighborhood of x0. Such modifica-
tions affect the exact matrix element at x0 (and hence its �
dependence) but this is not seen by the asymptotic expan-
sion. By the same token, the derivative expansion is ex-
pected to be asymptotic too, since the coefficients An�x; ��
are also local. To make mathematical sense of the asymp-
totic series it is necessary to write it as a power series
expansion. The derivative expansion can be viewed as a
power series as follows: for a given point x0 consider a
deformation of the external fields such that within a fixed
neighborhood of x0 the deformation is just a dilatation by a
parameter �

 X�x�� X�x��; g���x�� g���x��;

!��x�� �!��x��; x�� � x�0 � ��x
� � x�0 �:

(2.23)

The deformation is smoothly continued outside of the
neighborhood. This produces a family of Klein-Gordon
operators K�.4 By construction the parameter � counts

the number of derivatives, that is,

 An�x0; �; �� � �2nAn�x0; ��: (2.24)

Therefore the derivative expansion can be read off from an
expansion of hx0je�K� jx0i. This construction suggests that,
although the series in � is asymptotic, the coefficients
An�x; �� themselves are well-defined quantities, as is also
the case for the coefficients an�x�. This point is to be settled
by a rigorous mathematical approach. Note that this defi-
nition of the coefficients (from an expansion in �) is not
identical to the alternative definition

 An�x; �� �
X
m	n

am;n�x��m�n (2.25)

(using am;n�x� to denote the terms of am�x� with 2n deriva-
tives). We expect both definitions to coincide. This expec-
tation relies on (i) the fact that the functions Ir1;r2;...;rn are
entire functions of Xi and so of �, thus their expansion in �
is absolutely convergent, and (ii) the obvious reason for the
series in � to be asymptotic does not apply here since
An�x; �� is itself local. In summary, we expect the deriva-
tive expansion to be valid for finite (not small) �, provided
� is sufficiently small.

III. DIAGONAL COEFFICIENTS

In [44] the calculation of An in flat space-time was based
on that of Bn. In turn Bn was adapted from the result of
Chan [50] for the effective action to four derivatives and its
extension in [51] to six derivatives. Unfortunately, it is not
obvious how the elegant approach of [50] is to be extended
to the curved case. As we may recall, in that approach a
symbol method (D� ! D� � p�) is applied, to
Tr�log�K��. The expression is then formally expanded in
the number of derivatives and brought to a canonical form
by using integration by parts (with respect to p�) as well as
formal cyclic property. This canonical form is not mani-
festly gauge invariant but it allows to unambiguously
identify the originating gauge invariant expression from
which it comes, because no two different gauge invariant
expressions may have the same canonical form. The
trouble is that a similar statement does not hold in the
curved case. For instance,

 Tr �Z���p�; p�N2�� � 0 (3.1)

(with N � �p2 � X��1), since p� and X commute.
However, under formal cyclic property the same expres-
sion would be equivalent to

 Tr �p�N2�Z��; p��� � Tr�p�N2R����p��

� Tr�p�p�R��N
2�: (3.2)

This is equivalent to �Tr�p2RN2�=d and does not vanish.
Since Chan’s approach is not available, we will compute

An from scratch and then obtain Bn from it. The starting
point is the representation

4The dilatation depends not only on x0 but also on the
coordinate system used. Equation (2.24) is coordinate
independent.
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 eK �
Z

�

dz
2�i

ez

z�r2 � X
; (3.3)

where we can apply the method of covariant symbols
[45,46]. This is the second key ingredient of our approach.
This gives

 hxjeKjxi �
Z

�

dz
2�i

1���
g
p

Z ddp

�2��d
ez

z� �r2 � �X
: (3.4)

The covariant symbols are designed for computing diago-
nal matrix elements of general operators, not necessarily
the heat kernel. The covariant symbols were introduced by
Pletnev and Banin in [45] for the gauge connection and
extended to curved space-time in [46] where they have
been computed to four derivatives. Explicitly, to two de-
rivatives

 

�X � X� X�@
� �

1

2!
X�	@�@	 � � � � ;

�r2
� � p2

� �
1

6
R� Z�	p�@	 �

1

3
R�	p�@	

�
1

3
R��	�p�p	@�@� � � � � ;

(3.5)

where @� � @=@p� and the dots refer to terms with three
derivatives or more. Note that, unlike ordinary symbols,
these operators are multiplicative and covariant already
before momentum integration. The calculation is straight-
forward along the lines of the examples presented in [46].
Details are provided in Appendix A. One obtains

