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We compute the expected value of the cosmological constant in our universe from the causal entropic
principle. Since observers must obey the laws of thermodynamics and causality, the principle asserts that
physical parameters are most likely to be found in the range of values for which the total entropy
production within a causally connected region is maximized. Despite the absence of more explicit
anthropic criteria, the resulting probability distribution turns out to be in excellent agreement with
observation. In particular, we find that dust heated by stars dominates the entropy production, demon-
strating the remarkable power of this thermodynamic selection criterion. The alternative approach—
weighting by the number of ‘‘observers per baryon’’—is less well-defined, requires problematic
assumptions about the nature of observers, and yet prefers values larger than present experimental bounds.
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I. INTRODUCTION

The discovery that the universe is in a period of accel-
erated expansion [1,2], combined with an accurate ac-
counting of the total, matter, and radiation components
of the energy density [3], provide overwhelming evidence
for dark energy. These measurements are completely con-
sistent with the interpretation of dark energy as a nonzero
cosmological constant �. This has undermined the hope
that the energy of our vacuum is uniquely determined by
fundamental theory. Instead, it lends credence to the hy-
pothesis that the cosmological constant is an environmen-
tal variable, which takes on different values in widely
separated regions of the universe.

The observed vacuum energy density1

 �� �
�

8�
� �1:25� 0:25� � 10�123; (1.1)

is at least 55 orders of magnitude smaller than what would
be expected from the standard model of particle physics
(see, e.g., Ref. [5] for a recent review). The environmental
approach does not assert that this tiny value is inevitable, or
even typical among all possible values. Rather, it aims to
show that it is not atypical among values measured by
observers.

A number of conditions must be satisfied for the envi-
ronmental approach to work. The first, obviously, is that

fundamental theory must admit the observed value of the
vacuum energy. This can happen without explicit tuning if
the theory gives rise to an enormous number N of different
vacua. Of course, typical values will be of order unity, but
if they are randomly distributed, they can form a dense
spectrum, or ‘‘discretuum,’’ with average spacing of order
1=N. If N � 10123, then it is likely that the observed value
is included in the spectrum. Thus, the approach really
depends on whether fundamental theory (which, presum-
ably, is more or less unique) admits a sufficiently dense
discretuum.

The second condition is that the observed value must be
dynamically attainable, starting from generic initial con-
ditions. With N � 10123 possibilities, there is no reason
for the universe to start out in a vacuum like ours. The
environmental approach therefore depends on a means to
start from some generic initial value and later realize the
observed value, either as a branch in the wave function or
as a particular spacetime region embedded in a vast
universe.

Finally, the environmental approach requires an expla-
nation of why we happen to observe such an unu-
sually small vacuum energy. Most values of �� in
the discretuum will be of order unity, and only a frac-
tion (in the simplest case, a fraction of order 10�123) will
have a magnitude as small as the observed value. It is not
enough to show that the small value given by Eq. (1.1)
is possible; one must also show that it is not unlikely to be
observed.

The first condition appears to be satisfied by string
theory, which admits as many as 10500 long-lived meta-
stable vacua [6–10] (see Ref. [11] for a discussion of
earlier work). The second condition can then be met be-

1Unless indicated otherwise, all observed values in this paper
are taken from Ref. [4]. Where no explicit units are given, we set
@ � GN � c � kB � 1.
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cause the vacua are metastable and can decay into one
another.2

In this paper we address the third condition. We will use
a novel approach, the causal entropic principle, to argue
that the observed value of �� is not unlikely. Our main
result is shown in Fig. 1.

The causal entropic principle is based on two ideas: any
act of observation increases the entropy, and spacetime
regions that are causally inaccessible should be disre-
garded. It assumes that on average, the number of obser-
vations will be proportional to the amount of matter
entropy produced in a causally connected region, �S.
Vacua should be weighted by this factor to account for
the rate at which they will be observed.

Crucially, the size of the causal diamond is inversely
proportional to the vacuum energy, so smaller values of ��

allow for greater complexity. This compensates for the
scarcity of vacua with small ��. As a result, �� prefers
to take a value such that vacuum energy begins to dominate
near the time of peak entropy production.

We will find that entropy production in the causal dia-
mond is dominated by dust particles heated by stars. This is
an important result in its own right: our weight �S is a
simple physical quantity that turns out to be sensitive to the
existence of galaxies, stars, and heavy elements.

We will show that the entropy production rate peaked
approximately 2 to 3:5� 109 yr after the big bang. It is this
time scale, rather than the time of galaxy formation, which
governs our prediction of the cosmological constant, and it
prefers a range of �� that is in very good agreement with
observation.

The same result also explains the so-called coincidence
problem or ‘‘why now’’ problem. According to the causal
entropic principle, typical observers will exist when most
of the entropy production in the causal diamond occurs.
Our result ensures that this happens during the era when the
matter and vacuum energy densities are comparable.

Outline.—Historically, discussions of the third condi-
tion—why do we observe an unusually small �� —have
focused on anthropic selection effects, which we discuss in
Sec. II. Long before the discovery of the string landscape,
it was noted that not all values of �� are compatible with
the existence of observers [14–17]. This culminated in
Weinberg’s successful prediction [18] that a small nonzero
value of �� would be observed, which we review in
Sec. II A. Weinberg’s assumption was relatively modest:
Observers require galaxies. But astronomers have since

discovered galaxies that would have formed even if ��

had been more than a thousand times larger than the
observed value. This leaves a large discrepancy between
theory and observation.

A possible resolution is to ask not only about the exis-
tence of observers, but to weight vacua by the number of
observers they contain. This number is generically infinite
or zero, so a regularization scheme is needed. A popular
approach is to weight by the number of observers per
baryon. In Sec. II B, we argue that this approach is both
poorly motivated and, in a realistic landscape, poorly
defined. Moreover, it does not resolve the conflict with
observation. To mitigate the discrepancy, one is forced to
posit increasingly specific conditions for life, such as the
chemical elements required. Indeed, to do reasonably well,
one must suppose that observers can only arise in galaxies
as large as ours—a very strong assumption, for which
there appears to be no evidence.

In Sec. II C, we motivate and discuss a different ap-
proach to this problem. The causal entropic principle
weights each vacuum by the amount of entropy, �S, pro-
duced in a causally connected region [19]. This is the
largest spacetime region that can be probed and across
which matter can interact. Since observation requires free
energy, it is natural to expect that the number of observers
will scale, on average, with �S. In other words, we demand
nothing more than that observers obey the laws of thermo-
dynamics. This is far weaker even than Weinberg’s crite-
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FIG. 1. The probability distribution of the vacuum energy
measured by typical observers, computed from the causal en-
tropic principle, is shown as a solid curve. The values consistent
with present cosmological data, in the shaded vertical bar, are
well inside the 1� region (shown in white), and hence, not
atypical. For comparison, the dashed line shows the distribution
derived by estimating the number of observers per baryon.
Unlike our curve, it assumes that galaxies are necessary for
observers; yet, the observed value is very unlikely under this
distribution. For more details about both curves, see Figs. 2 and
8.

2In general, long-lived metastability implies that all matter is
diluted before the next decay occurs, so the mechanism depends
on efficient reheating in the new region. This rules out models
that reduce the cosmological constant gradually [12,13]. In the
string landscape, the vacuum preceding ours was likely to have
had an enormous cosmological constant. Its decay acted like a
big bang for the observed universe and allowed for efficient
reheating [6].
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rion, and one might be concerned that it will not be
sufficiently restrictive. Yet, in combination with the causal
cutoff, this minimal requirement becomes a powerful pre-
dictive tool.

This is demonstrated in Sec. III, where we use the causal
entropic principle to derive the probability distribution for
�� over universes otherwise identical to ours. We begin, in
Sec. III A, by computing the geometry of the causal dia-
mond for general ��. We are mainly interested in its
comoving volume as a function of time, Vc�t�. In
Sec. III B, we consider important mechanisms by which
entropy is produced within our causal diamond. We esti-
mate contributions from stars, quasars, supernovae, and
other processes. We find that the leading contribution to
�S comes from infrared photons emitted by interstellar
dust heated by stars.

