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In this work we study the dynamics of the Universe in f�R� �
������������������
R2 � R2

0

q
modified gravity with the

Palatini formalism. We use data from recent observations, such as the supernova type Ia Gold sample and
Supernova Legacy Survey data, the size of the baryonic acoustic peak from the Sloan Digital Sky Survey ,
the position of the acoustic peak from the cosmic microwave background observations, and large-scale
structure formation from the 2dFGRS survey, to put constraints on the parameters of the model. To check
the consistency of this action, we compare the age of old cosmological objects with the age of the
Universe. In the combined analysis with all the observations, we find the parameters of the model as
R0 � 6:192�0:167

�0:177 �H
2
0 and �m � 0:278�0:273

�0:278.
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I. INTRODUCTION

Recent observations of supernova type Ia (SNIa) provide
the main evidence for the accelerating expansion of the
Universe [1,2]. Analysis of SNIa and the cosmic micro-
wave background radiation (CMB) observations indicates
that about 70% of the total energy of the Universe is made
by the dark energy and the rest of it is in the form of dark
matter with a few percent of baryonic matter [3–5]. The
‘‘cosmological constant’’ is a possible explanation of the
present dynamics of the Universe [6]. This term in Einstein
field equations can be regarded as a fluid with the equation
of state of w � �1. However, there are two problems with
the cosmological constant, namely, the fine-tuning and the
cosmic coincidence. In the framework of quantum field
theory, the vacuum expectation value is 123 orders of
magnitude larger than the observed value of 10�47 GeV4.
The absence of a fundamental mechanism which sets the
cosmological constant to zero or to a very small value is the
cosmological constant problem. The second problem,
known as the cosmic coincidence, asks why the energy
densities of dark energy and dark matter are nearly equal
today.

There are various solutions for this problem, such as the
decaying cosmological constant models. A nondissipative
minimally coupled scalar field, the so-called quintessence
field, can play the role of this time varying cosmological
constant [7–9]. The ratio of the energy density of this field
to the matter density in this model increases by the expan-
sion of the Universe, and, after a while, dark energy
becomes the dominant term of the energy-momentum
tensor. One of the features of this model is the variation
of the equation of state during the expansion of the
Universe. Various quintessence models, like k-essence
[10], tachyonic matter [11], phantom [12,13] and
Chaplygin gas [14], provide various equations of state for
the dark energy [13,15–21].

Another approach dealing with this problem involves
using the modified gravity by changing the Einstein-
Hilbert action [22]. Recently, a great deal of attention has
been devoted to this era because of the prediction of early
and late time accelerations in these models [23]. While it
seems that the modified gravity and dark energy models are
completely different approaches to explain cosmic accel-
eration, it is possible to unify them in one formalism [24].

In this work we obtain the dynamics of the modified

gravity f�R� �
������������������
R2 � R2

0

q
in the Palatini formalism [25]

and use the cosmological observations such as SNIa, SDSS
(Sloan Digital Sky Survey), acoustic peak in CMB, and
structure formation to put constraints on the parameter of
the action. Our motivation for using the action of f�R� �������������������
R2 � R2

0

q
is that for the small Ricci curvatures we will

have a minimum value of Rv �
���
2
p
R0, which provides a

late time accelerating expansion of the Universe [26].
Expanding this action in the power series, we get 1=Rn

terms, where around the vacuum solution the 1=R term will
be dominated and results are similar to that of the Carroll
et al. model. In the Palatini formalism, if we add an extra
term of R3=�2 to the action with �� R0, this will unify
the inflation and cosmic acceleration by means that we will
also have an early time inflation for the Universe with
Rv � � [27]. Since we are doing the observational tests
at the present time, we can ignore the cubic term in our
analysis.

In Sec. II we derive the dynamics of the Hubble parame-
ter and the scale factor in Palatini formalism for the general
case of f�R� gravity. In Sec. III, using the action f�R� �������������������
R2 � R2

0

q
, we obtain the dynamics of the Universe. In

Sec. IV we use the observations from the evolution of the
background, such as SNIa, CMB, and baryonic acoustic
oscillation, to constrain the parameters of the model.
Section V studies constraints from the large-scale structure
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formation, and in Sec. VI we compare the age of the
Universe from the model with the age of old cosmological
objects. The conclusion is presented in Sec. VII.

