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We propose a Hamiltonian formalism for a generalized Friedmann-Robertson-Walker cosmology
model in the presence of both a variable equation of state parameter w�a� and a variable cosmological
constant ��a�, where a is the scale factor. This Hamiltonian system, containing 1 degree of freedom and
without constraint, gives Friedmann equations as the equation of motion, which describes a mechanical
system with a variable mass object moving in a potential field. After an appropriate transformation of the
scale factor, this system can be further simplified to an object with constant mass moving in an effective
potential field. In this framework, the � cold dark matter model as the current standard model of
cosmology corresponds to a harmonic oscillator. We further generalize this formalism to take into account
the bulk viscosity and other cases. The Hamiltonian can be quantized straightforwardly, but this is
different from the approach of the Wheeler-DeWitt equation in quantum cosmology.
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I. INTRODUCTION

Since the current accelerating expansion of our universe
was discovered [1] around 1998 and 1999, theoretical
physicists have devoted increasingly more attention to
the Friedmann-Robertson-Walker (FRW) model as a stan-
dard framework in cosmology study. The � cold dark
matter (�CDM) model as the standard model of cosmol-
ogy so far fits well with observational data, whereas it has
had some serious theoretical problems. To make a com-
parison to the �CDM model, physicists have built many
cosmological models that are able to give out the effective
Friedmann equations with variable cosmological con-
stants. To quantize the Friedmann equations, the com-
monly used theory is the Wheeler-DeWitt equation [2],
which has been studied and applied widely in quantum
cosmology [3]. Starting from the Hilbert-Einstein action
with the Robertson-Walker (RW) metric, the correspond-
ing Hamiltonian H can be obtained. Then the Friedmann
equation plays the role of the constraint H � 0, which
leads to the Wheeler-DeWitt equation. In the present work,
we consider the Friedmann equations as basic equations
and find a Hamiltonian system that gives Friedmann equa-
tions as classical equations of motion without constraint.

Many Ansätze of the variable cosmological constant
have been studied in the literature, such as Refs. [4–7].
Moreover, some models motivated from the string theory
give an effective cosmological term when reduced to the
FRW framework. We assume that the equation of state
(EOS) parameter w � p=� can also be variable, which
means that the contents of the Universe, except the cos-
mological term, are generalized to a nonperfect fluid, or
perfect fluid as a special case. In observational cosmology,
the redshift z is regarded as an observable quantity and

related to the scale factor a by z � a0=a� 1. Therefore,
we investigate a general case that both the EOS parameter
w and the cosmological constant � can be functions of the
scale factor a, and take into account the bulk viscosity.

As an extension of the problem, we construct a
Hamiltonian formalism for a system described by the
following equation:

 �q � f1�q� _q2 � � _q� f2�q�;

where f1�q� and f2�q� are arbitrary functions, and � is
constant. Also it can be regarded as a generalization of the
damping harmonic oscillator. The corresponding
Hamiltonian describes an object with variable mass mov-
ing in a potential field. After an appropriate canonical
transformation, this system can be further simplified to
an object with constant mass moving in an effective po-
tential field. Thus, differential models in the FRW frame-
work are characterized by their effective potentials. This is
a general formalism and it can be applied to many cosmo-
logical models, for example, that the �CDM model corre-
sponds to a harmonic oscillator. Since the quantization of
Friedmann equations can provide an insight into quantum
cosmology as a glimpse of quantum gravity, we also make
some remarks on the quantum case, which provides a
correspondence between cosmology and quantum
mechanics.

The paper is organized as follows. In Sec. II we present a
generalized FRW model and the corresponding
Hamiltonian to describe the Friedmann equations. Then
we find a canonical transformation to further simplify the
problem, and give some examples and special cases. In
Sec. III we show that our framework can also be applied in
the dissipative case with bulk viscosity. In Sec. IV we turn
our attention to the relation to the observable quantities and
review some issues of the Bianchi identity. In Sec. V we
make some remarks on quantum cosmology from our*jrenphysics@hotmail.com
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approach. In the last section we present the conclusion and
discuss some future subjects.