In Sec. III C, we analyze this leading contribution in
more detail. We compute dS=�dVcdt�, the rate at which
entropy is produced per unit comoving volume per unit
time. This rate will depend on �� because large �� dis-
rupts galaxy formation and thus star formation.
Interestingly, however, it turns out that this dependence is
not important for our final result. In Sec. III D, we integrate
the rate found in Sec. III C over the causal diamond deter-
mined in Sec. III A. This yields the weight factor, �S����.
We display the resulting probability distribution for ��,
and we note that the observed vacuum energy lies in the
most favored range.

In Sec. IV, we pinpoint the origins and discuss some
implications of our main findings. We also identify impor-
tant intermediate results.

Extensions.—In the interest of time and clarity, we have
limited our task. We use the causal entropic principle
solely to compute a probability distribution over positive
values of the vacuum energy, holding all other physical
parameters fixed. This is the case most frequently studied
in the literature, making it straightforward to compare our
result with those obtained from the traditional method of
weighting by observers-per-baryon [20–23].

In other words, our distribution is conditioned on the
assumptions that �� > 0, and that all low-energy physics is
the same as in our vacuum. We ask only about the proba-
bility distribution of �� in this subspace of the landscape.
This is a valid consistency check: Suppose that the ob-
served value were disfavored on a subspace picked out by
other observed parameters. Then it would only become less
likely when the distribution is extended over the entire
landscape, and so the model would conflict with
observation.

Because negative values of �� are tightly constrained by
standard (though questionable) anthropic arguments, the
main challenge for environmental approaches has been to
suppress large positive values of ��. For this purpose, it
suffices to concentrate on the subset of vacua with �� > 0.
This simplifies our analysis, since negative �� lead to a

different class of metrics. (Interestingly, a preliminary
analysis indicates that negative values will be somewhat
favored by the causal entropic principle, though not by
enough to render the observed value unlikely.)

It will be interesting to use the causal entropic principle
to compute the probability distribution of other parameters,
such as the amplitude of primordial density perturbations,
��=�, the spatial curvature, k, or the baryon-to-photon
ratio, �. A crucial task will be to estimate the probability
distribution over multiple parameters at once, since this is a
much more stringent test for the environmental approach.
For example, consider a distribution over two parameters,
�� and ��=�. When weighting by observers-per-baryon,
the upper bound on �� arises from the requirement that
galaxies can form. Hence, it would seem highly favorable
to increase ��=�, since �� could then be increased by the
third power of the same factor. This would render the
observed values of both �� and ��=� exceedingly un-
likely. As we will discuss in Sec. IV B, however, galaxy
formation is not a significant constraint on �� in our
approach. Hence, we expect this problem to be virtually
absent.

Given a multivariate distribution, one can ask about the
probability distribution over one parameter (say, log��)
with other parameters integrated out. As more parameters
are allowed to vary, the distribution for log�� is likely to
become broader after they are integrated out. Yet, the
observed value must remain typical if the environmental
approach is to succeed. The most radical choice is to study
the distribution of log�� after integrating out all other
parameters characterizing the landscape. This would be
tantamount to deriving the typical range of log�� from
fundamental theory alone, without reference to parameters
specific to our own vacuum. This would have been impos-
sible in conventional approaches. But as we discuss in
Sec. IVA, �S may depend simply on �� when averaged
over the entire landscape. Hence, the causal entropic prin-
ciple puts this task within our reach.

II. APPROACHES TO WEIGHTING VACUA

A. The Weinberg bound

Weinberg [18] estimated the range of �� compatible
with galaxy formation. No galaxies form in regions where
�� exceeds the matter density �m at the time when the
corresponding density perturbations become nonlinear (as-
suming otherwise identical physics). If we grant that gal-
axies are a prerequisite for the existence of observers, then
these regions will not contain observers, and such values of
�� will not be observed. Combined with a similar argu-
ment3 for negative values of ��, Weinberg [18] found that

3With �� < 0, the universe will recollapse after a time of order
j��j

�1=2. If one assumes that most observers emerge only after
several billion years, then an upper bound on (� ��) results by
requiring that the universe should not recollapse too soon [16].
We will consider only positive values of � in this paper.
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only values in the interval

 � 1<
��

�m
< 550 (2.1)

will be observed.
The upper bound is larger than 1 because the matter

density today, �m, has been diluted since galaxy formation,
by the redshift factor �1� zgal�

3. Weinberg used zgal 	 4:5,
but in the meantime, dwarf galaxies have been discovered
at redshifts as high as zgal 	 10 [24], raising the upper
bound:

 � 1<
��

�m
< 5000: (2.2)

The observed ratio of vacuum to matter energy density is
much smaller than the upper bound:

 

��

�m
	 2:3: (2.3)

In other words, it would appear that the observed value of
�� is in fact quite unlikely, even allowing for the anthropic
constraint, Eq. (2.2).

Let us rephrase Weinberg’s argument in a more general
language. The probability distribution for observed values
of �� can be written as

 

dP
d��

/ w����
dp
dN

dN
d��

; (2.4)

where N is the number of vacua with vacuum energy
smaller than ��, and p is the total prior probability for
these vacua. Since �� � 0 is not a special point, vacua in
the landscape are uniformly distributed when averaged
over intervals of �� of order 10�123 or smaller near �� �
0:

 

dN
d��

� const: (2.5)

Before anthropic selection, it is reasonable to assume that
all vacua are equally likely4:

 

dp
dN
� const: (2.6)

The anthropic condition of galaxy formation assigns a
weight w � 1 to vacua in the range of Eq. (2.2), and w �
0 to all other vacua. Thus, all values of �� in the interval of
Eq. (2.2) are equally likely, dP=d�� � const.

Restricting to vacua with �� > 0, it is instructive to
consider the probability distribution as a function of log��,

 

dP
d log��

� ��
dP
d��

/ ��w����: (2.7)

With the above, ‘‘binary’’ weight, this distribution will be a
growing exponential of log��, with a sharp cutoff at
log�� 	 �120 from the upper bound in Eq. (2.2). The
observed value, log�� 	 �123, is suppressed by about
3 orders of magnitude compared to values near the cutoff.

B. Weighting by observers per baryon

In order to reduce this discrepancy, one would need to go
beyond the binary question of whether or not there are
observers. Surely the number of observers will depend on
the cosmological constant and will begin to decrease for
values of �� smaller than the upper bound in Eq. (2.2). If
we weight vacua by this number, perhaps this will be more
effective at suppressing large values of �� than a simple
binary filter.

Unfortunately, this strategy is not well-defined without a
regularization scheme. The dynamics of eternal inflation
results in a multiverse containing an infinite number of
regions for every value of ��. Each region is an open
universe with infinite spatial volume at all times. (The
hyperbolic spatial geometry reflects the symmetries pre-
served by a vacuum bubble formed in a first-order phase
transition from a higher metastable vacuum.) If a vacuum
admits any observers at all, their number will be infinite.

Various authors [20–22] have proposed to weight vacua
by the number of observers per baryon, or per photon, or
per unit matter mass. But none of these choices are par-
ticularly well motivated. If there are infinitely many bary-
ons, why should it matter how efficiently they are
converted to observers? Why is a vacuum less likely to
be observed if a smaller fraction of its mass becomes
observers, as long as there are infinitely many of them?