II. MODIFIED GRAVITY MODELS IN PALATINI

An alternative approach dealing with the acceleration
problem of the Universe involves changing the gravity law
through the modification of the action of gravity by using
f�R� instead of the Einstein-Hilbert action. For an arbitrary
action of gravity, there are two main approaches to extract
the field equations. The first one is the so-called metric
formalism in which the variation of the action is performed
with respect to the metric. In the second approach, Palatini
formalism, the connection and metric are considered inde-
pendent of each other and we have to do variations for
those two parameters independently. The general form of
the action in Palatini formalism is

 S�f; g; �̂;�m	 � �
1

2�

Z
d4x

�������
�g
p

f�R� � Sm�g��;�m	;

(1)

where � � 8�G and Sm�g��;�m	 is the matter action
which depends only on the metric g�� and on the matter
fields �m. R � R�g; �̂� � g��R����̂� is the generalized
Ricci scalar and R�� is the Ricci tensor of the affine
connection which is independent of the metric. Varying
the action with respect to the metric results in

 f0�R�R����̂� �
1
2f�R�g�� � �T��; (2)

where the prime is the differential with respect to the Ricci
scalar and T�� is the energy-momentum tensor,

 T�� �
�2�������
�g
p

�Sm
�g��

: (3)

Varying the action with respect to the connection and after
contraction gives us the equation that determines the gen-
eralized connection as

 r̂ ��f0�R�
�������
�g
p

g��	 � 0; (4)

where r̂ is the covariant derivative with respect to the
affine connection. We can see that the connections are
the Christoffel symbols of the new metric h��, where it
is conformally related to the original one via h�� �
f0�R�g��.

Equation (2) shows that, in contrast to the metric varia-
tion approach, the field equations are second order in this
formalism, and it seems more intuitive to have second
order equations instead of fourth order. On the other
hand, fourth order differential equations have an instability
problem [28]. We use the Friedmann-Robertson-Walker
(FRW) metric for the Universe as follows:

 ds2 � �dt2 � a�t�2�ijdx
idxj; (5)

and assume the Universe is filled with perfect fluid with the
energy-momentum tensor of T�� � diag���; p; p; p�; tak-
ing the trace of Eq. (2) gives

 Rf0�R� � 2f�R� � �T; (6)

where T � g��T�� � ��� 3p. Using the generalized
Einstein equation (2) and the FRW metric, we obtain the
generalized FRW equation as follows [29]:

 

�
H �

1

2

_f0

f0

�
2
�

1

6

���� 3p�
f0

�
1

6

f
f0
: (7)

For the cosmic fluid with the equation of state of p � p���,
using the continuity equation and the trace of the field
equation we can express the time derivative of the Ricci
scalar as

 

_R � 3�H
�1� 3p0���� p�
Rf00 � f0�R�

: (8)

Using Eq. (6) we obtain the density of matter in terms of
the Ricci scalar as

 �� �
2f� Rf0

1� 3!
; (9)

where w � p=�. Substituting (9) in (7) we obtain the
dynamics of the Universe in terms of the Ricci scalar

 H2 �
1

6�1� 3!�f0
3�1�!�f� �1� 3!�Rf0

�1� 3
2 �1�!�

f00�2f�Rf0�
f0�Rf00�f0� 	

2
: (10)

On the other hand, using Eq. (6) and the continuity equa-
tion, the scale factor can be obtained in terms of the Ricci
scalar

 a �
�

1

��0�1� 3!�
�2f� Rf0�

�
�1=3�1�!�

; (11)

where �0 is the energy density at the present time and we
set a0 � 1. Now, for a modified gravity action, omitting the
Ricci scalar in favor of the scale factor between Eqs. (10)
and (11) we can obtain the dynamics of the Universe [i.e.
H � H�a�]. For the matter dominant epoch ! � 0, these
equations reduce to

 H2 �
1

6f0
3f� Rf0

�1� 3
2
f00�2f�Rf0�
f0�Rf00�f0�	

2
; (12)

 a �
�

1

��0
�2f� Rf0�

�
�1=3

: (13)

III. MODIFIED GRAVITY WITH THE ACTION OF
f�R� �

������������������
R2 � R2

0

q
In this section our aim is to apply the action of f�R� �������������������
R2 � R2

0

q
in Eqs. (10) and (11) to obtain the dynamics of

the Universe. For simplicity, we use dimensionless pa-
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rameters in our calculation defined by

 f�R� � H2
0

������������������
X2 � X2

0

q
(14)

in which H0 is the Hubble parameter at the present time
and X 
 R

H2
0

and X0 

R0

H2
0
. For convenience, we can write

the action and its derivatives as

 f�R� � H2
0F�X�; (15)

 f0�R� � F0�X�; (16)

 f00�R� �
F00�X�

H2
0

; (17)

where the derivative on the right-hand side of the equations
is with respect to X (i.e. 0 � d

dX ). We can write (12) with a
new parameter X as

 H �X� �
1

6F0
3F� XF0

�1� 3
2
F00�2F�XF0�
F0�XF00�F0� �

2
; (18)

where H �X� � H2=H2
0 and H0 is the Hubble parameter at

the present time. Using the definition of �m�X� 

��m=�3H2� from Eq. (9), we can obtain �m�X� in terms
of X as

 �m�X� �
2F� XF0

3
: (19)

We use �m�X� � �ma
�3 (where �m 
 ��0�m ) and substi-

tute F in terms of X from (14) to obtain the scale factor in
terms of X as

 a �
�

1

3�m

�
X2 � 2X2

0������������������
X2 � X2

0

q
��
�1=3

; (20)

where, to have a positive scale factor, X should change in
the range of X �

���
2
p
X0. It should be noted that this model

has only one free parameter of X0. Xp represents the value
of X at the present time, and from (18) we can find Xp in
terms of X0. On the other hand, substituting Xp � g�X0� in
(19) we will have a direct relation between X0 and �m. So,
knowing X0 from observation one can also calculate �m.