II. HAMILTONIAN FORMALISM

A. Hamiltonian description of the Friedmann equations

We consider the RW metric in the flat space geometry
(k � 0) as the case favored by current cosmic observatio-
nal data:

 ds2 � �dt2 � a�t�2�dr2 � r2d�2�; (1)

where a�t� is the scale factor. The energy-momentum
tensor for the cosmic fluid can be written as

 

~T �� � ��� p�U�U� � �p� ���g��; (2)

where �� � �=�8�G� is the energy density of the cosmo-
logical constant. Thus, Einstein’s equation R�� �
1
2 g��R � 8�G ~T�� contains two independent equations:
 

_a2

a2 �
8�G

3
��

�

3
; (3a)

�a
a
� �

4�G
3
��� 3p� �

�

3
: (3b)

The EOS of the matter (cosmic fluid except the cosmo-
logical constant) is commonly assumed to be

 p � ��� 1��: (4)

Cosmologists usually call Eq. (3a) the Friedmann equation
and Eq. (3b) the acceleration equation in the literature,
whereas for simplicity we name both Eqs. (3a) and (3b)
Friedmann equations here. For generality, we assume that
both � and � are functions of the scale factor a, thus we
call it the generalized FRW model. Combining the
Friedmann equations with the EOS, we obtain

 

�a
a
� �

3��a� � 2

2

_a2

a2 �
��a���a�

2
; (5)

which determines the evolution of the scale factor.
We regard Eq. (5) as a basic starting point; therefore, if

the dynamical equation for the scale factor can be written
as that form, the present framework can be valid. If the
Newton constant G is constant and the cosmological con-
stant � is variable, the energy-momentum tensor for the
matter cannot be individually conserved [5,6], which im-
plies an interaction between the matter and vacuum energy.
In the following, we assume G to be constant until Sec. IV.

Our aim is to find a Hamiltonian description of Eq. (5) as
the classical equation of motion. We start from the follow-
ing Lagrangian:

 L �q; _q� �
1

2
M�q� _q2 � V�q�; (6)

and the corresponding Hamiltonian thus is

 H �q; p� �
p2

2M�q�
� V�q�; (7)

with the canonical Poisson bracket fq; pg � 1. One can
check that the equation of motion for Eq. (6) or (7) is

 

�q
q
� �

1

2

@ lnM
@ lnq

_q2

q2 �
1

Mq
@V
@q

: (8)

This equation possesses the same form as Eq. (5).
Therefore, by comparing Eq. (5) with Eq. (8), we can
take a as the general coordinate and solve the functions
M�a� and V�a�. Then the Lagrangian L � 1

2M�a� _q2 �

V�a�, with

 M � exp
�Z 3�� 2

a
da
�
; V � �

1

2

Z
M��ada;

(9)

gives Eq. (5) as the equation of motion. For some specified
functions � � ��a� and � � ��a�, the above integrations
can be evaluated out to give M�a� and V�a� explicitly.

Now we can see that the generalized FRW model essen-
tially corresponds to an object with variable mass M�a�
moving in a potential field V�a�. In the following, we will
show that this picture can be further simplified as an object
with constant mass moving in an effective potential field
~V���, after an appropriate transformation of the scale
factor.

B. Canonical transformation

The above problem can be generalized as the
Hamiltonian description of the nonlinear equation

 �q � f1�q� _q2 � f2�q�; (10)

where f1�q� and f2�q� are two specified functions. This
equation can be derived by the Lagrangian L �
1
2M�q� _q2 � V�q� with

 M � exp
�
�2

Z
f1�q�dq

�
; V � �

Z
Mf2�q�dq:

(11)

We define a new variable � as (see Appendix)

 � �
Z

exp
�
�
Z
f1�q�dq

�
dq: (12)

This transformation can eliminate the _q2 term and gives the
equation for the variable � as in

 

�� � f2�q� exp
�
�
Z
f1�q�dq

���������q!�
; (13)

where q! � denotes using Eq. (12) to change the variable
q to �. Since there is no _�2 term in Eq. (13), this can be
regarded as a partial linearization. Therefore, the system of
Eq. (10) transformed to Eq. (13) can be described by the
Lagrangian
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 L ��; _�� �
1