More importantly, these regularization methods are not
universally defined. This makes them inapplicable in a rich
landscape, where we will eventually be forced to consider
vacua with very different low-energy physics. Two vacua
may have different baryon-to-photon ratios, so that the
above weighting methods are inequivalent; which should
we choose? Indeed, it seems unlikely that a standard
definition of ‘‘baryon’’ can be given that would be mean-
ingful in all vacua.5

These difficulties arise because the regularization refers
to a reference particle species such as ‘‘baryons.’’ But it
also refers to ‘‘observers,’’ and this leads to additional
problems. It seems virtually impossible to define what an
observer is in vacua with different low-energy physics.
Even in our own universe, it is unclear how to estimate
the number of observers per baryon. One approximation is
to assume that it will be proportional to the fraction of
baryons that end up in galaxies. But this fraction depends
strongly on the minimum mass of a galaxy capable of
harboring observers, M
, which is not known.

4Dynamical effects can modify this flat prior [25]. We shall
assume that the resulting distribution remains effectively flat, at
least for small j��j. Models violating this assumption are
unlikely to solve the cosmological constant problem.

5Reference [26] proposes an interesting method for defining a
unit comoving volume in different vacua, in the limit where
bubbles preserve an exact SO�3; 1� symmetry.
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Figure 2 shows probability distributions for ��, under
various assumptions for M
. Dwarf galaxies as small as
M
 � 107M� have been detected. With this choice, the
observed value of � is nearly 3 orders of magnitude, or
3:5�, below the median value.

There is some evidence that galaxies with mass below
109M� will not retain the heavy elements produced in
supernova explosions [23]. Under the additional assump-
tion that such elements are required for life, one may then
set M
 to this larger value. But the resulting prediction
remains unsatisfactory. The median exceeds the observed
value by a factor of more than 2 orders of magnitude, or
2:9�.

One can speculate that for some reason, life requires a
galaxy as large as our own, or perhaps even a larger group
[20,23] (M
 � 1012M�). Then the observed value is about
1:8�, or a factor of 22, below the median of the predicted
distribution. However, at present we can see no compelling
arguments for this extreme choice. Thus, the weighting by
observers-per-baryon leads to a dilemma: Either it requires
overly specific and questionable assumptions, or else it
faces a real conflict with the data.

As these difficulties demonstrate, weighting by
observers-per-baryon may not be the correct way to com-
pute probabilities in the landscape. We will now argue for a

different approach, which is always well-defined. It will
allow us to assume nothing more about observers than that
they respect the laws of thermodynamics.

C. Weighting by entropy production in the causal
diamond

Causal entropic principle.—In this paper we will com-
pute the probability distribution for �� based on the causal
entropic principle, which is defined by the following two
conjectures [19]:

(1) The universe consists of one causally connected
region, or ‘‘causal diamond.’’ Larger regions cannot
be probed and should not be considered part of the
semiclassical geometry.

(2) The number of observations is proportional to �S,
the total entropy production in the causal diamond.

Before motivating the two conjectures, let us first clarify
the key terms—causal diamond and entropy—they refer
to.

The causal diamond [27] is the largest region of space-
time causally accessible to a single observer. It is defined
by the intersection of the past light-cone of a late-time
point on the worldline with a future light-cone of an early-
time point, shown in Fig. 3. We choose this time to be the
time of reheating, since no matter existed before then. (In
vacua with no reheating, �S vanishes independently of the
choice of the causal diamond. This case does not arise here,
since we are holding all parameters other than �� fixed.)
Only after reheating can matter begin to interact and
commence the formation of complex structures, at most
at the speed of light.

In a vacuum with negative cosmological constant, the tip
of the top cone would be on the big crunch. In any meta-

FIG. 3 (color online). A causal diamond is the largest space-
time region over which matter can interact. It is delimited by a
future light cone from a point on the reheating surface (orange/
light), and by a past light cone from a late-time event (blue/
dark); in the case of de Sitter vacua this is the cosmological
horizon. A vacuum should be weighted by the number of
observations made in this spacetime region. Since observation
requires free energy, we expect that on average, this number will
be proportional to the amount of entropy, �S, produced in the
causal diamond. Entropy entering through the bottom cone
(bottom arrow), such as the CMB, does not contribute to this
entropy difference.
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FIG. 2. Weighted by ‘‘observers per baryon,’’ the probability
distribution for �� depends strongly on specific assumptions
about conditions necessary for life. Three curves are shown,
corresponding to different choices for the minimum required
mass of a galaxy: M
 � �107; 109; 1012�M�. In neither case is the
observed value (vertical bar) in the preferred range. The choice
M
 � 107M� (also shown in Fig. 1) corresponds to the smallest
observed galaxies. The choice M
 � 1012M� minimizes the
discrepancy with observation but amounts to assuming that
only the largest galaxies can host observers. By contrast, the
causal entropic principle does not assume that observers require
structure formation, let alone galaxies of a certain mass; yet its
prediction is in excellent agreement with the observed value (see
Fig. 8).
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stable vacuum with positive cosmological constant, like
ours, the top cone is given by the de Sitter event horizon.

One may question the universality of ‘‘reheating sur-
face’’ or our use of an event horizon (a global concept) in a
vacuum with finite lifetime, so let us give a more careful
definition. A causal diamond can be triggered (that is, a
bottom cone drawn) as soon as there is entropy in the
matter sector. Reheating is a special case: during inflation,
all entropy is in the gravitational sector (the growing
horizon of the inflationary universe), but reheating gener-
ates matter entropy (mostly radiation, which we include in
this class). After vacuum domination in a metastable
de Sitter region, the diamond empties out at an exponential
rate. If we enlarge the diamond by choosing a later point
for the tip, and the additional spacetime volume contains
no matter (which will be generic at late times), there is no
point in going further. The total amount of matter enclosed
by the top-cone will be the same as if the vacuum had been
completely stable. Once the metastable vacuum decays,
reheating may again occur, in which case a new diamond is
triggered. This definition implies that if a decay or phase
transition happens while there is still matter around, the
two vacua should not be considered separate, and a single
causal diamond will enclose both. Thus, we are fundamen-
tally defining the range of a causal diamond in terms of the
presence of excitations in the matter sector. This is well-
defined in the entire regime of semiclassical gravity, inde-
pendently of the details of the particle physics.

In a de Sitter vacuum, the cosmological horizon has
entropy given by one quarter of its surface area. The
relevant area is the cross section of the top cone of the
causal diamond, which grows as matter crosses the hori-
zon. This production of Bekenstein-Hawking entropy
would contribute enormously to �S. However, it is difficult
to see the relevance of horizon entropy to the existence of
observers. For the same reason, we will ignore the
Bekenstein-Hawking entropy produced in black hole for-
mation. This is also natural since we have defined the
causal diamond through this distinction. As we have em-
phasized above, horizons are a gravitational phenomenon
and can always be distinguished from the matter sector in
the semiclassical regime. Hence, this restriction does not
affect the universality of our method.6

To summarize, we will consider exclusively the produc-
tion of entropy in ordinary matter. We will weight a vac-
uum by the total entropy increase in the causal diamond:

 w � �S: (2.8)

Motivation.—From a pragmatic point of view, one can
simply regard this proposal as an attractive alternative to
weighting by observers-per-baryon. The causal diamond is
defined independently of low-energy physics, and the en-
tropy increase is a well-defined quantity that replaces more
specific assumptions about observers. However, there are
additional, more fundamental reasons to embrace the
causal entropic principle. Let us discuss each of the two
conjectures put forward at the beginning of this subsection.

The first conjecture is motivated by the study of black
holes (see [19,27,28] for details). There is now consider-
able evidence that black hole formation and evaporation is
a unitary process [29,30]. This means that there will be two
copies of the initial state at the same instant of time, one
inside the black hole, and the other in the Hawking radia-
tion outside. This would appear to violate the linearity of
quantum mechanics. However, no actual observer can
verify the problem [31,32], since the two copies reside in
causally disconnected regions of the spacetime. Hence, we
can escape from the apparent paradox by abandoning the
global viewpoint, and be content with merely predicting
the observations of (any) one observer.