In the next section we will compare observations with
the dynamics provided by this model in the matter domi-
nant epoch. However, we can see how the Universe ex-
pands at the radiation dominant epoch. We set p � 1=3�
which implies a traceless energy-momentum tensor, and
using our proposed action in Eq. (6), we get a constant
Ricci scalar of R �

���
2
p
R0 for this area. Substituting this

constant curvature in Eq. (7) we have

 H2 �
�

3
���
2
p ��

1

6
���
2
p R0: (21)

Since R0 is of the order of H2
0 (see [26]), for the early

Universe we can ignore the second term on the right-hand

side of this equation, which results in the scale factor
increasing as a / t1=2.

IV. OBSERVATIONAL CONSTRAINTS FROM THE
BACKGROUND EVOLUTION

In this section we compare the new SNIa Gold sample
and Supernova Legacy Survey data, the location of the
baryonic acoustic oscillation peak from the SDSS, and
the location of acoustic peak from the CMB observation
to constrain the parameters of the model. We choose
various priors applied in this analysis as shown in Table I.

A. Comparing the modified gravity model with super-
nova type Ia: Gold sample

The supernova type Ia experiments provided the main
evidence for the present acceleration of the Universe. Since
1995 two teams from the High-Z Supernova Search and the
Supernova Cosmology Project have discovered several
types of Ia supernovas at high redshifts [17,33]. Riess
et al. (2004) announced the discovery of 16 type Ia super-
novas with the Hubble Space Telescope. This new sample
includes 6 of the 7 most distant (z > 1:25) type Ia super-
novas. They determined the luminosity distance of these
supernovas and, with the previously reported algorithms,
obtained a uniform 157 Gold sample of type Ia supernovas
[34–36]. Recently, a new data set of the Gold sample with
a smaller systematic error containing 156 supernova Ia has
been released [37]. In this work we use this data set as the
new Gold sample SNIa.

More recently, the SNLS Collaboration released the first
year data of its planned five-year Supernova Legacy
Survey [38]. An important aspect to be emphasized on
the SNLS data is that they seem to be in better agreement
with WMAP results than the Gold sample [39].

We calculate the apparent magnitude from the f�R�
modified gravity and compare it with the new SNIa Gold
sample and the SNLS data set. The supernova measured
apparent magnitude m includes reddening, K correction,
etc., which here all these effects have been removed. The
apparent magnitude is related to the (dimensionless) lumi-
nosity distance, DL, of an object at redshift z through

 m �M� 5 logDL�z;X0�; (22)

where

TABLE I. Different priors on the parameter space, used in the
likelihood analysis.

Parameter Prior

�tot 1.00 Fixed
�bh

2 0:020� 0:005 Top hat (BBN) [30]
h 
 
 
 Free [31,32]
w 0 Fixed
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������������������
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 DL�z;X0� � �1� z�
Z z

0

dz0H0

H�z0�
: (23)

Also,

 M � M� 5 log
�
c=H0

1 Mpc

�
� 25; (24)

where M is the absolute magnitude. The distance modulus
� is defined as

 � 
 m�M � 5 logDL�z;X0� � 5 log
�
c=H0

1 Mpc

�
� 25;

(25)

or

 � � 5 logDL�z;X0� � �M: (26)

To compare the theoretical results with the observational
data, we calculate the theoretical distance modulus. The
distance modulus can be written in terms of the new
parameter X as

 DL �
1

3

�2F� XF0�1=3

�3�m�
2=3

Z X

Xp

F0 � XF00

�2F� XF0�2=3

dX

H �X�
: (27)

To put a constraint on the model parameter, the first step is
to compute the quality of the fitting through the least
squared fitting quantity �2 defined by

 �2� �M;X0� �
X
i

��obs�zi� ��th�zi;X0; �M�	2

	2
i

; (28)

where 	i is all of the observational uncertainty in the
distance modulus. To constrain the parameters of the
model, we use the likelihood statistical analysis

 L � �M;X0� �N e��
2� �M;X0�=2; (29)

where N is a normalization factor. The parameter �M is a
nuisance parameter and should be marginalized (integrated
out) leading to a new ��2 defined as

 �� 2 � �2 ln
Z �1
�1

e��
2=2d �M: (30)

Using Eqs. (28) and (30), we find

 �� 2�X0� � �2� �M � 0; X0� �
B�X0�

2

C
� ln�C=2��; (31)

where

 B�X0� �
X
i

��obs�zi� ��th�zi;X0; �M � 0�	

	2
i

(32)

and

 C �
X
i

1

	2
i

: (33)