 A0 � I1 � eX (3.6)

to zeroth order and

 

A1 � �I1;2 � 2I1;3�X�� � �2I1;1;2 � 4I1;1;3 � 2I1;2;2�X
2
�

� 1
3I3R (3.7)

to second order. Using the identities (2.17), this can be
rewritten as

 A1 � I2;2X�� � 2I2;1;2X2
� �

1
6I1R: (3.8)

Let us emphasize that the functions f�X1; X2� multiplying
X�� and f�X1; X2; X3� multiplying X2

�, are well defined
and unambiguous. The only ambiguity enters in how they
are written in terms of the overcomplete basis Ir1;...;rn .

The two terms without R are identical to those of the flat
case in [44], only with the ‘‘minimal coupling’’ replace-
ment D � @�!! r � @� ��!. These are then
minimal terms required by covariance (under general co-
ordinate transformations). The term with R is nonminimal;
covariant but not required by covariance. In general we will
obtain coefficients of the form

 An � Amn � A
R
n : (3.9)

The terms in ARn are those which contain explicitly the
Riemann tensor and so vanish in the flat space case. On the
other hand, the minimal terms Amn can be reconstructed by
minimal coupling from the flat space expressions. Let us
warn, however, that this separation is not an unambiguous
one: in general Amn will depend of the concrete An of flat
space used to apply the minimal coupling. This is because
reordering of world indices in the flat space expression
may introduce Riemann tensors in the curved case.5

The calculation of A2 gives

 

Am2 � 2I2;1;2Z��Z�� � �2I2;2;2 � 4I3;0;3 � 4I2;1;3�Z���X� � �2I2;2;2 � 4I3;0;3 � 4I3;1;2�X�Z��� � �4I2;2;1;2 � 16I3;0;1;3

� 8I3;0;2;2 � 8I3;1;1;2�X�Z��X� � �16I3;0;1;3 � 8I2;1;1;3 � 4I2;1;2;2 � 8I3;0;2;2�Z��X�X� � �16I3;1;0;3 � 8I3;1;1;2

� 4I2;2;1;2 � 8I2;2;0;3�X�X�Z�� � 2I3;3X���� � �2I2;3;2 � 4I3;1;3 � 2I2;2;3 � 2I3;2;2�X��X�� � 8I3;1;3X��X��

� �8I3;1;3 � 4I3;2;2�X���X� � �8I3;1;3 � 4I2;2;3�X�X��� � �4I2;2;2;2 � 16I3;1;1;3 � 8I2;2;1;3 � 8I3;1;2;2�X�X��X�

� �2I2;2;2;2 � 8I3;1;1;3 � 4I2;2;1;3 � 4I3;1;2;2�X�X��X� � �2I2;2;2;2 � 8I3;1;1;3 � 4I2;2;1;3 � 4I2;3;1;2 � 4I3;1;2;2

� 4I3;2;1;2�X��X�X� � �2I2;2;2;2 � 8I3;1;1;3 � 4I2;2;1;3 � 4I2;1;3;2 � 4I3;1;2;2 � 4I2;1;2;3�X�X�X�� � �16I3;1;1;3

� 8I3;1;2;2�X��X�X� � �16I3;1;1;3 � 8I2;2;1;3�X�X�X�� � �4I2;2;1;2;2 � 16I3;1;1;1;3 � 8I2;1;2;1;3 � 8I3;1;2;1;2

� 4I2;2;2;1;2 � 4I2;1;2;2;2 � 8I2;1;3;1;2 � 8I2;2;1;1;3 � 8I3;1;1;2;2�X�X�X�X� � �4I2;2;1;2;2 � 16I3;1;1;1;3 � 8I2;2;1;1;3

� 8I3;1;1;2;2�X�X�X�X� � �4I2;2;1;2;2 � 16I3;1;1;1;3 � 8I2;2;1;1;3 � 8I3;1;1;2;2�X�X�X�X�; (3.10)

5For instance,

 Z�	�� � Z	��� � �Z�	; Z��� �
1
2fZ��; R�	��g �

1
2fZ	�; R����g:
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 AR2 �
1

30I1R�� �
1

72I1R
2 � 1

6I2;2RX�� �
1
4I2;2R�X�

� 4
3I3;3R��X�� �

1
3I2;1;2RX2

� � �
2
3I2;2;2 �

4
3I2;3;2

� 16
3 I3;1;3�R��X�X� �

1
180I1R

2
�� �

1
180I1R

2
���	:

(3.11)

Am2 is formally identical to the expression in (4.10) of
[44]. (There mirror symmetry of An was exploited to write
A2 in a shorter, less explicit form.) As said before, in the
formula for AR2 the Riemann tensor is not to be considered
as one of the fixed operators.