However, it would be unnatural for such a radical revi-
sion of our view of spacetime to be confined to the context
of black holes. In many cosmological solutions, a single
observer can access only a small portion of the global
spacetime. Hence, it is equally important to restrict our
attention to only one (cosmological) observer at a time,
which is what we do in this paper. Descriptions of cosmol-
ogy from the local viewpoint can be found, for example, in
Refs. [27,33–36]. Its implications for eternal inflation were
studied in Ref. [37].

The second conjecture replaces far more specific con-
ditions assumed to be necessary for observers, such as the
existence of galaxies, stable planetary orbits, suitable
chemistry, etc., which were needed in the observers-per-
baryon approach. The basic idea is that observers, what-
ever their form, have to obey the laws of thermodynamics.
Observation requires free energy and is clearly incompat-
ible with thermal equilibrium or an empty universe. The
free energy, divided by the temperature at which it is
radiated, can be regarded as a measure of the potential
complexity arising in a spacetime region. This is equal to
the number of quanta produced, or more fundamentally,
the entropy increase �S.

It seems plausible that there might be an absolute mini-
mum complexity necessary for observers, so that subcrit-
ical weights �S < �Scrit should be replaced by zero. For
example, it seems likely that vacua with �� of order unity,
which can contain only a few bits, have strictly zero
probability of hosting observers (see also Ref. [38]).
However, any such cutoff does not appear to play an
important role for the questions studied here. We choose
the weight factor to be simply �S, with no cutoff.

6A different question is whether the exclusion of black hole
horizon entropy actually makes a qualitative difference to the
results of this paper. It seems likely that it would not. According
to the causal entropic principle, the preferred value of �� is set
by the time of maximum entropy production. The growth of
supermassive black holes, and of their entropy, is largest during
the era a few Gyr after the big bang and eventually slows down.
Thus, it appears to set a similar time scale to the one we obtain
from stellar entropy production.
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To avoid confusion, we stress that our weighting has
nothing to do with the Hartle-Hawking amplitude,
exp�SdS�, which describes the number of quantum states
associated with a de Sitter horizon [39]. The number of
observers, and of observations, is naturally proportional to
an entropy difference, �S, not to an absolute entropy or the
exponential of an entropy. (Despite our appropriation of
the term ‘‘entropic principle,’’ for which we apologize to
the authors, there is also little relation to Ref. [40].)

We could have adopted only the first conjecture, and
continued to estimate the number of observers by more
explicit anthropic criteria. This would not have changed
our final result significantly. But why make a strong as-
sumption if a more conservative one suffices? Our results
suggest that the poor predictions from weighting by
observers-per-baryon stemmed not from a lack of specific-
ity in characterizing observers, but from the regularization
scheme (‘‘per baryon’’). The causal diamond cutoff solves
this problem, and allows us to weaken anthropic assump-
tions to the level of an inevitable thermodynamic
condition.

Moreover, �S is a well-defined weight in any vacuum,
however different from ours. It will be a powerful tool in
future work, when parameters other than �� are allowed to
vary simultaneously. We are thus motivated to use our
second conjecture throughout. We will find that in our
own universe, it captures conditions for observers remark-
ably well.

III. COMPUTING �� FROM THE CAUSAL
ENTROPIC PRINCIPLE

In this section, we will compute the probability distri-
bution over ��, holding all other physical parameters
fixed. We do this in four steps. First, we will compute the
geometry of the causal diamond as a function of ��. Next,
we will identify important effects that produce entropy
within the causal diamond. Then we will determine the
time-dependence of the entropy production rate per unit
comoving volume, as a function of ��. Finally, we will
fold this together with the time-dependence of the comov-
ing volume contained in the causal diamond to obtain the
weight factor, �S����.

A. Metric and causal diamond

Current data are consistent with a spatially flat universe.
Hence, we will assume that since the time of reheating, the
large scale structure of our universe is described by a
spatially flat Friedman-Robertson-Walker (FRW) model:

 ds2 � �dt2 � a�t�2dx2: (3.1)

(Actually, we are making the stronger assumption that the
cosmological constant dominates before curvature does,
for all values of �� considered here. Thus, we are assum-
ing that the universe is flatter than necessarily required by
current constraints.)

After reheating, the universe will be dominated first by
radiation, then by matter, and finally by vacuum energy.
The reheating temperature will not be important; in fact,
we will neglect the radiation era altogether. Instead, we
extrapolate the matter-dominated era all the way back to
the big bang (t � 0), where we will place the bottom tip of
the causal diamond. This approximation is justified be-
cause the radiation era contributes only a small fraction
of conformal time in the range of values of �� that have
any significant probability. This is shown in detail in the
appendix.

Thus, we treat the universe as containing only pressure-
less matter and a cosmological constant. At early times
(matter domination), the scale factor will be proportional
to t2=3, independently of ��. At late times (vacuum domi-
nation) it will grow like exp�t=t��, where

 t� �

����
3

�

s
�

�������������
3

8���

s
: (3.2)

(In our universe, with �� given by Eq. (1.1), we have t� 	
0:98� 1061 � 16:7 Gyr.)

An exact solution (aside from the neglected radiation
era) that includes both regimes is

 a�t� �
�
t� sinh

�
3

2

t
t�

��
2=3
; (3.3)

 ��t� � �� � �m � ��

�
1�

1

sinh2�32
t
t�
�

�
: (3.4)

The prefactor, t2=3
� , is arbitrary and can be changed by

rescaling the spatial coordinates. Our choice ensures that
for solutions with different values of �, the scale factors
will agree at early times not only by diffeomorphism, but
explicitly. This is convenient because � is dynamically
irrelevant at early times.

Vacuum energy begins to dominate the density when
�� � �m, at t � 0:59t� (in our universe, 9.8 Gyr after the
big bang). Acceleration begins earlier, when �� 3p �
�m � 2�� � 0, at 0:44t� (in our universe, at 7.3 Gyr).

In order to compute the boundaries of the causal dia-
mond, it is convenient to work in conformal time, � �R
dt=a�t�. The metric becomes

 ds2 � a���2
�d�2 � dx2�: (3.5)

Light-rays obey ds � 0, and hence for radial light-rays,
d� � �dr, where r � jxj.

Using our solution, Eq. (3.3), conformal time will be
given by

 ��t� � �t1=3
�

1

cosh2=3� 3t
2t�
�
F
�
5

6
;
1

3
;
4

3
;

1

cosh2� 3t
2t�
�

�
(3.6)
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 � �
t�
a�t�

F
�
1

3
;
1

2
;
4

3
;
�t2�
a�t�3

�
: (3.7)

It has finite range, running from

 ��0� � �
��43���

1
6�

��12�
t1=3
� 	 �2:804t1=3

� (3.8)

at the big bang, to ��1� � 0 at asymptotically late times.
The total conformal lifetime of the universe is �� �

��1� � ��0� � 2:804t1=3
� .

The causal diamond is given by the region delimited by

 r �
��
2
�

����������
2
� �

��������: (3.9)

The comoving volume inside the causal diamond at con-
formal time � is simply

 Vc �
4�
3
r3���: (3.10)

This is shown in Fig. 4, as a function of proper time, for
several values of ��. The maximum comoving volume
occurs at the edge of the causal diamond at conformal
time ��0�=2, or equivalently,

 tedge 	 0:23t� (3.11)

(in our universe, tedge 	 3:9 Gyr). The maximum comov-
ing volume itself is Vc���0�=2� 	 11:6t�.

At late times, the comoving volume goes to zero. This
reflects the exponential dilution of all matter, which is
expelled from the diamond by the accelerated expansion.
The physical radius approaches a constant, t�, the horizon
radius of the asymptotic de Sitter space. Note that the
‘‘comoving four-volume,’’

 V4 �
Z 1

0
Vc�t�dt; (3.12)

is finite. It is proportional to t2�, and hence, inversely
proportional to the cosmological constant. This will be
important, since it means that smaller values of �� are
rewarded by a larger causal diamond, and thus, potentially
greater complexity. This can compensate for their rarity.