Equivalent to marginalization is the minimization with

respect to �M. One can show that ��2 can be expanded in
terms of �M as [40]

 �2
SNIa�X0� � �2� �M � 0; X0� � 2 �MB� �M2C; (34)

which has a minimum for �M � B=C:

 �2
SNIa�X0� � �2� �M � 0; X0� �

B�X0�
2

C
: (35)

Using Eq. (35) we can find the best fit values of the
model parameters, minimizing �2

SNIa�X0�. Using the new
Gold sample SNIa, the best fit values for the free parameter
of the model are X0 � 6:207�0:230

�0:147 which states �m �
0:276�0:376

�0:240, with �2
min=Nd:o:f � 0:912 at 1	 level of con-

fidence. The corresponding value for the Hubble parameter
at the minimized �2 is h � 0:63, and since we have already
marginalized over this parameter we do not assign an error
bar for it. The best fit values for the parameters of the
model by using SNLS supernova data are X0 � 6:604�0:290

�0:303
which indicates �m � 0:233�0:483

�0:233 with �2
min=Nd:o:f: �

0:86 at 1	 level of confidence. Figures 1 and 2 show the
comparison of the theoretical prediction of the distance
modulus by using the best fit value of X0 and observational
values from the new Gold sample and the SNLS supernova
Ia, respectively. In Figs. 5 and 6 the relative likelihood for
X0 is indicated. We report the best value ofX0 at 1	 and 2	
confidence levels and other derived parameters in Table II.

B. CMB shift parameter

Before the last scattering, the photons and baryons are
tightly coupled by Compton scattering and behave as a
fluid. The oscillations of this fluid, occurring as a result of
the balance between the gravitational interactions and the

z

m
-M

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

36

38

40

42

44

46

New Gold Sample
Theoretical prediction

FIG. 1 (color online). Distance modulus of the SNIa new Gold
sample in terms of redshift. The solid line shows the best fit
values with the corresponding parameters of h � 0:63, �m �
0:276�0:376

�0:240, X0 � 6:207�0:230
�0:147 in the 1	 level of confidence with

�2
min=Nd:o:f: � 0:912 for the f�R� model.

M. SADEGH MOVAHED, SHANT BAGHRAM, AND SOHRAB RAHVAR PHYSICAL REVIEW D 76, 044008 (2007)

044008-4



photon pressure, lead to the familiar spectrum of peaks and
troughs in the averaged temperature anisotropy spectrum
which we measure today. The odd peaks correspond to
maximum compression of the fluid, the even ones to rar-
efaction [41]. In an idealized model of the fluid, there is an
analytic relation for the location of themth peak: lm � mlA
[42,43], where lA is the acoustic scale which may be
calculated analytically and depends on both pre- and
post-recombination physics as well as the geometry of
the Universe. The acoustic scale corresponds to the Jeans
length of photon-baryon structures at the last scattering
surface some �379 Kyr after the big bang [5]. The appar-
ent angular size of the acoustic peak can be obtained by
dividing the comoving size of the sound horizon at the
decoupling epoch rs�zdec� by the comoving distance of the
observer to the last scattering surface r�zdec�:

 
A �
�
lA


rs�zdec�

r�zdec�
: (36)

The size of the sound horizon in the numerator of Eq. (36)
corresponds to the distance that a perturbation of pressure
can travel from the beginning of the Universe up to the last
scattering surface and is given by

 rs�zdec� �
Z 1
zdec

vs�z
0�dz0

H�z0�=H0
; (37)

where vs�z��2 � 3� 9=4� �b�z�=�rad�z� is the sound ve-
locity in units of speed of light from the big bang up to the
last scattering surface [19,42] and the redshift of the last
scattering surface, zdec, is given by [42]

 

zdec � 1048�1� 0:001 24�!b�
�0:738	�1� g1�!m�

g2	;

g1 � 0:0783�!b�
�0:238�1� 39:5�!b�

0:763	�1;

g2 � 0:560�1� 21:1�!b�
1:81	�1; (38)

where !m 
 �mh2 and !b 
 �bh2. Changing the pa-
rameters of the model can change the size of the apparent
acoustic peak and subsequently the position of lA 
 �=
A
in the power spectrum of temperature fluctuations on
CMB. The simple relation lm � mlA, however, does not
hold very well for the first peak, although it is better for
higher peaks [2]. Driving effects from the decay of the
gravitational potential as well as contributions from the
Doppler shift of the oscillating fluid introduce a shift in the
spectrum. A good parametrization for the location of the
peaks and troughs is given by [43,44]

 lm � lA�m��m� (39)

where �m is the phase shift determined predominantly by
pre-recombination physics, and is independent of the ge-
ometry of the Universe. Instead of the peak locations of the
power spectrum of CMB, one can use another model
independent parameter, which is the so-called shift pa-
rameter R,

