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Using a Liouville measure, similar to the one proposed recently by Gibbons and Turok, we investigate
the probability that single-field inflation with a polynomial potential can last long enough to solve the
shortcomings of the standard hot big bang model, within the semiclassical regime of loop quantum
cosmology. We conclude that, for such a class of inflationary models and for natural values of the loop
quantum cosmology parameters, a successful inflationary scenario is highly improbable.
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I. INTRODUCTION

Cosmological inflation [1] is, at present, the most prom-
ising candidate to solve the shortcomings of the standard
hot big bang model, although other mechanisms have been
proposed [2–4]. Inflation essentially consists of a phase of
accelerated expansion which took place at a very high
energy scale. One of the appealing features of inflation is
that it is deeply rooted in the basic principles of general
relativity and field theory. In addition, when the principles
of quantum mechanics are taken into account, inflation
provides a simple explanation for the origin of the large
scale structures and the associated temperature anisotro-
pies in the cosmic microwave background radiation.

Despite its success, inflation is still a paradigm in search
of a model and its strength is based on the assumption that
its onset is generically independent of the initial condi-
tions. However, even when the issue of the onset of in-
flation was addressed [5,6], no robust conclusions could be
drawn as a quantum theory of gravity was missing.
Recently, it has been argued [7] that the probability of
having N (or more) e-foldings of inflation within single-
field, slow-roll inflationary models is suppressed by an
order of exp��3N�. However, in finding this result the
authors have used a classical theory even at energy scales
for which the quantum effects can no longer be neglected.
Moreover, as we shall discuss, the analysis of Ref. [7] is not
always valid. In what follows, we estimate the probability
to obtain a sufficiently long inflationary era, in the context
where not only general relativistic but also quantum effects
are taken into account. More precisely, we study the proba-
bility of having a sufficiently long inflationary era in the
context of loop quantum cosmology.

We organize the rest of the paper as follows. In Sec. II,
we briefly discuss some elements of loop quantum cosmol-
ogy. In Sec. III, we discuss inflation within the loop quan-
tum cosmology framework. In Sec. IV, we study the
probability of having successful inflation within this con-
text. We round up with our conclusions in Sec. V.

II. LOOP QUANTUM COSMOLOGY

Loop quantum gravity [8,9] is, at present, the most
developed approach to a background independent and non-
perturbative quantization of general relativity, which can
deal with the extreme conditions realized at classical sin-
gularities. The full theory is still not completely under-
stood, and in a number of cases not even the continuum
limit of space-time can be explicitly found. Nevertheless,
by introducing symmetries, one may resolve the theory at a
nonperturbative level. More precisely, applying loop quan-
tum gravity to homogeneous and isotropic cosmologies,
the theory becomes analytically tractable and loop quan-
tum cosmology can be studied [10]. It is worth noting that
such mini-superspace models may not encompass all fea-
tures of the full inhomogeneous theory; however, it is
reasonable to expect that they have, at least qualitatively,
the correct behavior [11].

In loop quantum cosmology, the evolution of the uni-
verse is divided into three distinct phases [12], depending
on the value of the scales probed by the universe. At first,
very close to the Planck scale, the concept of space-time
has no meaning, full quantum gravity is the correct frame-
work, and the universe is in a discrete quantum phase.
Applying loop quantum cosmology during this phase,
one gets a finite bounded spectrum for eigenvalues of
inverse powers of the three-volume density, which we shall
call ‘‘the geometrical density.’’ As the volume of the uni-
verse increases with time, the universe enters a semiclas-
sical phase.

For length scales above LPl �
����
�
p

lPl (� � 0:2735 is the
Barbero-Immirzi parameter and lPl denotes the Planck
length, with l2Pl � 8�G1), the space-time can be approxi-
mated by a continuous manifold and the equations of
motion take a continuous form, which differs from the
classical behavior due to the nonperturbative quantization
effects. This intermediate phase is characterized by a sec-

1Units @ � c � 1 are used in this paper.
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ond length scale L?, with L? �
��������������������
��j�0�=3

p
lPl, which de-

termines the size below which the geometrical density is
significantly different from its classical form. For length
scales below L?, quantum corrections can no longer be
neglected. The half-integer j labels the ambiguity in choos-
ing the representation in which the matter part of the
Hamiltonian constraint for a scalar field is quantized. The
length parameter �0, related to the underlying discrete
structure, is the scale of the finite fiducial cell that spatial
integration is restricted to, so as to remove the divergences
that occur in noncompact topologies [13]. As it was shown
in Ref. [11], one can use an arbitrary value of�0. However,
one should keep in mind that the same value should be
adopted for both the Hamiltonian constraint and the inverse
volume operator. In what follows we set, for simplicity,
�0 � 1; as �0 �O�1�, different values of �0 do not
sensibly modify our conclusions. For j > 3, the two scales
LPl and L? overlap and space-time can be considered as
continuous. The intermediate phase is the most important
one regarding the phenomenological consequences of loop
quantum cosmology as it may lead to distinct signatures
[14]. At later times, and therefore larger scales, the uni-
verse enters the full classical phase and standard cosmol-
ogy becomes valid. The main feature of loop quantum
cosmology is the resolution of the cosmological singular-
ity. Indeed, one can show that, upon quantization, the
operator associated with the inverse of the three-volume
never diverges.