B. Major sources of entropy production

To calculate dP=d�log���, we need to calculate the total
entropy production in the causal diamond as a function of
the cosmological constant, �S����. We have determined
above how the causal diamond depends on ��, but we must
also understand how the rate of entropy production de-
pends on ��. We begin by identifying the major sources
contributing to �S in the causal diamond in our own
vacuum.

First, let us discuss sources which can be neglected.
Because the causal diamond is small at early times ( �

�1
�

1), and empty at late times (1� �
�1
� 1), the most impor-

tant contributions will be produced in the era between
0.1 Gyr to 100 Gyr, when the comoving volume shown
in Fig. 4 is large. Hence, we can disregard the entropy
produced at reheating, at phase transitions, or by any other
processes in the early universe. Virtually all of this entropy
(in particular, the cosmic microwave background) entered
the causal diamond through the bottom cone and does not
contribute to �S.

For the same reason, we neglect the entropy in Hawking
radiation produced by supermassive black holes. (One
might contemplate the possibility of a ‘‘planet’’ orbiting
such an object and exploiting its very low temperature
radiation as a source of free energy.) However, the time
scale for the evaporation of a black hole is enormous (M3).
By the time this entropy would be produced, a typical
causal diamond, on which the measure for prior probabil-
ities is based in the local approach [19], will be completely
empty.

Having dismissed effects at small comoving volume, we
turn to processes which operate from 0.1 to 100 Gyr, when
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FIG. 4. The lower plot shows comoving volume in the causal
diamond, Vc, as a function of time for �� � �0:1; 1; 10� times the
observed value given in Eq. (1.1). The kink in the comoving
volume corresponds to the ‘‘edge’’ of the causal diamond, where
the top and bottom cone meet (see Fig. 3). The upper plot shows
the rate of entropy production computed in Sec. III C, which
peaks around 2 to 3.5 Gyr. As explained in Sec. IV B, the causal
entropic principle prefers values of �� such that the
(��-dependent) peak of the comoving volume coincides with
the (nearly ��-independent) peak of the entropy production rate
(see Fig. 9).
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the comoving volume is large. In this era, entropy is
produced by baryonic systems, and we can gauge the
importance of a given process by its total entropy produc-
tion per baryon, or equivalently, per unit mass, or unit
comoving volume,7 dS=dVc. This can be estimated as the
ratio between the amount of energy released per baryon,
and the temperature at which this energy is dominantly
radiated.

Stars.—Ten percent of baryons end up in galaxies, and
thus in stars. Approximately 10% of those baryons actually
burn in the course of the lifetime of the star. The energy
released is about 7 MeV for each baryon in the reaction
4p! 4He, or about 0:7� 10�2 of the rest mass of the
proton. Stars radiate at varying temperatures correspond-
ing largely to optical wavelengths (about 0.2 to 3 eV).
However, more than half of this radiation is reprocessed
by dust [41]. It is reemitted in the infrared, at approxi-
mately 60 �m, or 20 meV. Hence, there will be more than
100 infrared photons per optical photon [42], and the
infrared emission will dominate the entropy production.
In summary, stellar burning produces an entropy of order
106 per baryon, after reprocessing by dust.

Active galactic nuclei.—Active galactic nuclei (AGNs)
appear to be the main competitor to stars in terms of
luminosity and entropy production. Approximately 10�3

of the total stellar mass (i.e., 10�4 of baryonic mass) ends
up in supermassive black holes, and perhaps 10% of this
energy is released during the violent accretion process.
This suggests that AGNs release at most about one sixth
of the energy as compared with stellar burning. The effec-
tive temperature will again be 20 meV, since a large
fraction of the radiation is reprocessed by dust. Hence,
AGNs appear to produce somewhat less total entropy per
baryon than stars, and we will neglect their contribution in
the present paper.

In Ref. [43], the intrinsic luminosities of all AGNs above
observational limits were compiled to create a quasar
luminosity function applicable back to about 1 Gyr after
the big bang. This luminosity function suggests that the
entropy production rate from quasars is more narrowly
peaked than that estimated for stars in Fig. 6. But even at
the peak, near a redshift of z � 2, the quasar luminosity is a
factor of 3 lower than the present stellar luminosity [44]
(which, in turn, is about 1 order of magnitude lower than
the peak stellar luminosity). This seems to rule out the
possibility that AGNs ever dominated the entropy produc-
tion rate.

Other potentially important contributions come from
galaxy cooling and from supernovae. Even assuming re-
processing by dust, neither of these phenomena can com-
pete with stellar burning, because they run on less energy
but not at lower temperature.

Supernovae.—We focus on core collapse supernovae
since they are more abundant than type Ia supernovae
(by a factor of 4–5) while producing comparable luminos-
ity per event. They occur in all stars with more than eight
solar masses, which constitute 1% of the total stellar mass
[see Eq. (3.17)]. The collapse of an iron core into a neutron
star releases gravitational binding energy not much smaller
than the core mass (1.4 solar masses). Thus roughly 10% of
the total mass of the progenitor is released. Most of this
energy is carried away by high energy neutrinos, producing
little entropy. Only 1% produces optical photons, and is
reprocessed by dust into infrared photons. Altogether,
supernovae thus convert a fraction of 10�5 of stellar bar-
yonic mass into soft photons.

Further quantitative analysis confirms the above esti-
mate. We find that entropy production from supernovae
is more than an order of magnitude below the contribution
from dust heated by stars.

Galaxy cooling.—A typical galaxy like ours has a mass-
to-radius fraction of approximately 10�6. This fraction of
the galaxy mass is converted into kinetic energy at virial-
ization. This energy, about 1 keV per stellar baryon, is
converted into radiation as the galaxy cools. The virial
temperature is about 105 K, or 10 to 100 times greater
than the temperature of a star. Even assuming reprocessing
by dust, galaxy cooling will produce less than 104 photons
per baryon. This is more than 2 orders of magnitude below
the entropy production from dust heated by stars.

C. Entropy production rate

We have argued that the dominant source of entropy
production in our universe is dust heated by starlight. In
this subsection we will consider the rate at which this
entropy is produced. We will ask how it depends on time
and on ��.

Time dependence.—Deriving dS=dVcdt from first prin-
ciples would require a detailed description of all of the
dynamics that led up to stellar burning, such as nonlinear
evolution, gas cooling, and disk fragmentation. Instead, we
will take advantage of observations that quantify the time-
dependence of the star formation rate. This will allow us to
obtain the entropy production from dust heated by stars.
We will then estimate how this rate changes in universes
with different cosmological constants. Surprisingly, this
latter dependence will not be important for our final result.

In recent years, observations of the extragalactic back-
ground radiation in a large range of wavelengths have
improved our understanding of the galaxy luminosity func-
tion. This has allowed astronomers to infer the star for-
mation rate (SFR) in galaxies, and its evolution in time
[45,46] (see [47] for a review). The SFR is defined as the
rate of stellar mass production per comoving volume

 _� ?�t� �
@2M?

@Vc@t
: (3.13)7The choice of reference unit does not affect our weighting,

because it drops out after integrating over the causal diamond.

PREDICTING THE COSMOLOGICAL CONSTANT FROM THE . . . PHYSICAL REVIEW D 76, 043513 (2007)

043513-9



This function is constrained by observation through a
variety of techniques. For example, uv emission from
star-forming galaxies is dominated by massive stars that
are short-lived. Because of the short lifetime, luminosities
in these wavelengths track the birth rate of stars [48]. In
addition, detailed surveys of the local universe constrain
the SFR at low redshift [49,50]. Bounds on the rate of
type II supernovae from Super-Kamiokande and
KamLAND also place an indirect bound on stellar birth
[51].