The coefficients A1 and A2, for curved space and non-
Abelian gauge group, with contributions to all orders in X
are computed here for the first time. Upon expansion in
powers of X they reproduce the corresponding terms with
up to four derivatives of the standard expansion an. In
particular the coefficients quoted in Eqs. (4.26–4.29) of
[34] are correctly reproduced. (The comparison with [34]
is achieved by restricting our results to the case of a world
scalar wave function and using the trace cyclic property,
but not integration by parts.) Results to all orders in X and
up to four derivatives for curved space are also available
from [55] for the so-called minimal case, i.e., X�x� a
c-number and !� � 0, and  a world scalar. Our formulas
also check Eq. (22) of [55].

IV. COEFFICIENTS FOR THE TRACE

Application of integration by parts and the trace cyclic
property allows to obtain the simpler coefficients Bn. To
four derivatives they take the form
 

B0 � I1; B1 � �
1
2I2;2X�X� �

1
6I1R;

B2 � ��I2;2;2;2 � 4I3;1;3;1�X�X�X�X�

� 1
2I2;2;2;2X�X�X�X� � 4I3;1;3X�X�X��

� I3;3X��X�� � 2I2;2;2X�X�Z�� �
1
2I2;2Z��Z��

� 1
12I2;2RX�X� �

2
3I3;3R��X�X� �

1
30I1R��

� 1
72I1R

2 � 1
180I1R

2
�� �

1
180I1R

2
���	: (4.1)

[For short we have written I2;2 for I2;2;0, etc.] The simplest
way to obtain this result is starting from its Chan’s form, to
be discussed in the next section. The validity of integration
by parts for general world representations of the wave
function space is shown in Appendix B. The cyclic prop-
erty for multiplicative operators is also subtle when Z�� (or
more generally Z�1����n

) is present because this operator
acts on world indices. For instance, under trace,

 X�Z��X� 
 X�X�Z�� �R��X�X�: (4.2)

The last term would not be present under the standard trace
cyclic property of matrices. The rationale of the extra term
is that in X�Z��X�, Z�� acts on the index � of X� (as well
as on the subsequent world indices in the wave function)
while in X�X�Z�� it does not; the missing contribution is

added by the extra term. This equation is derived in
Appendix B.6

It can be verified that An and Bn are indeed equivalent
inside

R
ddx

���
g
p

tr�� and that (2.22) is fulfilled.
To this order one can see that most of the nonminimal

terms can be generated by a modified ‘‘minimal coupling’’
prescription. Namely, @�!! @�!� � and X ! X0,
with the new scalar field

 X0 � X� 1
6R�

1
180�R�� �R2

�� � R2
���	� �O�r6�:

(4.3)

The trace of the heat kernel can then be expanded as

 Tr �eK��
1

�4��d=2

X1
n�0

Z
ddx

���
g
p

tr�B0n�x��; (4.4)

with
 

B00 � I01; B01 � �
1
2I
0
2;2X

0
�X
0
�;

B02 � ��I
0
2;2;2;2 � 4I03;1;3;1�X

0
�X0�X0�X0�

� 1
2I
0
2;2;2;2X

0
�X
0
�X
0
�X
0
� � 4I03;1;3X

0
�X
0
�X
0
��

� I03;3X
0
��X0�� � 2I02;2;2X

0
�X0�Z��

� 1
2I
0
2;2Z��Z�� �

2
3I
0
3;3R��X

0
�X
0
�: (4.5)

(I0r1;...;rn being defined as in (2.15) but using X0 instead of
X.) There are corresponding coefficients A0n. The relationsR
ddx

���
g
p

tr�An� �
R
ddx

���
g
p

tr�Bn� and (2.22) hold also for
the primed coefficients. The redefinition X0 � X� 1

6R is
quite standard in the literature [15] to eliminate some of the
terms. Note that beyond that the primed expansion is no
longer a strict expansion in the number of covariant de-
rivatives (and X0 will depend on � when � is restored).