The metric of a Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) space-time reads

 d s2 � �dt2 � a2�t��ijdx
idxj

� a2���	�d�2 � �ijdx
idxj
; (1)

where t��� is the cosmological (conformal) time (with
dt � ad�), a the scale factor, and �ij the Krönecker sym-
bol. The geometric density is therefore a�3. Promoting a�3

and its inverse (a3) at the level of operators, we have that,
upon quantization,2

 hâ3i � a3; hâ�3i � dj;l�a�; (2)

where the modified density, dj;l�a�, in the continuum limit
of loop quantum cosmology is given by the following
approximated expression:

 dj;l�a� � Dl�q�a
�3 with q � a2=a2

?: (3)

The parameter l determines the behavior of the effective
geometrical density on small scales with respect to L? and
l 2 	0; 1
. However, some values of l are preferred and
only a discrete sequence is used, lk � 1� �2k��1 with k 2
N. The function Dl�q� can be written as [12]

 

Dl�q� �
�

3

2l
q1�l

�
�q� 1�l�2 � jq� 1jl�2

l� 2
�

q
1� l

� ��q� 1�l�1 � sgn�q� 1�jq� 1jl�1�

��
3=�2�2l�

:

(4)

For all allowed values of the parameters l, j, the effective
geometrical density behaves as dj;l�a� ! a�3, which is the
classical behavior, as a� a?. Around a? the effective
geometrical density dj;l�a� becomes maximal (see
Fig. 1). For a a? the density approaches zero,

 dj;l�a� �
�

3

1� l

�
3=�2�2l�

�
a
a?

�
3�2�l�=�1�l�

a�3; (5)

resolving the singularity present in the classical theory as
a! 0 (see Fig. 1). The parameters j and l can only be
weakly restricted by considerations of the discrete struc-
ture of the theory. These parameters can, in principle, be
fixed by knowing the full loop quantum gravity; we will not
consider them here as ambiguities.3 However, as we shall
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FIG. 1 (color online). D�q� is plotted as a function of a, with
a? � 1 and l � 0:75. For a� a?, D! 1, giving us the classi-
cal result.

2We define Â to be the operator associated with the function A.

3These two parameters capture the typical properties of func-
tions such as D�q�, which is the position of the peak (j) and the
power law increase at small q (l). As we mentioned previously,
other ambiguities in quantitative details exist, which at the
current stage are not relevant for an effective analysis. Precise
functions would follow by relating isotropic models to the
inhomogeneous situation [15,16]. We will briefly discuss this
issue later.
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see, there is a more dangerous ambiguity coming from the
fact that hâ3i � 1=hâ�3i.

Dynamics and ambiguities

Let us first briefly, and in a rather schematic way, discuss
the issue of quantization ambiguities. Dynamics are con-
trolled by the Hamiltonian constraint, which classically
gives the Friedmann equation. The Hamiltonian of the
whole system, gravity plus matter, reads [12]

 H � �3 _a2a� 8�GHm; (6)

where the first term in the right-hand side is the gravity part
and Hm is the matter Hamiltonian. The equations of
motion are satisfied requiring quantum mechanically that

Ĥ j�i � 0, where j�i is the wave function of the universe

and Ĥ is the promotion to an operator of the classical

Hamiltonian. Semiclassically, this implies h�jĤ j�i �
hH i � 0. However, as we shall see, we have ambiguities
on deciding which composite operator of the geometrical
density (such as the Hamiltonian) is the correct one to be
used.

In principle, instead of the Hamiltonian, one may con-
sider the classically equivalent operator

 Q̂ � �3â _̂a2 � 8�GHmânâ�n: (7)

Requiring that classical symmetries, such as diffeomor-
phism invariance, are not broken at the quantum level,
one obtains that Q̂ should, as well as the Hamiltonian,
define diffeomorphism invariance, implying

 Q̂j�i � 0; (8)

j�i is a new state associated with Q̂ [12]. In this case
however, the semiclassical equations hQ̂i � 0 differ from

hĤ i � 0 during the quantum regime. Although the differ-
ence is at the quantum level, the trajectories defined by

hQ̂i � 0 and hĤ i � 0 coincide at the classical limit (as
a! 1). Therefore, as the two evolutions are indistin-
guishable at the classical level, it is impossible to decide
whether or not the state j�i is more fundamental than the
j�i one. This is a dangerous ambiguity in loop quantum
cosmology as it appears whenever, at the quantum level,
hâ3i � 1=hâ�3i.

An extra ambiguity appears in the choice of the repre-
sentation in which the gravity part of the total Hamiltonian
is quantized. This ambiguity is defined by a similar pa-
rameter used to label the representation for the quantiza-
tion of the matter Hamiltonian, we will call this parameter
jG [13]. As in the matter part, one can in fact define a new
scale LG �

��������������������
�jG�0=3

p
lPl above which quantum correc-

tions are negligible. The ambiguity arises as, in principle,
the representations, in which the matter and the gravita-
tional Hamiltonians are quantized, can be different.

However, as we shall discuss in the following, our results
are not sensible on this ambiguity.

We address the genericity of inflation in this setup, and
we investigate whether one can constrain the parameter
space by requiring a sufficiently long inflationary era to be
as likely as possible during the continuum limit of loop
quantum cosmology.

III. INFLATION WITHIN LOOP QUANTUM
COSMOLOGY

During the inflationary era the FLRW scale factor a�t�
underwent an accelerated expansion [17], d2a=dt2 > 0.
Equivalently, during inflation the universe was dominated
by a fluid with negative pressure which is usually identified
as a scalar field. The scalar field action is

 S� �
Z

d4xL� � �
1

2

Z
d4x

�������
�g
p

	�@��2 � 2V���
;

(9)

where the metric is taken to be of the form given in Eq. (1).
Inflation is successful in solving the problems which
plague the standard big bang model, provided the slow-
roll conditions

 

�
@V=@�
V

�
2
 1 and

��������@
2V=@�2

V

�������� 1 (10)

are satisfied for a period of about 60 e-folds; i.e. the final
value of the scale factor, as, must be as � exp�60�ai, where
ai stands for the value of the scale factor at the beginning of
inflation. We define the number of e-foldings N to be given
from N � ln�as=ai�.