The combination of these measurements constrain the
SFR back to redshifts of about z� 6, when the universe
was 1 Gyr old. Since then, the SFR may be grossly
described as a smooth function that peaks at around
2.5 Gyr and subsequently decreases exponentially with
time. The SFR today is roughly 1 order of magnitude
less than its peak value. As we shall see, the era of peak
stellar formation, which we will call t?, will play an
essential role in determining the cosmological constant
using the causal entropic principle.

Several authors have postulated models or functional
forms for the SFR, fitting model parameters to the data,
for example [52–55]. Variations between the fits lead to a
range for t? � 1:5–3 Gyr.

We will illustrate our computation using two different
SFRs, in order to illustrate the systematic dependence of
our calculation on the time dependence of star formation.
The first SFR is from Ref. [54] (labeled ‘‘N’’ in plots) and
has t? � 1:7 Gyr. The second SFR, from Ref. [55] (labeled
‘‘H’’), peaks at t? � 2:8 Gyr. We will find in both cases

that the observed value of �� lies well inside the 1� region
of the resulting probability distribution.

Both SFRs are shown in Fig. 5 renormalized. One of the
biggest uncertainties regarding the determination of the
star formation rate is the overall normalization of the
curve. Fortunately our result is completely insensitive to
this overall normalization; it depends only on the shape of
the SFR.

For concreteness, we have normalized the SFR such that
the implied stellar luminosity today matches the observed
bolometric luminosity from low-redshift stars,
108:6L�=Mpc3. Our normalizations differs from those in
the original works since we have used rather rudimentary
formulas to compute the present luminosity from the SFR.
However, the shape of the total entropy production rate
derived with these simple formulas agrees well with that in
Ref. [54] when this SFR is used.

With the rate of star formation in hand, one can estimate
the rate of entropy production by stars. Let us first consider
a single star of mass M born at a time t0. Its entropy
production rate is the stellar luminosity divided by the
temperature at which photons are radiated,

 

d2s
dN?dt

�M� �
L?
Teff
�

1

2

�
M
M�

�
3:5 L�

20 meV

�
1

2

�
M
M�

�
3:5

3:7� 1054 yr�1: (3.14)

Here we have assumed a mass-luminosity relation

 L? / M
3:5: (3.15)

(We use M? to refer to total stellar mass, and M to refer to
the mass of a specific star. N? denotes star number.) The
effective temperature of 20 meV is that of the dust which
reprocesses about one-half (hence the prefactor) of the
starlight and dominates photon number.

The star will only produce entropy over a finite time t?
that also depends on M:

 t?�M� �
�
M�
M

�
2:5

1010 yr: (3.16)

Now let us consider a whole population of stars that are
formed at a time t0. At birth, stellar masses are observed to
be distributed according to a universal, time-independent
function known as the initial mass function (IMF). The
Salpeter distribution [56], which goes as M�2:35, agrees
reasonably with observation, but has since been refined by
many authors. In the present calculation we will use a
modified Salpeter IMF of the form [55]

 �IMF�M� �
dN?
dM
�

�
C1M�2:35 for M � 0:5M�
C2M

�1:5 for M< 0:5M�;

(3.17)

where the constantsC1;2 are set by requiring that the IMF is
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FIG. 5. The star formation rate as a function of time from
Nagamine et al. [54], labeled N, and from Hopkins and Beacom
[55], labeled H. They are peaked at t? � 1:7 and 2.8 Gyr,
respectively. We have normalized both SFRs such that the stellar
luminosity density calculated below agrees with the bolometric
luminosity observed today. It should be noted, however, that our
result is not sensitive to this renormalization.
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continuous and that it integrate to one over the range
0:08M� <M< 100M�.

We now have all the ingredients in place to calculate
d2S=�dM?dt�, the contribution of a stellar population that
is born at time t0 to the entropy production rate at some
later time t > t0, per unit initial stellar mass. This rate is a
function only of the time difference t� t0

 

d2S
dM?dt

�t� t0� �
1

hMi

Z Mmax�t�t0�

Mmin

dM�IMF
d2s
dN?dt

�M�;

(3.18)

with the average initial mass (defined at t0), hMi, defined as

 hMi �
Z 100M�

0:08M�
dM�IMFM 	 0:48M�: (3.19)

The time dependence enters Eq. (3.18) through the death of
stars of various masses at different times and thus appears
in the upper limit of the upper integral. It is derived by
inverting Eq. (3.16):

 Mmax�t� t0� �

8<
:

100M� for t� t0 < 105 yr�
1010 yr
t�t0

�
2=5
M� for t� t0 > 105 yr:

(3.20)

The lower limit of the integral is set by the minimal mass of
stars that can sustain nuclear burning,

 Mmin � 0:08M�: (3.21)

These stars burn for �5000 Gyr, living well into vacuum
domination in our universe.

In order to calculate the entropy production rate in the
universe at time twe must convolve d2S=�dM?dt�with the
SFR. That is, we integrate over the birth times t0 of all
populations of stars born before the time t:

 

d2S
dVcdt

�t� �
Z t

0
dt0

d2S
dM?dt

�t� t0�
d2M?

dVcdt
0
�t0�

�
Z t

0
dt0

d2S
dM?dt

�t� t0� _�?�t
0�: (3.22)

This function is plotted in Fig. 6 for the two forms of the
SFR. It is a smooth function that peaks when the universe is
about 2.3 Gyr old and 3.3 Gyr old for the two curves
plotted. This time scale is set by the peak of the star
formation rate and the mean lifetime of a star in our
universe. The entropy production rate decreases as stars
born during the peak of the SFR begin to die. But due to the
high abundance of long-lived low mass stars, @Vc

_S main-
tains a finite value long after star formation has ceased.

In our approximation, the entropy production rate is half
the luminosity of stars at the time t, divided by the effective
temperature (dust at 20 meV). Modulo this rescaling, Fig. 6
thus also shows our estimate for the luminosity, which was
used for normalization as described above.

We caution that we assumed overly simplistic formulas
for the luminosity and the lifetime of a star. For example,
we ignored the dependence on metallicity, and a depen-
dence of the exponent in Eq. (3.15) on the mass. This will
likely affect the shape of the entropy production rate some-
what, as will corrections from other sources of entropy.
However, our prediction for �� depends only on the rough-
est features: the width and position of the peak of the
entropy production rate. Hence, it is unlikely that our result
would be qualitatively affected by our simplifications.

Dependence on ��.—The entropy production rate cal-
culated above is that in our universe. In order to determine
�S����, we will need to calculate this function for uni-
verses with different values of the cosmological constant.
Interestingly, this dependence will be of little importance
for our final result.

Stars have decoupled from the global expansion of the
universe, so their internal dynamics is unaffected by var-
iations of ��. However, the value of �� affects the fraction
of baryons that are incorporated in halos large enough to
form stars at any given time, thus affecting the star for-
mation rate, and ultimately the entropy production. For
example, if �� is large enough to violate Weinberg’s
anthropic bound, no baryons will be in star-forming halos
and �S will be very suppressed.

In a universe with a vacuum energy density ��, the
fraction of matter that is incorporated in halos of a mass
MG by time t or above, F���;MG; t�, is easily calculated in
the Press-Schechter (PS) formalism [57]. The formulas for
the PS fraction are summarized in [4]. (This fraction is also
a function of the amplitude of density perturbations and the
temperature at matter-radiation equality, but since these are
held fixed in this calculation we will suppress them.)
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FIG. 6. The entropy production rate in our universe as a
function of time, from dust heated by starlight. The two curves
shown correspond to different models of the star formation
history of the universe [54,55]; see Fig. 5.
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For the purpose of our calculation, we will consider a
galaxy to be star-producing if the mass of its host halo is
107M� or above. Note that this choice involves no specu-
lation about what observers need. The causal entropic
principle requires us to compute the entropy production
rate as a function of ��. This rate depends on whether or
not stars, the dominant contributors of entropy, actually
form. For MG > 107M�, the virial temperature of the halo
is above 103 K, enough to support rapid line cooling and
efficient stellar production. (The first generation of stars—
Population III—were formed in galaxies with even lower
masses, but since these stars have been neither observed
nor accounted for in the observation-based SFRs, we will
not consider them further.) In any case, as we shall see, our
final result will be quite insensitive to this choice.