V. CHAN’S FORM OF THE COEFFICIENTS

Let us call the coefficients An and Bn just derived the
coefficients in X form, to distinguish them from their
Chan’s or N form, to be discussed in this section.

Let us briefly summarize Chan’s method in flat space
[50,51]. In this method the results are obtained in terms of
derivatives of N � �z� X��1, instead of derivatives of X,
that is, N� � �r�N�, N��, etc. Because z appears inside
N�1����n

the integral over z cannot be carried out explicitly
and is left undone. Integration by parts (with respect to z)
allows to reorder terms so that in each term of Bn the
quantity N (derivated or not) appears exactly 2n times. A
virtue of this approach is that for each Bn there is only a
limited number of available covariant structures con-
structed with 2n N’s and 2n r’s, thus the expressions so
obtained are quite compact. To pass a result given in N

6Of course, relations like (4.2) imply that starting from the
same Bn of flat space but written in different ways will in general
yield different results for the minimal coupling part of Bn in
curved space.
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form to X form is, of course, straightforward using the
relation N� � NX�N and its derivatives. As pointed out
before, the result in X form is free from ambiguities.

Because the extension of Chan’s method to curved space
is not known, the existence of a Chan’s form for the heat
kernel coefficients in the curved case is not obvious. In
principle, undoing the z integrals in the Ir1;...;rn and using
identities of the type

 X� � N�1N�N
�1;

X�� � N�1N��N�1 � N�1N�N�1N�N�1

� N�1N�N
�1N�N

�1;

(5.1)

would allow to bring the coefficients computed in X form
to an almost Chan’s form, except that, in general, negative
powers of N will be present. Moreover the precise result
will be subject to ambiguities due to integration by parts on
z and no algorithm is available to bring it to a compact
form. This method works for B0 and B1.

The procedure that we have followed to obtain an N
form for the coefficient B2 is as follows. In the flat case the
N form is known for B2 and hence for A2 (by functional
variation with respect to X), therefore we apply minimal
coupling there. This already reproduces most of the terms
of the known full A2 in X form, (3.10) and (3.11). For the
few remaining terms of A2 it is relatively easy to bring
them to a rather compact N form by hand. This remainder

is the functional variation of the nonminimal remainder in
B2, BR2 , not yet determined. To obtain BR2 we simply write
down the most general terms having four derivatives, at
least one Riemann tensor, and no more than four N’s and
with arbitrary numerical coefficients. These coefficients
are then chosen to reproduce the nonminimal remainder
of A2. This procedure gives7

 

B0 � hNiz; B1 � h�
1
2N

2
� �

1
6RNiz;

B2 � h�N2
�N2

� �
1
2�N�N��

2 � �NN���2

� 2NN�N�NZ�� �
1
2�NZ��N�

2 � 1
12RN

2
�

� 2
3R��NN�NN� �

1
30R��N �

1
72R

2N

� 1
180R

2
��N �

1
180R

2
���	Niz; (5.2)

where we use the shorthand notation

 hiz :�
Z

�

dz
2�i

ez��: (5.3)

B2 in X form, (4.1), has been obtained from this N form.
Equations (5.2) are the extension of Chan’s formulas to
curved space-time. Once again, to this order, the only
nonminimal term surviving is � 2

3 R��NN�NN� if X0 is
used throughout.

Using (2.22), An in N form is easily obtained from Bn.
This gives8

 A0 � hNiz; A1 � hNN��N �
1
6RNiz;

A2 � h2N
2N����N

2 � 4NN�N��N�N � 2NN�N��N�N � 2NN2
�N��N � 2NN��N

2
�N � 4NN�N���N

2

� 4N2N���N�N � 2N2N2
��N � 2NN��NN��N � 2NN2

��N2 � 4N2Z��N�N�N � 4NN�N�Z��N2

� 4NN�NZ��N�N � 2N2Z���NN�N � 2NN�NZ���N
2 � 2N2Z��NZ��N

2 � 1
6RNN��N �

1
4R�NN�N

� 1
30R��N �

4
3R��N2N��N2 � 2

3R��NN�N�N �
4
3R��NN�NN�N �

1
72R

2N � 1
180R

2
��N �

1
180R

2
���	Niz:

(5.4)

As noted, the existence of a Chan’s form for the coef-
ficients was not completely obvious a priori in the curved
case. The fact that this Chan’s form exists suggests that
perhaps Chan’s method could find a suitable extension in
the case of curved space.