Consider a single-field inflationary model, with an in-
flaton field� having a potential V���. The Hamiltonian for
� obtained from the action S�, Eq. (9), reads

 H � �
1
2a
�3P2

� � a
3V���; (11)

where the momentum P� is defined as P� � �@L�=@ _�;
an over-dot defines a derivative with respect to the cosmic
time. We then promote the scalar field Hamiltonian to an
operator; thus the full Hamiltonian for inflation within loop
quantum cosmology reads

 Ĥ � �3a _a2 � 8�G	12a
�3P2

� � a
3V���
: (12)

As introduced before, we can define the new, classically
equivalent operator as

 Q̂ � �3a _a2 � 8�G	12a
�3�n�1�a3nP2

�

� a�3ma3�m�1�V���
; (13)

where m; n are positive constants. Upon quantization,
hQ̂i � 0, we obtain, for V���  l�4

Pl , in the slow-roll
region, the semiclassical equation [10,18]

ONSET OF INFLATION IN LOOP QUANTUM COSMOLOGY PHYSICAL REVIEW D 76, 043529 (2007)

043529-3



 H2 �
8�GS�qG�

3

�
1

2
D��n�1�
l

_�2 �Dm
l V���

�
; (14)

where the Hubble parameter H is defined asH � _a=a. The
function S�qG� in Eq. (14),

 

S�qG� �
4���
q
p
G

�
1

10
	�qG � 1�5=2 � sgn�qG � 1�jqG � 1j5=2


�
1

35
	�qG � 1�7=2 � jqG � 1j7=2


�
; (15)

accounts for the quantization of the gravity part of the
Hamiltonian using a jG � 1=2 representation [18]; the
case jG � 1=2 represents the irreducible representation.
We have defined as before qG � a2=a2

G. For qG > 1, the
function S�qG� is S�qG� � 1, while for small volume,
S�qG� � �6=5�

������
qG
p

(see Fig. 2). As discussed previously,
it is not necessary to use the same jG representation to
quantize both the matter and gravity parts of the
Hamiltonian constraint. To simplify the following calcu-
lations we set jG � 1=2 for the quantization of the gravity
part, which implies S�qG� � 1. We discuss the effects of a
more general choice of S�qG� in Sec. IV B 3.

Finally, for V��� � l�4
Pl an extra term producing a

bouncing in Eq. (14) appears [19]. However, our conclu-
sions apply only if V���  l�4

Pl .
Using Eq. (14) one can write an effective Lagrangian,

which leads to the following conservation equation for the
scalar field �:

 

���
�

3H� �1� n�
_Dl

Dl

�
_��Dm�n�1

l V 0��� � 0; (16)

where V 0 � @V=@�. We see in Eqs. (14) and (16) that
there is an ambiguity in choosing the parameters m and n.

IV. THE PROBABILITY TO GET SUCCESSFUL
INFLATION IN LOOP QUANTUM COSMOLOGY

It has been recently shown [7] that it is possible to define
a canonical measure in cosmology. More precisely, it has
been shown [7] that the volume of phase space of possible
orbits, for certain inflationary models, is finite if a coarse
graining cutoff is introduced. The authors of Ref. [7] ar-
gued that two cosmologies cannot be experimentally dis-
tinguished if they differ by a small amount of spatial
curvature, and this removed the divergence present in the
phase space of the relativistic trajectories found in
Ref. [20]. Considering a finite phase-space volume of
possible orbits, they could calculate the fraction of the
whole phase space occupied by inflationary trajectories.
In this way they could define the probability of having
inflationary initial conditions in the framework of classical
general relativity. However, the authors of Ref. [7] allowed
the possible trajectories to reach the Planck scale, where
the classical general relativistic Hamiltonian should not be
used.

Here, we modify the proposal of Ref. [7], defining a
quantum gravity cutoff instead of an observational one,
namely, we calculate the volume of the phase space of
solutions only in the continuum limit of loop quantum
cosmology, i.e. in the space where H�1 �

����
�
p

lPl (which
we later refer to as the ‘‘quantum gravity cutoff’’). We
show that the volume is again finite for the same infla-
tionary models implicitly used in Ref. [7].

A. Measure: definition

The canonical cosmological measure of Ref. [21] is
given as follows: As with any phase space we have a
symplectic form

 � �
Xk
i�1

dPi ^ dQi; (17)

where Qi and Pi are the dynamical degrees of freedom and
their conjugate momenta, respectively. The kth power of �
gives the volume element of the space. The Hamiltonian
constraint restricts the space of trajectories to lie on a
�2k� 1�-dimensional subspace M of the full phase space,
referred to as the multiverse. It can be shown [21] that M
also contains a closed symplectic form ! �

Pk�1
i�1 dPi ^

dQi, which is related to � via

 � � !� dH ^ dt) ! � �jH�0: (18)

In particular, this construction can be easily extended to
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FIG. 2 (color online). S�qG� is plotted as a function of a, with
aG � 1. Notice that S�qG�< 1 for all a, and that for a� aG,
S! 1, giving us the j � 1=2 result.
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our case by replacing H with the effective Hamiltonian
hQ̂i of the system.