Based on the SFR _�?�t� in our universe, we will now
estimate the SFR in a universe with a different vacuum
energy, _�?���; t�. The SFR in our universe is peaked at
about t? � 1:5–3 Gyr, which is still in the matter-
dominated era. The cosmological constant played no dy-
namical role and cannot have anything to do with this peak.
Rather, this time scale is set by astrophysical dynamics,
such as galaxy formation, cooling, and feedback.

Therefore, the star formation rate depends mainly on the
mass fraction in star-forming galaxies at the critical time
t?. Strictly speaking, the SFR will be sensitive to the PS
fraction at times before t? because of the cooling period
that is required between the time a baryonic structure goes
nonlinear and the time it collapses into stars. Baryons that
burn during the peak of the SFR actually fell into nonlinear
halos a cooling time earlier. We leave a more careful
analysis of these and other effects to further investigation.

Let us define F?���� as the PS fraction that is most
relevant for star formation in a universe with cosmological
constant ��, namely, that evaluated at t?, with a minimum
mass of 107M�. In order to capture the mild sensitivity of
the SFR to changes of the cosmological constant, we
rescale the SFR by the appropriate F?:

 _� ?���; t� � _�?�t� �
F?����

F?�1:25� 10�123�
: (3.23)

Because the observed value of �� is far from disturbing
the formation of 107M� galaxies, small variations of ��

will barely affect the mass fraction F?; see Fig. 7. But they
do affect the geometry of the causal diamond. This is the
reason why the latter effect will be important for our final
result, while Eq. (3.23) gives only a tiny correction.

D. Total entropy production in the causal diamond

From the above results, we can compute the total en-
tropy production

 �S���� �
Z 1

0
dtVc���; t�@Vc

_S���; t�: (3.24)

Here, Vc is the comoving volume in the causal diamond at
the time t, given in Eq. (3.10). @Vc

_S is the rate of entropy

production per unit comoving volume, given in Eq. (3.22).
The dependence on �� enters mainly through Vc. It is
straightforward to perform the integrals numerically.

By Eqs. (2.7) and (2.8), the probability distribution
dP=d�log��� is proportional to ���S����. We show this
distribution in Fig. 8 for both the Nagamine et al. [54] as
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FIG. 7. The entropy production rate of Fig. 6 depends only
mildly on the vacuum energy. Hence, dependence on the vacuum
energy enters our calculation mainly through the size of the
causal diamond (see Figs. 4 and 9). The rate of Ref. [54] is
shown here for �� � �0:1; 1; 10� times the observed value (from
top to bottom) using the approximation of Eq. (3.23).
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FIG. 8. The probability distribution over log���� computed
from the causal entropic principle. The two curves shown arise
from two different models of the star formation rate (see Figs. 5
and 6). Their differences hint at the systematic uncertainties in
our calculation that arise since the history of entropy production
is not known to arbitrary precision. These uncertainties are
apparently irrelevant to our main conclusion: either way, the
observed value of �� (vertical bar) is not unlikely.
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well as the Hopkins et al. [55] SFRs. For the Nagamine
et al. SFR, the median value is �� � 5:6� 10�123 with the
1� error band between 4:2� 10�124 to 5:8� 10�122. For
the Hopkins et al. SFR, we find the median value �� �
2:1� 10�123 with the 1� error band between 2:4� 10�124

to 1:4� 10�122.
There are ‘‘systematic uncertainties’’ in our calculation

of the probability distribution, which come from our lack
of knowledge of the precise history of entropy production
in our universe. The comparison between the two models
for the SFR gives a good sense of their size. It shows that
these uncertainties do not affect our conclusion: with either
choice, the observed value is well within the 1� region,
and hence, not unlikely.

IV. DISCUSSION

A. �S captures complexity

Our main quantitative result is the probability distribu-
tion for ��. However, we have also discovered an impor-
tant intermediate result: in our own causal diamond, the
dominant contribution to entropy production comes from
the infrared glow of dust heated by starlight.8

This is remarkable. It shows that a seemingly primitive
quantity, �S, captures many of the conditions that are
usually demanded explicitly by anthropic arguments. �S
would drop sharply if galaxies, stars, or heavy elements
were absent. According to the causal entropic principle, the
weight carried by such a vacuum would be suppressed.

For example, consider a universe like ours, except with-
out heavy elements. (This could be arranged by adjust-
ments in the standard model.) Galaxies would still form,
and stars would burn, but there would be no dust available
to convert optical photons into a much larger number of
infrared photons [41]. The causal entropic principle assigns
a weight 100 times larger to our vacuum than to this one—
simply based on the entropy production, without knowing
anything about the potential advantages of heavy elements
often claimed in anthropic arguments.

This demonstrates that �S can be an effective and very
simple substitute for a number of dubious anthropic con-
ditions. More importantly, our result lends credibility to
�S as a weighting factor for vacua with very different low-
energy physics. Estimating the number of observers in such
vacua, even averaged over a large parameter space, appears
wholly intractable, but estimating �S may not be.

Thus, the causal entropic principle may allow us, for the
first time, to predict probability distributions over the entire
landscape, rather than just over subspaces constrained to
coincide with much of our low-energy physics. As dis-
cussed in Sec. I, this could lead to a breakthrough on

extracting predictions directly from the underlying theory
(the string landscape), without conditioning on parameters
specific to our own vacuum.

B. Understanding our distribution

Now, let us turn to our main result. In our approach, the
most likely range of log�� is set not by the time of galaxy
formation, but by the time at which the rate of entropy
production, per unit time and unit comoving volume, is
largest. This can be understood as follows.

Consider, for the sake of argument, an entropy produc-
tion rate that is independent of time and of ��. Then the
total entropy �S produced within the causal diamond is
proportional to

R
Vc�t�dt, where Vc is the comoving vol-

ume (or equivalently, the mass) present inside the causal
diamond at the time t. This integral is the area under the
curves shown in the lower panel of Fig. 4.

At small times (near the bottom tip) the causal diamond
is small and Vc is negligible. After vacuum domination, at a
time of order t� � �3=8����

1=2, the top cone, which con-
tains one de Sitter horizon region, quickly empties out and
M�t� vanishes exponentially. Thus, only the era around the
time of matter/vacuum equality contributes significantly to
the integral.

Up to a ��-independent factor of order unity, the above
integral is therefore the product of t�M�t��. But M�t�� is
just the total mass inside the horizon around the time when
� begins to dominate. This is again of order t� and thus
proportional to ��1=2

� . Hence the total entropy produced,
�S, scales like 1=�� in our hypothetical case of a constant
entropy production rate. This is also clear by inspecting the
area under the different curves in Fig. 4.

Assuming a flat prior (dp=d�� � const, or equivalently,
dp=d log�� / ��), the observer-weighted probability dis-
tribution is

 

dP
d log��

/ w������; (4.1)

and the causal entropic principle states that the weight is

 w � �S: (4.2)

For the hypothetical, constant entropy production rate,
we have w / ��1

� , and hence

 

dP
d log��

� const: (4.3)

The weight �S in this case takes a prior distribution that
was flat in �� into an observer-weighted distribution that is
flat in log��, showing no preference between, say, �� �
10�121 and �� � 10�123.

In the prior distribution, there are more vacua at large
��, so exponentially small values of �� are very unlikely.
The above example shows that the causal entropic princi-
ple captures an important compensating factor: vacua with

8It is amusing to note that this class of entropy producers
includes the authors and the reader, in the sense that the Earth,
like dust, is made of heavy elements and also absorbs starlight
and reemits in the infrared.
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smaller �� give rise to a larger causal diamond, i.e., to a
bigger de Sitter horizon and a longer time until vacuum
domination. This allows for greater complexity and com-
pensates for the rarity of such vacua.