2
_�2 � ~V���; (14)

with the potential as

 

~V��� � �
Z �

f2�q� exp
�
�
Z
f1�q�dq

��
q!�

d�

� �
Z
f2�q� exp

�
�2

Z
f1�q�dq

�
dqjq!�: (15)

The simplification of the problem by Eq. (12) is essentially
the canonical transformation

 q! �; pq ! p�; H �q; pq� !H ��;p��;

(16)

where pq � M�q� _q, p� � _�, and H ��;p�� �
1
2p

2
� �

~V���. Therefore, the classical and quantum prop-
erties of different models are characterized by the effective
potentials.

For Eq. (5) as a special case, the new variable � is given
by

 � �
Z

exp
�Z 3�� 2

2a
da
�
da: (17)

C. Some examples

We will give some special cases of the above general
framework to show some applications. If both � and � are
constant for a simple case, the integrations in Eq. (17) can
be evaluated out as
 

� �
2

3�
a3�=2; � � 0; (18a)

� lna; � � 0: (18b)

Now we consider � � 0 for example. The special case � �
1 corresponds to the �CDM model. The equation for �
can be obtained as ��� 3

4�
2�� � 0, and the correspond-

ing Lagrangian is

 L �
1

2
_�2 �

3

8
�2��2: (19)

We can see that the simplest model in cosmology just
corresponds to a harmonic oscillator after linearization.
In particular, this is an upside-down harmonic oscillator
for the asymptotic de Sitter universe.

We can add the curvature effect to the �CDM model,
which is described by the special casem � 2 of the follow-
ing equation:

 

�a
a
� �

3�� 2

2

_a2

a2 �
��

2
�

k
am
: (20)

Here the parameters �, �, and m are all constants. This
equation possesses the same form of Eq. (10). By defining
� as Eq. (12) and using Eq. (15), we obtain the effective

potential as

 

~V��� � �
3

8
�2��2 �

k
3��m

�
3��

2

�
2�2m=3�

; (21)

for � � 0 and m � 3�.
Another example is the Friedmann equations during the

inflation era. In the study of inflation, we usually use the
conformal time � instead of the comoving cosmic time t.
Here we assume that a constant term �p0 is in the EOS
during inflation. Thus, the Friedmann equations combined
with the EOS p � ��� p0 yield

 

a00

a3
� 2

a02

a4 �
	2

2
p0; (22)

where the prime denotes a derivative with respect to �, and
	2 � 8�G. By defining � � �1=a, the equation for � is
�00�� �	2=2�p0 � 0. The effective potential is thus

 

~V��� �
	2

2
p0 lnj�j: (23)

Moreover, if we add the curvature term in this case, it
corresponds to a �2 potential.

III. BULK VISCOSITY

We assume that the cosmic fluid possesses some dissi-
pation effects. Since the sheer tensor 
�� � 0 for the RW
metric, the sheer viscosity does not contribute to the evo-
lution in Friedmann cosmology. The energy-momentum
tensor for nonperfect fluid concerning bulk viscosity in the
right-hand side of Einstein’s equation is given by [8,9]

 T�� � �U�U� � �p� �0��h��; (24)

where h�� � g�� �U�U� is the projection operator, � �
U

; � 3 _a=a is the scalar expansion, and � is the bulk
viscosity coefficient. Consequently, Eq. (5) should be
modified as

 

�a
a
� �

3��a� � 2

2

_a2

a2 � 12�G�0
_a
a
�
��a���a�

2
; (25)

where both � and � can be functions of a for generality,
and �0 is constant. We also find a Hamiltonian

 H �a; pa; t� �
p2
a

2M�a; t�
� V�a; t�; (26)

with the Poisson bracket fa; pag � 1 to give Eq. (25) as the
classical equation of motion. The functions in this
Hamiltonian are given by
 

M � exp
�Z 3�� 2

a
da� 12�G�0t

�
; (27a)

V � �
1

2

Z
M��ada: (27b)

Although a dissipative system cannot be described by a
conservative Hamiltonian generally, one can directly check
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that the classical equation of motion for the Hamiltonian
Eq. (26) is Eq. (25). As a special case, the equation for a
damping harmonic oscillator can be derived by the
Caldirora-Kani (CK) Hamiltonian [10].