In FLRW universes containing a scalar field there are
only two canonical variables �a;��, so we set k � 2. Given
this symplectic form it is possible to define a divergence-
less field

 Ba �
1
2�abc!bc; (19)

�abc is totally antisymmetric with �123 � 1 and a; b; c � 1,
2, 3. Each orbit in the phase space is associated with a line
of force of B, i.e. B defines the flow of trajectories across
surfaces in the phase space. We thus define a measure as

 N �
Z

B � dS; (20)

where S is an open surface where, to ensure that there is no
over-counting, the orbits cross only once. We schemati-
cally show this method in Fig. 3. Since B is divergenceless
we can define dA � B and, in the case of a nondiscon-
nected surface S, using Stoke’s theorem

 N �
I

A � dl; (21)

where l � @S is the boundary of S. The quantity N is the
canonical measure of all trajectories crossing topologically
equivalent surfaces which are bounded by @S.

The reader should keep in mind that, since Eq. (17)
defines a flat metric on the phase space, each trajectory
has the same weight; hence we have a measure on the
number of trajectories, and not the volume they occupy.
This is indeed a crucial point for the estimation of the
probability to have successful inflation, since such a solu-
tion is an attractor, meaning that the volume occupied by

inflationary trajectories decreases, as the attractor solution
is approached. In conclusion, we are confident in our
estimated probability of successful inflation, since we are
just counting the number of trajectories and not the phase-
space volume they enclose. The measure we use is cer-
tainly not the most general measure of the gravitational
phase-space volume, but just the simplest (a uniform dis-
tribution) one. The reader should then keep in mind that
different distributions for the phase-space trajectories may
be adopted (see for example [22]).

B. Estimation of the probability

An estimation of the probability of a set of trajectories C
in the phase space of all possible trajectories of a
Hamiltonian system is given by the ratio of the measure
of C to the measure of all possible trajectories and not the
phase-space volume they enclose. For this ratio to be well
defined we require that the trajectories do not cross, as this
would lead to a time dependent measure of C. The time
reversibility of the system ensures that such crossing does
not take place within a finite time. To define the ratio, we
also require the measure of the entire phase space to be
finite. It is well known that in the classical case this is not
true [20], unless one introduces a coarse graining cutoff
[7]. In quantum loop cosmology this classical divergence is
removed since we are restricted to scales above LPl.
However, as we will see in the next section, there is the
possibility of a further divergence associated with the form
of the potential. To ensure that this divergence is not
present we must restrict our attention to a specific class
of potentials, a limitation that is also present in the classical
theory of [7].

1. The volume of the phase space

We now turn our attention to the calculation of the total
volume using Eqs. (14) and (16). The momentum associ-
ated with the scale factor and the scalar field � is

 Pa � �6a2H; P� � a3D��n�1�
l

_�; (22)

or, in terms of q � a2=a2
? and using Eq. (14),

 Pq � �6a2
?qH;

P� � a3
?q

3=2D��n�1�
l

_�

� D��n�1�=2
l a3

?q
3=2

������������������������������
3H2

4�G
� 2Dm

l V

s
;

(23)

leading to the constraint

 H2 > 1
3D

m
l V: (24)

We now calculate the symplectic form

 ! � dP� ^ d�� dPq ^ dq; (25)

which gives

FIG. 3. The probability measure is defined by integrating the B
field over a constant surface in the 3-dimensional phase space
produced by using the Hamiltonian constraint to eliminate one of
the dynamical variables.
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 B� � �6a2
?q; (26)

 BH �
1

2
a3
?q

1=2

������������������������������
3H2

4�G
� 2Dm

l V

s
D��n�1�=2
l

�
3� �n� 1�

as

Dl

�

�
@Dl

@q

��
�

ma3
?q

3=2���������������������������
3H2

4�G� 2Dm
l V

q D�2m�n�3�=2
l V

�
@Dl

@q

�
;

(27)

 Bq � �
3Ha3

?q
3=2D��n�1�=2

l

4�G
���������������������������
3H2

4�G� 2Dm
l V

q : (28)

An associated vector potential, A � PidQ
i, reads

 A �
�
a3
?q

3=2

������������������������������
3H2

4�G
� 2Dm

l V

s
D��n�1�=2
l ; 0;�6a2

?qH
�
:

(29)

To calculate the measure, as described in the previous
section, we need to define a surface that is cut only once
by the trajectories in the multiverse. It is convenient to use
the surface defined by q � qs, where qs is a constant. We
consider expanding universes; thus from hQ̂i � 0 we get
that da=dt, and hence dq=dt is monotonic and positive if
and only if V > 0, which is guaranteed by the dominant
energy condition.4 Integrating B over a constant q � qs

surface, we obtain

 N � �
3

4�G

ZZ Ha3
?q

3=2
s D��n�1�=2

s���������������������������
3H2

4�G� 2Dm
s V

q dHd�; (30)

where (from now on we drop the l label) we use the
notation f�as� � fs so that Ds � D�qs�.

We are now able to integrate Eq. (30). At this point we
introduce the quantum gravity cutoff H�1 �

����
�
p

lPl.