VI. THE EFFECTIVE ACTION

After functional integration, the effective action of a
complex bosonic field is given by �Tr�logK�. This can
be related to the heat kernel by

 � Tr logK �
Z 1

0

d�
�

Tr�e�K�: (6.1)

Upon restoring � in the expressions, a contribution
Ir1;...;rnO in Bn picks up a factor ���1���d=2, where 2� is
the mass dimension of the operator O and � �

Pn
i�1 ri,

(e.g., �4�1�4�d=2 for I2;2RX�X� in B2). After carrying out

the integral over �, the integral over z in Ir1;...;rn can be
traded by a momentum integral. This gives the replacement
rule for going from the heat kernel to the effective action

 

1

�4��d=2
Ir1;...;rnO! I���r1;...;rnO; (6.2)

where we have defined

 Ikr1;...;rn
:�

��d=2�

��k� d=2�

Z ddq

�2��d
�q2�kNr1

1 � � �N
rn
n ; (6.3)

with N � �q2 � X��1. (Note that Ikr1;...;rn depends also on
d.) The contributions to the effective action may be ultra-

8Let us note that the minimal parts of A2 in X form and in N
form are different:

 Am2;N � Am2;X � 8I3;1;3R��X�X�:

7Note that the sign of the fourth term of B2 is incorrect in [50].
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violet and infrared divergent. Dimensional regularization
applies here. These integrals have been computed in [52]
using minimal subtraction.

The replacement rule gives for the effective action ex-
panded in derivatives

 � tr logK �
Z
ddx

���
g
p X1

n�0

trWn (6.4)

with

 

W0 � I1
1 ;

W1 � �
1
2I

1
2;2X�X� �

1
6I

0
1R;

W2 � ��I2
2;2;2;2 � 4I2

3;1;3;1�X�X�X�X�

� 1
2I

2
2;2;2;2X�X�X�X� � 4I2

3;1;3X�X�X��

� I2
3;3X��X�� � 2I2

2;2;2X�X�Z�� �
1
2I

2
2;2Z��Z��

� 1
12I

0
2;2RX�X� �

2
3I

2
3;3R��X�X� �

1
30I

0
2R��

� 1
72I

0
2R

2 � 1
180I

0
2R

2
�� �

1
180I

0
2R

2
���	: (6.5)

VII. SUMMARY

We have derived, for the first time, expressions valid to
all orders in X and to four covariant derivatives for the
diagonal matrix elements and also for the trace of the heat
kernel operator in a Riemannian curved manifold. The
expressions presented check previously available results
for the so-called minimal case [55] and, when reexpanded
in powers of X, they reproduce the known HMDS coeffi-
cients to four derivatives. We also extend Chan’s formula,
originally derived for the effective action, to include cur-
vature. As in the flat case, the expressions in Chan’s form
are remarkably simple also in the curved case. This sim-
plicity suggests a direct calculation of the energy-
momentum tensor taking a variation of the effective action
with respect to the metric. Such a calculation has not been
addressed here. The method of covariant symbols allows to
consider more general coordinate connections, including
torsion. This would be of interest in the derivation of the
Lorentz group generators since the coordinate connection
couples to them. A virtue of our formulas is that they are
equally simple for scalar wave functions and for tensor
ones, without redefining the gauge connection to include
the parallel transport of the new tetrad fields indices. This
is achieved through a consistent use of the operators
Z�1����n

which are defined so that they are multiplicative.
Remarkably the formulas obtained are independent of the
tensor representation of the wave function even for the
coefficients Bn�x�. This is because the general formulas
for the trace cyclic property and integration by parts can
also be written in a tensor representation independent way
(see Appendix B).
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APPENDIX A: COVARIANT SYMBOLS

Let us give some details on the calculation of An using
covariant symbols. Fuller details on the use of covariant
symbols with derivative expansions can be found in [56]
for flat space-time and [46] for curved space-time. Using
the expansions (3.5) in (3.4), reexpanding the result and
keeping terms with at most two covariant derivatives, gives
 

hxjeKjxi �
Z

�

dz
2�i

1���
g
p

Z ddp

�2��d
ez
�
N � NX�@�N

� NX�@�NX	@	N � N
�

1

2!
X�	@�@	

�
1

6
R� Z�	p�@	 �

1

3
R�	p�@	

�
1

3
R��	�p�p	@�@�

�
N �O�r4�

�
; (A1)

with N � �z� p2
� � X��1. (Let us warn that we are using

a purely imaginary p�, to avoid the proliferation of i’s in
the formulas.) The derivatives with respect to p� are then
carried out (using @�N � 2p�N

2). After that, the shift z!
z� p2

� allows to isolate the p� dependence in integrals of
the type

R
ddpep

2
�p�1

� � �p�n
which are easily evaluated.