The above problem can be generalized to construct a
Hamiltonian system for the equation

 �q � f1�q� _q2 � � _q� f2�q�; (28)

where � is constant. It can be derived by the Hamiltonian
H�q; p; t� � 1

2M�q; t�
�1p2 � V�q; t� with

 M � exp
�
�2

Z
f1�q�dq� �t

�
;

V � �
Z
Mf2�q�dq:

(29)

Similarly, by using the new variable � defined by
Eq. (12), the equation for � is

 

�� � � _�� f2�q� exp
�
�
Z
f1�q�dq

���������q!�
: (30)

Now we consider a very special case that both � and � are
constant; then � defined by Eq. (18a) satisfies

 

��� 12�G�0
_��

3

4
�2�� � 0; (31)

which describes a damping harmonic oscillator.
The damping harmonic oscillator

 M �q � �� _q�t� �
@V�q�
@q

(32)

has been studied in quantum mechanics. The CK
Hamiltonian

 H �
1

2M
e��t=Mp2 �

1

2
M!2e�t=Mq2; (33)

with the commutation relation �q; p� � i@, can yield the
dissipation Eq. (32) through the Heisenberg equation [10].
Our work can be regarded as a generalization to the case of
variable mass. It is the variable mass that generates a
nonlinear term in the equation of motion that describes
the generalized FRW model.

In our previous work [9], we have proposed an EOS as

 p � ��� 1���
2���

3
p
	T1

����
�
p
�

2

	2T2
2

; (34)

where the parameters �, T1, and T2 are constants.
Combining the Friedmann equations with this more prac-
tical EOS, we obtain the dynamical evolution equation for
the scale factor as

 

�a
a
� �

3�� 2

2

_a2

a2 �
1

T1

_a
a
�

1

T2
2

: (35)

This model possesses a large variety of properties, such as
that we have found a scalar field model that is equivalent to

the above EOS. For related works on the modified EOS,
see Ref. [9,11–13]. The present work can also be regarded
as a generalization of the EOS to � � ��a� and T2 �
T2�a�. And the corresponding Hamiltonian formalism for
this system can be constructed similarly.

IV. RELATIONS TO THE OBSERVABLE
QUANTITIES

The observations of the supernovae (SNe) Ia have pro-
vided the direct evidence for the cosmic accelerating ex-
pansion of our current universe [1]. A bridge between the
cosmological theory and the observation data is the H-z
relation, where H � _a=a is the Hubble parameter and z is
the redshift. For example, the �CDM model in cosmology
can be described mainly as H2�z� � H2

0��m�1� z�
3 �

1��m�, where �m is the matter energy density. This
model fits the observational data well and provides the
cosmological constant as the simplest candidate for dark
energy. In a sense, the different cosmological models are
characterized by the corresponding H � z relations.

There is also a systematic way to construct the
Hamiltonian starting from the general model

 H2 � f�a�; (36)

where f�a� is a specific function of the scale factor a,
according to the model. By differentiating Eq. (36), we
obtain that it is a solution of the following equation:

 

�a
a
� �

3�� 2

2

_a2

a2 �
3�f�a�

2
�
af0�a�

2
; (37)

which possesses the same form of Eq. (5) or Eq. (10). The
corresponding coefficients are given by

 f1�a� � �
3�� 2

2a
; f2�a� �

3�af�a�
2

�
a2f0�a�

2
:

(38)

Then by applying Eq. (11) we can obtain the corresponding
Hamiltonian. Therefore, even if the EOS for a cosmologi-
cal model is not explicitly linear in �, the Hamiltonian
formalism in the present work can also be applied if the
effective Friedmann equation H2 � f�a� can be given out
for that model.