Considering the physical limit5 H�
���������������������
8
3�GD

mV
q

, we

also obtain in turn that V  l�4
Pl which avoids, as antici-

pated, the quantum gravity bouncing region. We now may
perform the integral over H to obtain

 N � �a3
?q

3=2
s D��n�1�=2

s

X
k

Z �k
f

�k
i

�����������������������������������������
3

4��l4Pl

� 2Dm
s V���

s
d�;

(31)

where 	�k
i ; �

k
f 
 represent the allowed (possibly discon-

nected) ranges for � such that N is real. We note that
the integral in Eq. (31) is by no means always convergent,

as it was assumed in Ref. [7], in the D! 1 limit for
potentials with only one minima. Its convergence indeed
depends on the choice of V���. However, a large class of
potentials makes it convergent, for example, potentials
with only one minima but diverging in the large � limit.
These potentials are phenomenologically very important.
First, the requirement of having a minimum makes it
possible to have only one specific vacuum for the scalar
field �, from which ordinary matter may be produced.
Moreover, in this class of potentials belongs the case of a
massive scalar field with V��� � 1

2�
2�2, where � is a

constant mass, which seems to be the favorite model [23]
to match the WMAP data. In Sec. IV B 3 we will calculate
explicitly the probability to have successful inflation for
single-field polynomial inflation with a potential of the
form V��� � �4

2�! �
�
��

2�; the integer constant � is � � 1

and the self-coupling constant � has dimensions of mass
(the � � 1 case reduces to the scalar field mass). For the
class of potentials for which the integral in Eq. (31) con-
verges, the range of allowed � is given by the roots of the
equation

 

3

4��l4Pl

� 2Dm
s V��� � 0; (32)

implying
 

N �
a3
?q

3=2
s D��n�1�=2

s

l3Pl

�
3

4��

�
���1�=2�

�
2�!

2Dm
s

�
1=2�

�

����
�
p

2

�� 1
2��

���3��1
2� �
�lPl�����2�=�: (33)

This volume is clearly finite, as D is a finite function of q
that is bounded below by the cutoff LPl.

2. The probability

We now need to calculate the volume of the phase space
that contains inflationary trajectories. In other words, fol-
lowing exactly the same calculations as before, we will
estimate the measure

 M � �
3

4�G

ZZ Ha3
?q

3=2
s D��n�1�=2

s���������������������������
3H2

4�G� 2Dm
s V

q dHd�
��������inflation

:

(34)

Using Stoke’s theorem for the path H � Hs � const, we
get

 M � �
I
j P� j d�

��������inflation
: (35)

Note that the above integral is positive as inflation runs
from higher to lower values of the scalar field �. From
Eq. (14) and using F2 � H2D�m, we obtain

 F2 � 8�G	16D
��n�m�1� _�2 � 1

3V
; (36)

4The dominant energy condition reads 	 � jpij. In the case of
a scalar field �, one has 	� K:E:� V��� and pi � K:E:�
V���, where K.E. denotes the kinetic term. Thus, even with the
corrections to the 1=a3 factor in the kinetic energy terms, the
dominant energy condition ensures that V���> 0.

5For an expanding universe H > 0.
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or

 

_� 2 �
1

4�G
3Dn�m�1F2 � 2Dn�m�1V: (37)

Using Eq. (16), after lengthy but straightforward calcula-
tions, we obtain

 

_� � �
Dn��m=2��1�dFd��

4�G	1� �n�m� 1� q3D �
@D
@q�


; (38)

for

 1� �n�m� 1�
q

3D

�
@D
@q

�
� 0:

Equation (38) implies inflation should happen only in the
�1� �n�m� 1� q3D

@D
@q�> 0 region for an expanding uni-

verse (H > 0) and for graceful exit from inflation ( _�< 0).
One can easily see this by considering that during slow roll
dF=d�� V0=

����
V
p

> 0, for expanding cosmologies.
Substituting Eq. (38) into Eq. (35), we get
 

M � �
a3

sD
m=2
s

4�Gj1� �n�m� 1� qs

3Ds
�@D@q js�j

�
I

d�
dF
d�

��������inflation

� �
a3

s

4�Gj1� �n�m� 1� qs

3Ds
�@D@q js�j

�HjHs;qs
; (39)

where �HjHs;qs
measures the space of inflationary trajecto-

ries cutting the H � Hs surface at q � qs. To calculate
�HjHs;qs

, we substitute Eq. (38) into Eq. (36) and evaluate
on q � qs. Introducing the new positive definite variable

 � �
D�n�1�=2

j1� �n�m� 1� q3D �
@D
@q�j

F �
F
A
; (40)

we obtain

 A2
s�

2
s �

1

12�G

�
d�s

d�

�
2
�

8�G
3

V; (41)

where �s and As are � and A evaluated on a � as. The
slow-roll condition in loop quantum cosmology is equiva-
lent to D�n�m�1 _�2  2V, which implies

 

1

3

�@V=@��2

V2  8�GA2: (42)

Using the variable � defined above, the slow-roll condition
can equivalently be written as �d�s=d��2  �96�G=3�V.

Let us now consider the perfect slow-roll solution (�sr)
such that

 A2
s�

2
sr �

8�G
3

V: (43)

The volume of all inflationary trajectories will be an ex-

pansion on small values of �. We will therefore study
Eq. (41) using �s ! �sr � ��, where �� is a small pertur-
bation in �sr. This gives

 

d��
d�
�

3A2
s�s������������������������

3A2
s�

2
s

4�G � 2V
q : (44)

If we now define the function

 Ns �
Z as

a

d~a
~a
; (45)

we have

 

dNs

d�
�
Hs

_�s

�
�sAsD

��n�1�=2
s����������������������

3A2
s�

2
s

4�G � 2V
q ; (46)

so that

 

d��
dNs

� 3

��������1� �n�m� 1�
qs

3Ds

�
@D
@q

��������s

�����������: (47)

We finally have

 �� � C exp
�
3

��������1� �n�m� 1�
qs

3Ds

�
@D
@q

��������s

���������Ns

�
;

(48)

whereC is a constant. Taking as to be the scale at the end of
inflation and measuring Ns from as to the beginning of
inflation, we get

 ��i � ��f exp
�
3

��������1� �n�m� 1�
qs

3Ds

�
@D
@q

��������s

���������N
�
;

(49)

where ��f and ��i are the perturbation evaluated at the end
and beginning of inflation, respectively, and N stands here
for the total number of e-foldings during the slow roll.