 R /
lflat
1

l1
(40)

where lflat
1 corresponds to the flat pure-CDM model with

�m � 1:0 and the same !m and !b as the original model.
The location of the first acoustic peak can be determined in
the model by Eq. (39) with �1�!m;!b� ’ 0:27 [43,44]. It
is easily shown that the shift parameter is as follows [45]:

 R �
��������
�m

p DL�zdec;X0�

�1� zdec�
: (41)

In writing the shift parameter in this form we have implic-
itly assumed that photons follow geodesics determined by
the Levi-Civita connection. Furthermore, in order to use
the shift parameter, the evolution of the Universe is con-
sidered in such a way that at the decoupling we have
standard matter dominated behavior. Since we do not
have an explicit expression for the Hubble parameters in
terms of redshift, it is useful to rewrite the shift parameter
in terms of the dimensionless parameter X as follows:
 

R �
��������������
�mH

2
0

q Z zdec

0

dz
H�z�

�
��������������
�mH

2
0

q Z Rp

Rdec

a0�R�

a2�R�

dR
H�R�

�
�1=6
m

34=3

Z Xdec

Xp

F0 � XF00

�2F� XF0�2=3

dX

H �X�
: (42)

The observational results of CMB experiments correspond
to a shift parameter of R � 1:716� 0:062 (given by
WMAP, CBI, ACBAR) [5,46]. One of the advantages of
using the parameter R is that it is independent of the
Hubble constant. In order to put a constraint on the model

z

m
-M

0.2 0.4 0.6 0.8 1

36

38

40

42

44

46

SNLS
Theoretical prediction

FIG. 2 (color online). Distance modulus of the SNLS super-
nova data in terms of redshift. The solid line shows the best fit
values with the corresponding parameters of h � 0:70, �m �

0:233�0:483
�0:233, and X0 � 6:604�0:290

�0:303 in the 1	 level of confidence
with �2

min=Nd:o:f: � 0:86 for the f�R� model.
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from CMB, we compare the observed shift parameter with
that of the model using likelihood statistics [45]:

 L � e��
2
CMB=2 (43)

where

 �2
CMB �

�Robs �Rthe	
2

	2
CMB

: (44)

C. Baryon acoustic oscillations

The large-scale correlation function measured from the
46 748 luminous red galaxies (LRG) spectroscopic sample
of the SDSS includes a clear peak at about 100 Mpc h�1

[47]. This peak was identified with the expanding spherical
wave of baryonic perturbations originating from acoustic
oscillations at recombination. The comoving scale of this
shell at recombination is about 150 Mpc in radius. A
dimensionless and H0 independent parameter of this ob-
servation is

 A �
��������
�m

p �
H0D

2
L�zSDSS;X0�

H�zSDSS;X0�z2
SDSS�1� zSDSS�

2

�
1=3

(45)

or

 A �
��������
�m

p
H �X��1=3

�
1

zSDSS

Z zSDSS

0

dz

H �X�

�
2=3
: (46)

We can write the above dimensionless quantity in terms of
our model parameter as

 A �
��������
�m

p
H �X��1=3

�
�3�m�

�1=3

3zSDSS

�
Z XSDSS

Xp

�F0 � XF00�dX

H �X��2F� XF0�2=3

�
2=3
: (47)

We can put the robust constraint on the f�R� modified
gravity model using the value of A � 0:469� 0:017
from the LRG observation at zSDSS � 0:35 [47]. This ob-
servation permits the addition of one more term in the �2 of
Eqs. (35) and (44) to be minimized with respect to H�z�
model parameters. This term is

 �2
SDSS �

�Aobs �Athe	
2

	2
SDSS

: (48)

This is the third observational constraint for our analysis.

D. Combined analysis: SNIa�CMB� SDSS

In this section we combine SNIa data (from the SNIa
new Gold sample and SNLS) and CMB data from the
WMAP with the recently observed baryonic peak from
the SDSS to constrain the parameter of the modified grav-
ity model by minimizing the combined �2 � �2

SNIa �
�2

CMB � �
2
SDSS [48].

The best values of the model parameters from the fitting
with the corresponding error bars from the likelihood
function marginalizing over the Hubble parameter in the
multidimensional parameter space are X0 � 6:169�0:170

�0:184
which corresponds to �m � 0:281�0:277

�0:281 at the 1	 confi-
dence level with �2

min=Nd:o:f: � 0:902. The Hubble pa-
rameter corresponding to the minimum value of �2 is
h � 0:63. Here we obtain an age of 14:65�0:29

�0:28 Gyr for
the Universe. Using the SNLS data, the best fit values of
the model parameter are X0 � 6:311�0:178

�0:194 which states that
�m � 0:265�0:292

�0:265 at the 1	 confidence level with
�2

min=Nd:o:f: � 0:85. Table II indicates the best fit values
for the cosmological parameters with 1	 and 2	 levels of
confidence. The relative likelihood analyses for X0 using
CMB and SDSS observations are shown in Figs. 5 and 6.