Many approaches such as modified gravity [14] can be
reduced to effective Friedmann equations in the formH2 �
f�a�. Since the �CDM model fits the SNe Ia data well, the
reasonable cosmological models should be reduced to
Friedmann cosmology in an effective way and give out
the right H � z relation, in order to make a comparison
with the �CDM model. In our case, the Friedmann equa-
tions in terms of the Hubble parameter can be written as

 aH
dH
da
� �

3�
2
H2 � ~��a�: (39)

Here � is assumed to be constant for simplicity. This
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equation is linear in H2 and the effective term ~��a� is an
inhomogeneous term. The solution in terms of H�z� con-
cerning the initial condition H�0� � H0 is given out by

 H�z�2 � H2
0�1� z�

3�
�

1� 2
Z z

0

~��z0��1� z0��3��1dz0
�
:

(40)

In the power-law �CDM model, the contributions of dif-
ferent components are separated in H2, such as a constant
for the cosmological constant, and a �1� z�2 factor for the
curvature term. But in the general case, the contribution of
the matter cannot be separated from the above solution.
This problem is related to the conservation law of matter,
which has been investigated in Refs. [5,6].

The Bianchi identity for the energy-momentum tensor
Eq. (2) gives

 _� � � _�� 3H��� p� � 0; (41)

which implies that energy transfer will exist between the
matter and the vacuum energy. An intuitive idea has been
proposed that if both G and � are variable, the ordinary
energy-momentum tensor can be individually conserved,
i.e., _�� 3H��� p� � 0 [6]. This is achieved by combin-
ing the Bianchi identity for the variable G and � model,

 

d
dt
�G��� � ��� � 3GH��� p� � 0; (42)

with the following constraint:

 ��� ��� _G�G _�� � 0: (43)

The authors of Ref. [6] assume that both the Newton
constant G and the cosmological constant � are functions
of a scale parameter� and apply the renormalization group
approach to cosmology. If G��� evolves by a logarithmic
law and ����� evolves quadratically with �, then this
picture can explain the evolution of the Universe, and at
the same time, the variable G can explain the flat rotation
curves of the galaxies without introducing the dark matter
hypothesis.

V. REMARKS ON QUANTUM COSMOLOGY

We have obtained a classical Hamiltonian formalism of
the Friedmann equations. Generally, once a Hamiltonian is
obtained, the system can be quantized straightforwardly by
replacing the Poisson bracket with the commutation rela-
tion �q; p� � i. However, we need to take into account the
ambiguity in the ordering of noncommuting operators q
and p. For simplicity, we ignore the ordering ambiguity
here. In terms of the new variable �, the corresponding
Schrödinger equation can be written as

 H ��; p̂������ � E����; (44)

where p̂� � �i@�. To make a comparison between our
approach and the Wheeler-DeWitt equation, we only take

the �CDM model as a very special case for an illustrative
example. The corresponding Hamiltonian for Eq. (19) in
the case � � 1 is

 H �
1

2a
p2 �

1

6
�a3; (45)

where p � a _a. In the approach of the Wheeler-DeWitt
equation, H � 0 is a constraint [2,15], thus the quantiza-
tion gives �@2

a �
�
3 a

4���a� � 0. This is an anharmonic
oscillator with zero energy eigenvalue. In our case, the
Hamiltonian is nonzero and proportional to the matter
energy density, which we show in the following. The
solution of Eq. (39) with ~��a� � �=2 is

 H2 �

�
H2

0 �
�

3

�
a�3 �

�

3
� H2

0��ma�3 � 1��m�;

(46)

where �m � 1��=�3H2
0�. Therefore, the Hamiltonian

can be calculated as

 H �
a3

2

�
_a2

a2 �
�

3

�
�

1

2
H2

0�m: (47)

After a canonical transformation by Eq. (16), the
Schrödinger’s equation in terms of � becomes

 

�
�

1

2

d2

d�2 �
3

8
��2

�
���� � E����: (48)

Thus, for the asymptotic de Sitter universe, the �CDM
model corresponds to an upside-down harmonic oscillator
in our formalism. Such an oscillator also appears in the
matrix description of de Sitter gravity [16].