By iterating Eq. (41) it is easy to see that

 �s �
1

As

���������������������
8�GV���

3

s �
1�

1

96A2
s�G

�
1

V���
@V���
@�

�
2
� . . .

�
:

(50)

Using this expansion we can write

 ��i �
1

12A3
s

�������������
V��i�

24�G

s �
1

V��i�

@V���
@�

��������i

�
2
: (51)

From Eq. (49) we have

 ��f � ��i exp��3j1� �n�m� 1�
qs

3Ds

�
@D
@q

��������s

���������N
�
:

(52)

Since we perturbed � on the constant a � as surface, we
have that
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 ��f �
D�n�m�1�=2

s

j1� �n�m� 1� qs

3Ds
�@D@q js�j

�HjHs;as
: (53)

Putting these together and substituting into Eq. (39) gives
the measure of the trajectories that inflate,
 

M �
a3
?q

3=2
s

4�G
D��n�m�1�=2

s ��i

� exp
�
�3

��������1� �n�m� 1�
qs

3Ds

�
@D
@q

��������s

���������N
�
:

(54)

Thus, the probability of getting N or more e-foldings is
 

P �N� �
1

N

a3
?q

3=2
s D��n�m�1�=2

s

4�G
��i

� exp
�
�3

��������1� �n�m� 1�
qs

3D

�
@D
@q

��������s

���������N
�
:

(55)

3. Probability for polynomial potentials

As we already discussed, our measure is valid only for a
subclass of possible inflationary potentials. In particular,
we now discuss polynomial potentials

 V��� �
�4

2�!

�
�
�

�
2�
: (56)

From the slow-roll conditions and Eq. (50) we obtain

 

H
_�
� �8�G

�
1

V���
@V���
@�

�
�1 	1� �n�m� 1� q3D

@D
@q


Dn�1 :

(57)

Integrating the identity �1=a� � �H= _���d�=da�, we obtain
that for polynomial potentials

 �
Z as

ai

Dn�1

	1� �n�m� 1� q3D
@D
@q


da
a
�

4�G
�
��2

f ��
2
i �;

(58)

where, as before, we took as as the scale factor at the end of
inflation and ai the scale factor at the begin of inflation.
Equation (58) implies that slow roll (for which 	1� �n�
m� 1� q3D

@D
@q
> 0) ends when �f <�i. In particular, us-

ing the standard definition for the end of inflation, �f 
�i, we obtain the following good approximation:

 �i �

�
�

4�G

Z as

ai

Dn�1

	1� �n�m� 1� q3D
@D
@q


da
a

�
1=2
: (59)

Note that for � � 1 and D � 1 we recover the usual result
�i �

��������������������
N=�4�G�

p
.

We are now able to evaluate ��i. Using Eq. (51) we get

 ��i �
l�1
Pl��������
2�!
p

�2

3A3
s

���������
24�
p

�
�
�i

�
2��

: (60)

Finally, from Eqs. (33), (55), and (60), the probability
P �N� of having N e-folds of slow-roll inflation reads
 

P �N� � 
2

�
�
�i

�
2��
�lPl��

�2���=�

� exp
�
�3

��������1� �n�m� 1�
qs

3D

�
@D
@q

��������s

���������N
�
;

(61)

where
 


2 �
�3

144

�
2

3��2�!�

�
���1�=2�

2���2�=2�����1�=�����1�=2�

�
��3��1

2� �

�� 1
2��

Dm	���1�=2�

s A�3

s : (62)

The above probability changes qualitatively for renorma-
lizable (� � 2) and nonrenormalizable (�> 2) potentials.
We will concentrate on renormalizable potentials [24]; thus
� � 1, 2.

The above calculation can be repeated using S�qG� � 1
to give

 P �N� � 
2

�
�
�i

�
2��
�lPl��

�2���=�
�
S
�
a2

a2
G

��
���4�=4�

� exp
�
�3

��������1� �n�m� 1�
qs

3D

�
@D
@q

��������s

���������N
�
;

(63)

where now

 �i �

�
�

4�G

Z as

ai

Dn�1

S�a
2

a2
G
�	1� �n�m� 1� q3D

@D
@q


da
a

�
1=2
:

(64)

Since S�qG�< 1 it is clear that choosing jG � 1=2 slightly
reduces the probability of inflation. However, for ai > aG,
S�qG� is well approximated by 1; thus the conclusions for
the jG � 1=2 case remain qualitatively unchanged. We
shall therefore consider in the following only the jG �
1=2 fundamental representation case.

C. Estimation of the probability

Let us first note that, since we have assumed conditions
favoring the onset of inflation (i.e. FLRW universes), find-
ing a high probability in this context only gives a necessary
condition for inflation to be likely. In order to have enough
inflation we require

 e60 �
as

ai
<
as

aPl
; (65)

GERMANI, NELSON, AND SAKELLARIADOU PHYSICAL REVIEW D 76, 043529 (2007)

043529-8



aPl is the minimal scale which can be probed in our
approach. There are the following possibilities, either as �
a? or as > a?. In loop quantum gravity j gives the scale for
which semiclassical effects can be observed. Obviously j
cannot be too large, otherwise we will probe quantum
gravity at everyday scales. In fact, particle physics experi-
ments restrict j < 1020 [10]. With this bound for j it is easy
to show that the only possibility for which the necessary
condition, Eq. (65), is satisfied is in the large as limit, i.e.
as � a?. With this inequality we can expand any function
evaluated at as in the large q limit.