Next, let us consider the time-dependent entropy pro-
duction rate we found in Sec. III C. We found that the
entropy production due to stars has a fairly broad peak
around tpeak � 2 to 3.5 Gyr after the big bang. At earlier
times, it is lower because fewer stars have formed; at late
times, it is lower because few new stars form while older
ones have burned out.

Because of the time dependence, ���S will no longer
be constant. For large values of ��, the causal diamond is
small, and it will contain only a small comoving volume by
the time the entropy production peaks [tpeak � tedge �

0:23t�; see Eq. (3.11)]. In this regime, dP=d log�� will
decrease with ��. For small ��, the causal diamond is very
large, but the entropy production rate peaks early, when the
comoving volume is still relatively small (tpeak � tedge). In
this regime, dP=d log�� will increase with ��. This is
illustrated in Fig. 9.

Therefore, dP=d log�� will be maximal for values of
�� such that

 tedge���� � tpeak: (4.4)

By Eqs. (3.2) and (3.11), the observed value of log��

should be near

 log��;peak 	 log�0:006=t2peak� 	 �123: (4.5)

This rough estimate is borne out by our more careful

calculation in Sec. III. The excellent agreement of the
observed log��, Eq. (1.1), with this prediction is reflected
in Fig. 4, where it can be seen that the edge time and the
peak time really coincide for our universe.

The width of our distribution can also be understood in
this manner. Let ton and toff be the times at which the
entropy production rate is at half of its peak rate. Using
those values in Eq. (4.4) gives roughly the 1� boundaries
we found for our distribution in Sec. III D. To summarize,
the peak and the width of the probability distribution for
�� are related to the peak and width of the entropy pro-
duction rate by Eq. (4.4).

Our distribution has a greater width than the distribution
obtained from the number of observers-per-baryon; this
can be seen clearly in Fig. 1. This is also not hard to
understand. In the traditional approach, nothing compen-
sates for the exponential growth of dP=d log�� with
log��, until a fairly sharp cutoff occurs when log��

becomes large enough to disrupt galaxy formation.
Hence, the preferred values of log�� are squeezed into a
narrow interval, and the observed value is strongly ex-
cluded. In our approach, the spacetime volume of the
causal diamond depends inversely on ��, canceling the
pressure towards large values of ��. The width of the
probability curve is set only by the shape of the peak of
the entropy production rate (Fig. 6), which is fairly wide.

In this discussion we have pretended that �� does not
affect the entropy production rate. In fact, this is an ex-
cellent approximation. In the vicinity of the observed value
of ��, the total entropy production depends on �� mainly
through the geometry of the causal diamond. The proba-
bility density decreases away from this maximum. As a
result, values of �� large enough to disrupt galaxy for-
mation are highly suppressed even before we take into
account the suppression of the entropy production rate
resulting from this disruption.

This points at another crucial difference between
weighting by entropy production in the causal diamond,
and weighting by observers-per-baryon: the preferred �� is
set by completely different physical processes, and hence,
by essentially unrelated time scales. In the latter approach,
one assumes that observers require galaxies. Then the
disruption of galaxy formation cuts off the exponential
growth of dP=d log��. As a result, the preferred log��

is set by the time when galaxies first form, and this gives a
value that is too large compared to Eq. (1.1).

In our approach, we do not assume that observers require
galaxies. The size of the causal diamond depends inversely
on ��, allowing the preferred range of values for log�� to
be set by the time-dependence of the entropy production
rate. The time of peak entropy production by dust heated
by starlight picks out the value log�� 	 �123. The time
scale when galaxies form does not enter directly. In our
universe, the difference between the two time scales
amounts to ‘‘only’’ 3 orders of magnitude in the preferred

FIG. 9. This cartoon demonstrates how the causal entropic
principle leads to a preferred value of the cosmological constant.
The horizontal band represents the rate of entropy production;
darker areas correspond to a higher rate. Vacua are weighted by
�S, the total amount of ‘‘darkness’’ inside a causal diamond.
Vacua with large cosmological constant are plentiful in the
landscape, but they lead to small causal diamonds, which capture
virtually no entropy production (right). For some smaller value,
the diamond will be just large enough to capture the bulk of the
entropy production (center). This is the preferred cosmological
constant. Larger diamonds may capture slightly more �S (left),
but not in proportion to their size. They correspond to vacua with
very small cosmological constant which are much rarer in the
landscape. Therefore they will be suppressed.
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��, but it is easy to imagine other vacua in the landscape
where the era of peak entropy production is parametrically
separated from the era when galaxy halos become non-
linear (for example, by a large galaxy cooling time).

C. Statistical interpretation

It is worth emphasizing that it is entirely irrelevant
whether the observed �� is, say, 0:5� above or 0:6� below
the median of our distribution. We get to make only one
measurement. There is no reason to expect this one data
point to be on the median (or on the peak) of the probability
distribution. But we can expect that it will not be a very
unlikely value. Any value in the 1� region certainly quali-
fies as not unlikely. The success of the causal entropic
principle, its formal advantages aside, is not that it predicts
the precise value of ��, but that our distribution shows that
the observed value was not unlikely to have been observed.

Physicists have a great degree of confidence in certain
theories that make only statistical predictions, even though
we are unable to make more than a finite number of
measurements, let alone test all the consequences of a
theory. In this spirit, our result improves our confidence
in the causal entropic principle and the underlying land-
scape. To improve our confidence further, we cannot repeat
the measurement of the cosmological constant, but we can
extract other predictions or postdictions and compare those
to observation.
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APPENDIX: THE RADIATION ERA

In this appendix, we justify our neglect of the radiation
era. The metric, conformal time, and density during this era
are

 arad�t� � c�t� t0�1=2; (A1)

 �rad�t� � 2c�1�t� t0�1=2; (A2)

 �rad�t� �
3

32��t� t0�2
: (A3)

The constants c and t0 are determined by matching the
Hubble constant and the scale factor to the metric Eq. (3.3),
which becomes

 a�t� �
�
3t
2

�
2=3

(A4)

for t� t�. They must agree at the time teq, when the
matter and radiation densities are equal, i.e., when [4]

 �rad � �eq � 0:0026�4 � 3:1� 10�113; (A5)

where

 � 	 3:3� 10�28 (A6)

is the observed mass of pressureless matter per photon.
This yields

 t0 �
teq

4
�

1

6

�
3

8��eq

�
1=2
; (A7)

 c �
�

24

��eq

�
1=12

: (A8)

By Eq. (3.9), the size of the causal diamond is set by the
total conformal time duration of the universe since reheat-
ing, which is finite. In Sec. III A, we neglected the radiation
era and extended the matter/vacuum solution all the way
back to the big bang (t � 0). This yielded a total conformal
time

 �� � 2:804
�

3

8���

�
1=6
; (A9)

from Eqs. (3.2) and (3.8).
In order to correct for the presence of the radiation era,

we should subtract the conformal time interval ��0 corre-
sponding to the era 0< t < teq that should be excised from
the matter/vacuum solution. It should be replaced by the
conformal time interval ��00 corresponding to the radiation
dominated era [the portion of the metric (A1) between
reheating and matter domination].

Using the above results, however, it is easy to show that

 2��00 < ��0 �
�
��

�eq

�
1=6 ��

2:804
: (A10)

Thus, the corrections to the conformal time, and thus to the
size of the causal diamond, are negligible for �� <�eq.
For example, with the observed value of ��, the correction
is less than 1%. The probability of values of �� > 10�120

almost vanishes according to our calculation; yet this is
still 7 orders of magnitude below �eq. Hence, our approxi-
mation is good in the entire range of �� in which our
probability distribution has support.
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