V. CONSTRAINTS BY LARGE-SCALE
STRUCTURE

So far we have only considered observational results
related to the background evolution. In this section, using
the linear approximation of structure formation, we obtain
the growth index of structures and compare it with the
result of observations by the 2-degree Field Galaxy
Redshift Survey (2dFGRS).

The evolution of structures in the modified gravity has
been studied through the spherical collapse and perturba-
tion of the FRW metric. Recently, a procedure has been put
forward by Lue, Scoccimarro, and Starkman which relies
on the assumption that Birkhoff’s theorem holds in the
more general setting of modified gravity theories [49].
According to this procedure, it is assumed that the growth
of large-scale structure can be modeled in terms of a
uniform sphere of dust of constant mass, such that the
evolution inside the sphere is determined by the FRW
metric. Using Birkhoff’s theorem, the spacetime metric
in the empty exterior is then taken to be Schwarzschild-
like. The components of the exterior metric are then
uniquely determined by smoothly matching the interior
and exterior regions. In the Palatini formalism the metric
outside the spherical distribution of matter depends on the
density of matter which may modify the Newtonian limit
of these theories [50]. In this case Eq. (49) may change;
however, here we assume a Schwarzschild-like Newtonian
limit.

The continuity and modified Poisson equations for the
density contrast � � ��= �� in the cosmic fluid provide the
evolution of the density contrast in the linear approxima-
tion (i.e. �� 1) [51,52] as

 

��� 2
_a
a

_�� �v2
sr

2 � 4�G�	� � 0; (49)

where the dot denotes the derivative with respect to time.
The effect of modified gravity in the evolution of the
structures in this equation enters through its influence on
the expansion rate.
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The linear Newtonian approach is valid for the pertur-
bations of the subhorizon scales with � < 1 [51–53]. For
perturbations larger than the Jeans length, �J �
�1=2vs=

�������
G�
p

, Eq. (49) for cold dark matter (CDM) reduces
to

 

��� 2
_a
a

_�� 4�G�� � 0: (50)

The equation for the evolution of the density contrast can
be rewritten in terms of the scale factor as

 

d2�

da2
�
d�
da

�
�a

_a2 �
2H

_a

�
�

3H2
0

2 _a2a3 �m� � 0: (51)

In order to use the constraint from the large-scale structure
we should rewrite the above equation in terms of X. So we
have

 _a � aH�X�; �a � aH2�X� � a2H�X�H0�X�
dX
da

:

(52)

Using Eq. (52), Eq. (51) becomes

 

d2�

da2
�
d�
da

�
3

a
�

H 0�X�

H �X�

dX
da

�
�

3�m

2H 2�X�a5
� � 0: (53)

The numerical solution of Eq. (53) in the FRW universe
for the two cases of f�R� gravity and the �CDM model
with the same matter density content is compared in Fig. 3.

In the linear perturbation theory, the peculiar velocity
field v is determined by the density contrast [51,54] as

 v �x� � H0
f

4�

Z
��y�

x� y
jx� yj3

d3y; (54)

where the growth index f is defined by

 f �
d ln�
d lna

; (55)

and it is proportional to the ratio of the second term of
Eq. (50) (friction) to the third (Poisson) term.

We use the evolution of the density contrast � to com-
pute the growth index of structure f, which is an important
quantity for the interpretation of peculiar velocities of
galaxies [54,55]. Replacing the density contrast with the
growth index in Eq. (51) results in the evolution of the
growth index as

 

df
d lna

�
3H2

0

2 _a2a
�m � f

2 � f
�

1�
�a

aH2

�
: (56)

The above equation in terms of a dimensionless quantity is

 

df
d lna

�
3�m

2aH 2�X�
� f2 � f

�
2�

aH 0�X�

H �X�

dX
da

�
: (57)

Figure 4 shows the numerical solution of Eq. (57) in
terms of redshift. As we expected, increasing X0 causes
decreasing �m from the best fit and a decreasing in the
evolution of density contrast versus the scale factor and the
growth index in the small redshifts. This behavior is the
same as what happens in the �CDM model.

To put a constraint on the model using large structure
formation, we rely on the observation of 220 000 galaxies
with the 2dFGRS experiment which provides the numeri-
cal value of the growth index [47]. By measurements of the
two-point correlation function, the 2dFGRS team reported
the redshift distortion parameter of 
 � f=b �
0:49� 0:09 at z � 0:15, where b is the bias parameter
describing the difference in the distribution of galaxies
and their masses. Verde et al. (2003) used the bispectrum

a
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FIG. 3 (color online). Evolution of the density contrast in the
f�R� gravity model versus redshift for different values of X0. For
comparison, we plot � for �CDM with the same value of �m.
(A.U. stands for an arbitrary unit.)
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of 2dFGRS galaxies [56,57] and obtained bVerde � 1:04�
0:11 which gave f � 0:51� 0:10. Now we fit the growth
index at the present time derived from Eq. (57) with the
observational value. This fitting partially constrains the
parameters of the model; however in order to have a better
confinement of the parameters, we combine this fitting
with those of SNIa� CMB� SDSS which have been
discussed in the previous section. We perform the least
square fitting by minimizing �2 � �2