Let us discuss the magnitude of the probability, Eq. (61),
for renormalizable potentials:

(1) The probability, Eq. (60), is suppressed by a factor

 exp
�
�3

�
1� �n�m� 1�

q
3D

@D
@q

���������as

N
�
:

In order to make the probability high enough, one
could naively think that, by just finding appropriate
values for n, m, as which make the exponent of
O�1�, one can overcome the negative result of
Ref. [7]. However,

 
2 /

��
1� �n�m� 1�

q
3D

@D
@q

���������as

�
3

acts against this reduction. In fact, increasing the
value of the exponential would actually make the
probability of having a successful slow-roll inflation
closer to zero. Therefore, the higher estimation of
the probability may be found only when

 

�
1� �n�m� 1�

q
3D

@D
@q

���������as

�O�1�:

(2) The second term to take care of is the factor lPl�.
However, natural conditions for inflation [24] re-
quire the scalar field mass to be much lower than
the Planck mass, i.e. lPl� 1. For � � 1 the
probability is therefore suppressed by the factor
�lPl��

2.
(3) The most interesting term is the factor �=�i. We

have already discussed that j1� �n�m� 1� q3D �
@D
@q j has to be far from zero at the end of inflation.
However, in principle it can be close to zero at the
beginning of or during inflation, in compatibility
with Eq. (42). In this case the probability is again
suppressed as the integral defining �i contains j1�
�n�m� 1� q3D

@D
@q j
�1. In order to increment the

probability ai then has to be far from the zero of
j1� �n�m� 1� q3D

@D
@q j. To have �i as small as

possible we therefore need to have D, in the range
	ai; as
 as small as possible. In particular, in order to
improve the classical result �i �

����
N
p

, one needs

 Dn�1

��������1� �n�m� 1�
q

3D
@D
@q

���������1
<1:

In the case of n�m� 1 & ���, where �1:5<
�� <�4 (depending on the value of l taken), there
are two zeros of j1� �n�m� 1� q3D

@D
@q j (see

Fig. 4), ac1
� a? and ac2

> a?, so a? < ai < as.
In this region D> 1 (see Fig. 1) and

 

��������1� �n�m� 1�
q

3D
@D
@q

��������<1;

hence �i >
�����������������
N=4�G

p
.

In the case of n�m� 1> ��, 0< �� < 1 (de-
pending on the value of l taken) there is only one
zero of j1� �n�m� 1� q3D

@D
@q j that is always close

to a? (see Fig. 5). In this case the functionDn�1j1�

�n�m� 1� q3D
@D
@q j
�1 can be less or greater than 1,

depending on the choice of n and a; however in the
region we are concerned with it is always greater
than �a� ai�=�as � ai� (see Fig. 6).
This gives

 �i >
�
�

4�G

�
1�

aiN
as � ai

��
1=2
�

�
�

4�G

�
1=2
;

(66)

where we use the fact that as � ai.
In the case �� < n�m� 1< 0 we do not have any

1.1

8

4

1

0

-4

0.9 1.41.31.2

FIG. 4 (color online). The function 	1� �n�m� 1� q3D �
@D
@q�


is plotted as a function of a, with a? � 1 and l � 0:75, for n�
m� 1 � �1, �4, �9, �19 (small to large crosses, respec-
tively). This is the term that determines the suppression of the
probability of having N e-foldings of inflation. Notice that for
n�m� 1<�2 we have two zeros, although this number is
weakly dependent on l.

ONSET OF INFLATION IN LOOP QUANTUM COSMOLOGY PHYSICAL REVIEW D 76, 043529 (2007)

043529-9



zeros of j1� �n�m� 1� q3D
@D
@q j, and ai is only

restricted to be above the Planck scale. In this case
we can consider the following estimation:

 �i�

�
�

4�G

Z as

ai

Dn�1

j1��n�m�1� q3D
@D
@q j

da
a

�
1=2

(67)

 >
�
�

4�G

Z as

a?

Dn�1

j1��n�m�1� q3D
@D
@q j

da
a

�
1=2
: (68)

By the arguments above we have

 �i >
�
�

4�G

Z as

a?

da
a

�
1=2
: (69)

But as described above, particle physics experi-
ments restrict a? < 1010 ����

�
p

=
���
3
p

, which implies
 

�i >
�
�

4�G
�N � ln�1010=

���
3
p
��

�
1=2

>
�
�

4�G
�N � 22:5�

�
1=2
: (70)

Finally, in the case 0< n�m� 1< �� we still do
not have any zeros; however, the function

Dn�1

j1��n�m�1� q3D
@D
@qj

approaches 1 from above, so

 �i >

����������
N

4�G

s
: (71)

We have therefore shown that the probability of
having slow-roll inflation is not significantly im-
proved by the factor �=�i, for values of N > 22:5.
It has been shown [25] that quantum loop cosmol-
ogy can lead to a period of superinflation during
which the scalar field is driven up its potential. Since
this period does not satisfy the slow-roll conditions
it is not accounted for by our analysis. However,
perturbation theory is unstable in this superinfla-
tionary epoch [14], and hence, to produce the ob-
served CMB anisotropies, we still require
approximately 60 e-foldings of standard slow-roll
inflation.