These steps produce
 

hxjeKjxi �
1

�4��d=2

Z
�

dz
2�i

ez
�
N � NX��N

2

� 2NX��N
3 � 2NX�NX�N

2

� 4NX�NX�N
3 � 2NX�N

2X�N
2

�
1

3
N3R�O�r4�

�
(A2)

with N � �z� X��1. This expression immediately trans-
lates into those in (3.6) and (3.7).

APPENDIX B: TRACE AND INTEGRATION BY
PARTS

In this work (and, in particular, in this appendix), all
formulas hold for arbitrary tensor representations of the
wave functions  �x� on which the Klein-Gordon operator
acts. The space of world tensors of rank r is spanned by
e�1
a1
� � � e�r

ar where e�a �x� is a local basis of the space-time
tangent space.

The trace tr in (2.18) refers to gauge indices and to world
indices, tr � trgaugetrworld. We need to consider only multi-
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plicative operators Ô (that is, Ô at x does not depend on
 at x0 � x). All operators in An and Bn are multiplicative.
In this case, the trace on world indices in the representation
of tensors of rank r will be

 tr world�Ô� � ea1
�1 � � � e

ar
�r�Ôe

�1
a1
� � � e�r

ar �; (B1)

where ea� is the dual basis, ea�e
�
b � 
ab. Note that

trworld�Ô� may only be nonvanishing when Ô is itself a
world scalar, that is, it maps tensors of rank r to tensors of
rank r. As an illustration, in the space of tensors of rank r,
an easy calculation yields

 tr � 1
12Z

2
��� � drtrgauge�

1
12�

2
��� � rd

r�1ng
1
12R

2
���	; (B2)

ng being the dimension of the gauge representation.
The use of the trace cyclic property and integration by

parts requires some care. These properties work as usual
when the operators involved are (i) multiplicative and
(ii) they do not act on world indices. (For a scalar operator
Ô, this means that the component � of Ô applied to ea�x�
does not depend on e�a�x�, for � � �.) Instances of such
operators are X, X�, and ���. In the notation of [46], these
are the operators in the class C�r; Z�. On the other hand,
modifications occur in the trace cyclic property and inte-
gration by parts when multiplicative operators acting on
world indices are involved (class C�r�). An instance of this
is Z��, since �Z��ea�� � R����e�a ����e�a . (However,
�r�; A� and �Z��; A� 2 C�r; Z� provided A 2 C�r; Z�.)

To write down the correct relations, let us define ZR�1����n

as the curvature parts of Z�1����n
, that is, obtained by

dropping !� in the covariant derivative. In particular,

 Z�� � ZR�� ����: (B3)

Furthermore, let us introduce the shorthand notation

 hÔi :�
Z
ddx

���
g
p

tr�Ô�: (B.4)

The two following useful properties are easily estab-
lished

 hAZR��i � 0; A 2 C�r; Z�

hAZR���i � h�
1
2R�����Ai; A 2 C�r; Z�

(B5)

which hold for arbitrary multiplicative operators A not
acting on world indices.

Using these properties, one can prove the following
relations for arbitrary operators A;B; . . . , in C�r; Z�:

 h�r�; A�Bi � h�A�r�; B�i; (B6)

 

h�r�; A�BZ��Ci � h�A�B�Z��C� BZ���C� BZ��C�

� R����BC� �
1
2R�����BC�i; (B7)

 hABZ��Ci � hBZ��CA� BC�Z
R
��; A�i; (B8)

 hABZ���Ci � hBZ���CA� BC�Z
R
���; A�i; (B9)

 

hABZ��CZ�	Di � hBZ��CZ�	DA� BZ��CD�ZR�	; A�

� BCZ�	D�ZR��; A�

� BCD�ZR�	; �Z
R
��; A��i; (B10)

 hZ��AZ�	Bi � hAZ�	BZ�� � R�	��ABZ��

� R�	��ABZ��i: (B11)

The first two identities refer to integration by parts while
the other allow to apply the trace cyclic property. The
relation (4.2) is a consequence of (B8).
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