SNIa � �
2
CMB �

�2
SDSS � �

2
LSS, where

 �2
LSS �

�fobs�z � 0:15� � fth�z � 0:15;X0�	
2

	2
fobs

: (58)

The best fit value with the corresponding error bar for X0

by using the new Gold sample data is X0 � 6:192�0:167
�0:177

which provides �m � 0:278�0:273
�0:278 at the 1	 confidence

level with �2
min=Nd:o:f: � 0:900. Using the SNLS super-
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FIG. 6 (color online). Marginalized likelihood functions of the
f�R� modified gravity model free parameter, X0. The solid line
corresponds to the likelihood function of fitting the model with
SNIa data (SNLS), the dash-dot line with the joint SNIa�
CMB� SDSS data, and the dashed line corresponds to SNIa�
CMB� SDSS� LSS. The intersections of the curves with the
horizontal solid and dashed lines give the bounds with 1	 and
2	 levels of confidence, respectively.

X0

R
el

at
iv

e
L

ik
el

ih
oo

d

5.2 5.4 5.6 5.8 6 6.2 6.4 6.60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SNIa
SNIa + CMB
SNIa + CMB + SDSS
SNIa + CMB + SDSS + LSS

FIG. 5 (color online). Marginalized likelihood functions of the
f�R� modified gravity model free parameter, X0. The solid line
corresponds to the likelihood function of fitting the model with
SNIa data (new Gold sample), the dash-dot line with the joint
SNIa� CMB� SDSS data, and the dashed line corresponds to
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1	 and 2	 levels of confidence, respectively.

TABLE II. The best values for the parameters of f�R�modified gravity with the corresponding
age for the Universe from fitting with SNIa from the new Gold sample and SNLS data, SNIa�
CMB, SNIa� CMB� SDSS, and SNIa� CMB� SDSS� LSS experiments at 1	 and 2	
confidence levels. The value of �m was determined according to Eq. (19).

Observation X0 �m Age (Gyr)

SNIa (new Gold) 6:207�0:230
�0:147 0:276�0:376

�0:240 14:71�0:41
�0:23

6:207�0:445
�0:515 0:276�0:727

�0:276 14:71�0:85
�0:75

SNIa �new Gold� � CMB 6:190�0:224
�0:242 0:278�0:365

�0:278 14:69�0:39
�0:37

6:190�0:433
�0:503 0:278�0:706

�0:278 14:69�0:82
�0:72

SNIa �new Gold� � CMB� SDSS 6:169�0:170
�0:184 0:281�0:277

�0:281 14:65�0:29
�0:28

6:169�0:327
�0:380 0:281�0:533

�0:281 14:65�0:58
�0:56

SNIa �new Gold� � CMB� SDSS� LSS 6:192�0:167
�0:177 0:278�0:273

�0:278 14:69�0:29
�0:28

6:192�0:321
�0:368 0:278�0:524

�0:278 14:69�0:55
�0:58

SNIa (SNLS) 6:604�0:290
�0:303 0:233�0:483

�0:233 13:91�0:61
�0:53

6:604�0:562
�0:612 0:233�0:953

�0:233 13:91�1:32
�0:98

SNIa �SNLS� � CMB 6:530�0:269
�0:285 0:241�0:446

�0:241 13:78�0:54
�0:47

6:530�0:518
�0:583 0:241�0:860

�0:241 13:78�1:13
�0:89

SNIa �SNLS� � CMB� SDSS 6:311�0:178
�0:194 0:265�0:292

�0:265 13:41�0:30
�0:29

6:311�0:341
�0:398 0:265�0:560

�0:265 13:41�0:61
�0:57

SNIa �SNLS� � CMB� SDSS� LSS 6:335�0:174
�0:184 0:263�0:286

�0:263 13:45�0:30
�0:28

6:335�0:331
�0:386 0:263�0:544

�0:263 13:45�0:59
�0:56
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nova data, the best fit value for the model parameter is
X0 � 6:335�0:174

�0:184 which gives �m � 0:263�0:286
�0:263 at the 1	

confidence level with �2
min=Nd:o:f: � 0:86. The error bars

have been obtained through the likelihood functions (L /
e��

2=2) marginalized over the nuisance parameter h. The
likelihood functions for the four cases of (i) fitting the
model with supernova data, (ii) a combined analysis with
the two experiments of SNIa� CMB, (iii) a combined
analysis with the three experiments of SNIa� CMB�
SDSS, and (iv) combining all four experiments of SNIa�
CMB� SDSS� LSS are shown in Figs. 5 and 6. The best
fit value and age of the Universe calculated in the f�R�
modified gravity model are reported in Table II.