(4) In the probability, Eq. (61), the factor 
2 /

D	m���1����n�1�
=2�
s [see the definition of 
 in (62)

combined with the definition of A in (40)] can in
principle be big for large values of m such that m>
�

��1 �n� 1�. This is due to the fact that the function
D approaches 1 from above. We can estimate the
magnitude of this factor by expanding D for large
q’s. We have (note that l < 1)

 Ds ’ 1� 3
2� l

20
q�2
s : (72)

We have already discussed that, in all cases, ai >����
�
p

so, for N � 60, we have qs > 1032. In this case,

if we want the factor D	m���1����n�1�
=2�
s to at least

overcome the exponential suppression exp��180�,
we have the necessary condition

1.4

1.2

0.8

1.2

0.4

0
1 21.81.6

1.6

FIG. 6 (color online). The function Dn�1	1� �n�m� 1��
q

3D �
@D
@q�


�1 is plotted as a function of a, with a? � 1 and l �

0:75, for n�m� 1 � 1, 3, 5, 7, 11, 16 (small to large crosses,
respectively). Also plotted is an example of �a� ai�=�as � ai�
for ai � a? � 1 and as � 2, which allows us to calculate a
lower bound on �i, which appears as one of the coefficients of
the probability.

-4

1.41.31.21.110.90.8

8

4

0

FIG. 5 (color online). The function 	1� �n�m� 1� q3D �
@D
@q�


is plotted as a function of a, with a? � 1 and l � 0:75, for n�
m� 1 � 1, 3, 6, 11, 21 (small to large crosses, respectively).
This is the term that determines the suppression of the proba-
bility of having N e-foldings of inflation. Notice that for n�
m� 1> 0 we have only one zero that is always close to a?.
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m��� 1� � ��n� 1�

2�
* 10110; (73)

which is possible only for very ‘‘unnatural’’ parame-
ters of the loop quantum cosmology [12].

V. CONCLUSION AND DISCUSSION

Cosmological inflation still remains the most appealing
candidate in solving the puzzles of the standard hot big
bang model. However, inflation must prove itself generic.
This is an old question which has already been faced in the
past [5,6]. Recently, this issue came back with the study of
Ref. [7], where it was concluded that successful inflation is
unlikely. More precisely, it was argued that the probability
of having successful inflation is exponentially suppressed
by the number of e-folds. Clearly, since such a conclusion
leads necessarily to very severe implications, one should be
sure of its validity and generality. The study of Ref. [7] has,
in our opinion, a weak point. Classical physics has been
applied all the way to very early times, and therefore very
small scales as compared to the Planck length, a regime
where quantum corrections can no longer be neglected.
The estimation of the probability of having successful
inflation should, in our opinion, be done taking quantum
corrections into account. This is indeed the aim of our
work. More precisely, in this paper we have addressed
the question of how likely the onset of inflation is during
the continuum phase of loop quantum cosmology.

Modifying the canonical measure introduced in
Ref. [21], so that it is applicable in the context of loop
quantum cosmology, we have found that it is not probable
to get sufficiently long single-field inflation, for the phe-
nomenologically favorite inflationary models, unless we
accept extreme values for the ambiguity parameters m, n.
Since, during the semiclassical era of loop quantum cos-
mology, the field � can depart from the minimum of its
potential [12], one may think that this could improve the
classical probability of inflation [26]. This, however, is not
what we obtain from our analysis, and the reason is that the
same mechanism which forces � away from its minimum
will also increase _�, which would tend to reduce the
probability of the onset of slow roll. In conclusion, our
results show that, overall, quantum loop cosmology does
not significantly improve on the classical probability, un-
less one accepts extreme values of the ambiguity
parameters.

Our results hold for single-field inflation with potentials,
which makes the volume of the phase space of possible
trajectories finite. For example, inflationary models with
potentials of the form V��� ��2� (with � an integer
number) are within the class of models we have studied

here. Our result implies limitations in the form of infla-
tionary models within loop quantum cosmology. Since
eventually the form of the inflationary model will be
dictated from a fundamental theory, this freedom in mod-
eling the inflationary potential will be alleviated.

From the analysis presented here, it is clear that, for the
classes of models studied, the values m � n � 0 do not
lead to a successful inflationary model. This implies im-
portant consequences. In the literature on loop quantum
cosmology, the ambiguity parameters m, n have usually
both been set equal to zero. Clearly, in this context suc-
cessful cosmological inflation cannot take place in the
semiclassical regime. Actually, one expects to constrain
the ambiguity parameters by investigating the observatio-
nal consequences to which inverse volume operators lead.
For example, to study cosmological perturbations in loop
quantum cosmology, one should perturb both the gravita-
tional and the matter parts about the homogeneous back-
ground. This has only recently been accomplished. In
Ref. [25] inhomogeneous cosmological perturbation equa-
tions have been derived without neglecting corrections in
the gravitational part, thus treating both gravitational and
matter terms on equal footing. This is indeed the appro-
priate framework to study cosmological perturbations in
the context of loop quantum cosmology [27]. However,
also in this study,m, n have been set equal to zero, which as
we have shown here does not lead to successful inflation.

We have also analyzed the probability of having suc-
cessful inflation for arbitrary values of the ambiguity pa-
rameters m, n. Our study has shown that successful
inflation can be realized only for extreme values of the
parameters—a result which goes against the spirit of
inflation.

Our findings do not imply that inflation itself is improb-
able. What we have shown here is that, at least in the case
of the semiclassical regime of loop quantum cosmology
and therefore of general relativity, inflation is not as gen-
eral as it is usually assumed. Thus, one has to address
inflation in full quantum gravity, or in a string theory
context.
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