We can transform the de Sitter universe to the dual anti–
de Sitter universe by employing the scale factor duality
[17], which shows that a! a�1 gives H ! �H and other
consequences. The duality for Eq. (5) is given by

 a! a�1; �! ��; �! ��; �! ��:

(49)

It can be checked easily that Eq. (5) is invariant under these
transformations. If we use the dual scale factor a�1, the
corresponding potential becomes ~V��� � � 3

8�
2��2. In

fact, quantization in de Sitter spacetime was one of the
major difficulties of string theory at one time (though this
picture has changed a little bit after Kachru-Kallosh-Linde-
Trivedi theory appeared). It seems that quantizing de Sitter
cosmology is no different, since the time variable used is
the same, and it is known that there is no global timelike
coordinates in de Sitter spacetime. Some quantum effects
of a scalar field in de Sitter background can be found in
Ref. [18].

VI. CONCLUSION AND DISCUSSION

We have proposed a systematic scheme to describe the
Friedmann equations through a Hamiltonian formalism.
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The generalized FRW model accompanied by both vari-
able EOS parameter and variable cosmological constant
admits a Hamiltonian description without constraint. After
an appropriate canonical transformation, the system can be
significantly simplified to an object moving in an effective
potential field. The bulk viscosity can also be taken into
account by a time-dependent Hamiltonian. Some examples
are given explicitly, such as the �CDM model, the curva-
ture term effect, and the inflation period. The quantization
of the system provides a new approach to study the poten-
tial quantum cosmology, which is an intriguing topic in
theoretical physics research.

We shall discuss some possible future developments of
our work. As we have claimed, the formalism in this work
can be applied to a large variety of cosmological models.
By solving the Schrödinger equation H ��; p̂��� � E�,
the cosmological wave function can be obtained for a
specific model. Here we consider the curvature effect, for
example, which is described by the potential Eq. (21) with
parameters � � 0, � � 1 and m � 2. The corresponding
Schrödinger equation can be solved in terms of the bicon-
fluent Heun equation [19]. We can also start from the
effective Lagrangian and study the observational effects
when we modify the potential. We believe that our formal-
ism would give a new perspective to the potential study of
quantum cosmology physics.
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APPENDIX: MATHEMATICAL NOTES

A more general correspondence between a Hamiltonian
and its equation of motion is given in Ref. [19]. The
equation of motion of the Hamiltonian

 H�q; p; t� �
1

f�t�
�P0�q; t�p2 � P1�q; t�p� P2�q; t��

(A1)

is given out by

 

�q �
1

2

@ lnP0

@q
_q2

q2 �

�
@ lnf
@t
�
@ lnP0

@t

�
_q

�
P0

f2

�
@
@q

P2
1

2P0
� f

@
@t
P1

P0
� 2

@V
@q

�
: (A2)

In the mathematical aspect, Eq. (28) can be further gener-
alized to the following equation:

 �q � F1�q; t� _q2 � F2�q; t� _q� F3�q; t�: (A3)

However, here the coefficients F1 and F2 are not com-
pletely independent. Comparing with Eq. (A2), we can see
that the condition 2@tF1�q; t� � @qF2�q; t� must be satis-
fied for consistency. In the present work, both f1�q� and �
have safely satisfied this condition.

We shall explain why we choose the transformation as in
Eq. (12). Starting from the equation

 �q � f1�q� _q2 � � _q� f2�q�; (A4)

we expect that after an appropriate change of variable
��q�, the above equation can be transformed as

 

�� � � _�� g���: (A5)

By differentiating ��q�, we obtain _� � �0 _q, and �� �
�00 _q2 ��0 �q, where the prime denotes a derivative with
respect to q. Substituting �, _�, and �� into Eq. (A5), we
obtain

 �q � �
�00

�0
_q2 � � _q�

g
�0
: (A6)

Now it turns out that by defining ��00=�0 � f1�q�, which
can be solved as the form Eq. (12), the _q2 term can be
eliminated.
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