VI. AGE OF THE UNIVERSE

The age of the Universe integrated from the big bang up
to now for a flat universe in terms of X0 is given by

 t0�X0� �
Z t0

0
dt �

Z 1
0

dz
�1� z�H�z�

�
1

3H0

Z 1
X0

F0 � XF00

2F� XF0
dX

H �X�
: (59)

Figure 7 shows the dependence of H0t0 (the Hubble
parameter times the age of the Universe) on X0 for a flat
universe. In the lower panel we show it for �CDM for
comparison. As we expect, modified gravity behaves as
dark energy and increasing X0 (��) results in a longer age
for the Universe in the f�R� modified gravity model.

The ‘‘age crisis’’ is one of the main reasons for the
acceleration phase of the Universe. The problem is that
the Universe’s age in the cold dark matter universe is less
than the age of old stars in it. Studies on the old stars [58]
suggest an age of 13�4

�2 Gyr for the universe. Richer et al.
[59] and Hansen et al. [60] also proposed an age of 12:7�
0:7 Gyr, using the white dwarf cooling sequence method
(for a full review of the cosmic age, see [5]). To do another
consistency test, we compare the age of the Universe
derived from this model with the age of old stars and old
high redshift galaxies (OHRG) in various redshifts. Table II
shows that the age of the Universe from the combined
analysis of SNIa�CMB�SDSS�LSS is 14:69�0:29

�0:28 Gyr
and 13:45�0:30

�0:28 Gyr for the new Gold sample and SNLS
data, respectively. These values are in agreement with the
age of old stars [58]. Here we take three OHRG for
comparison with the power-law dark energy model,
namely, the LBDS 53W091, a 3.5-Gyr old radio galaxy
at z � 1:55 [61]; the LBDS 53W069, a 4.0-Gyr old radio
galaxy at z � 1:43 [62]; and a quasar, APM 08279� 5255
at z � 3:91 with an age of t � 2:1�0:9

�0:1 Gyr [63]. The latter
has, once again, led to the ‘‘age crisis.’’ An interesting
point about this quasar is that it cannot be accommodated
in the �CDM model [64]. To quantify the age-consistency
test we introduce the expression � as

 � �
t�z;X0�

tobs
�
t�z;X0�H0

tobsH0
; (60)

where t�z� is the age of the Universe, obtained from
Eq. (59), and tobs is an estimation for the age of an old
cosmological object. In order to have a compatible age for
the Universe, we should have � > 1. Table III reports the
value of � for the three mentioned OHRG with various
observations. We see that f�R� modified gravity, with the
parameters from the combined observations, provides a
compatible age for the Universe, compared to the age of
old objects, while the SNLS data result in a shorter age for
the Universe. Once again, APM 08279� 5255 at z � 3:91
has a longer age than the Universe but gives better results
than most cosmological models [65,66].
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FIG. 7 (color online). H0t0 (age of the Universe times the
Hubble constant at the present time) as a function of X0 �
R0=H

2
0 (upper panel). H0t0 for �CDM versus �� (lower panel).

Increasing X0 gives a longer age for the Universe. This behavior
is the same as what happens in �CDM.
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VII. CONCLUSION

Here, in this work, we obtained the dynamics of the

Universe with f�R� �
������������������
R2 � R2

0

q
gravity in the Palatini

formalism and compared it with the recent cosmological
observations. Expanding this function in a power series can
cover 1=Rn models of modified gravity. Also, adding a
cubic term as R3=�2 where �� R0 can produce an infla-
tionary epoch at the early Universe.

The comparison of the model has been performed with
the supernova type Ia Gold sample and SNLS supernova
data, the CMB shift parameter, the location of the baryonic
acoustic oscillation peak observed by SDSS, and large-
scale structure formation data by 2dFGRS. The best pa-
rameters obtained from fitting with the new Gold sample
data are h � 0:63, X0 � 6:192�0:167

�0:177 which provides �m �
0:278�0:273

�0:278 at the 1	 confidence level with �2
min=Nd:o:f: �

0:900. Using the SNLS supernova data, the best fit value
for the model parameter is X0 � 6:335�0:174

�0:184 which gives
�m � 0:263�0:286

�0:263 at the 1	 confidence level with
�2

min=Nd:o:f: � 0:85. We get almost the same amount of
matter density as the �CDM model and the other dark
energy models. Here the extra term of action R0 plays the

role of the cosmological constant. By the expansion of this
action in power series, we can replace the parameter of
model R0 with that of � in f�R� � R��4=R as R0 ����

2
p
�2. Recent cosmological tests of 1=R provide almost

the same number for � that we have obtained in this work
[67].

We also performed the age test, comparing the age of old
stars and old high redshift galaxies with the age derived
from this model. From the best fit parameters of the model
using the new Gold sample and SNLS, we obtained an age
of 14:69�0:29

�0:28 Gyr and 13:45�0:30
�0:20 Gyr, respectively, for the

Universe, which is in agreement with the age of old stars.
We also chose two high redshift radio galaxies at z � 1:55
and z � 1:43 with a quasar at z � 3:91. The ages of the
first two objects are consistent with the age of the Universe,
which means that they are younger than the Universe,
while the third one is not.
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