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We consider a massless, minimally coupled scalar with a quartic self-interaction which is released in
Bunch-Davies vacuum in the locally de Sitter background of an inflating universe. It was shown, in this
system, that quantum effects can induce a temporary phase of superacceleration, causing a violation of the
weak energy condition on cosmological scales. In this paper, we investigate the system’s stability by
studying the behavior of linearized perturbations in the quantum-corrected effective field equation at one-
and two-loop order. We show that the amplitude of the quantum-corrected mode function is reduced in
time, starting from its initial classical (Bunch-Davies) value. This implies that the linear perturbations do
not grow; hence, the model is stable. The decrease in the amplitude is in agreement with the system
developing a positive (growing) mass squared due to quantum processes. The induced mass, however,
remains perturbatively small and does not go tachyonic. This ensures the stability.
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I. INTRODUCTION

Present cosmological observations [1] do not exclude
the possibility of an evolving dark energy equation of state
w � p=�, whose current value is less than minus one [2],
i.e., a phase of superacceleration. Although the data are
consistent with w � �1, which can be explained by a
simple cosmological constant, the possibility of w<�1
has been an area of great interest in recent years [3].

Superacceleration is difficult to explain with classical
models on account of the problem with stability [4]. One
can achieve models exhibiting w<�1, by postulating
scalar fields, for example. Such models, however, decay
irrespective of how this is achieved. The observed persis-
tence of the universe, therefore, can only be consistent with
a relatively brief self-limiting phase of superacceleration.
One way to get such a self-limiting phase, without violat-
ing classical stability, is via quantum effects [5–11]. The
energy-time uncertainty principle requires virtual particles
to emerge from the vacuum and then disappear back into it.
The inflationary expansion of spacetime, however, causes
the virtual particles to persist longer than the flat spacetime
[12]. In fact, any sufficiently long wavelength virtual
particle-antiparticle pairs, which are massless on the
Hubble scale, are pulled apart by the Hubble flow before
they find time to annihilate each other. Hence, they become
real and may persist forever, recalling the analogy with the
Hawking radiation. The rate at which the virtual particles
emerge from the vacuum, on the other hand, is suppressed
by the inverse of the scale factor for conformally invariant
particles. Thus, quantum effects are enhanced during in-
flation for particles that are effectively massless (with
respect to the Hubble parameter H) and classically con-
formally noninvariant. Gravitons and massless minimally

coupled (MMC) scalars are unique in possessing zero mass
without having classical conformal invariance. One is lead,
naturally, to a self-limiting quantum effect in a classically
stable theory, such as the MMC scalar with a quartic self-
interaction in the locally de Sitter background of an inflat-
ing universe. The Lagrangian density that describes this
system is

 L � �
1

2

�������
�g
p

g��@�’@�’�
�
4!

�������
�g
p

’4

� counterterms: (1)

The dynamical variable in the model is the scalar field
’�x�. The metric g�� is a nondynamical background which
is taken to be a D-dimensional locally de Sitter geometry.
The invariant element can be expressed conveniently in
either comoving or conformal coordinates

 ds2 � �dt2 � e2Htd ~x � d~x � a2�����d�2 � d~x � d~x	;

(2)

respectively. The conformal factor and the transformation
which relate the two coordinate systems are

 a��� � �
1

H�
� eHt: (3)

The Hubble constant H is related to the cosmological
constant � � �D� 1�H2. It is the cosmological constant
that drives inflation in the model. The scalar is a spectator
to �-driven (de Sitter) inflation. We adopt the following
notations: x� � �x0; ~x�, x0 � �, @� � �@0; ~r�.

We release the state in Bunch-Davies vacuum at t � 0,
corresponding to conformal time � � �i � �H

�1.
Hence, the scale factor is normalized to a � 1 when the
state is released so that a > 1 throughout the evolution.
Note that the infinite future corresponds to �! 0�, so the
possible variation of causally related conformal coordi-
nates in either space or time is at most �x � �� � H�1.
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Applying the Schwinger-Keldysh formalism [13,14] and
using dimensional regularization, the fully renormalized
vacuum expectation value (VEV) of the stress-energy ten-
sor h�jT���x�j�i is calculated [8,9] in this system. The
energy density � � h�jT00j�i=a

2��� and pressure p�ij �
h�jTijj�i=a2��� are obtained as
 

�ren �
�

8�G
�
�H4

26�4
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Notice that �ren and pren obey [8,9] the covariant conser-
vation law T���x�;� � 0, i.e., _�ren � �3H��ren � pren�,
where the dot denotes the derivative with respect to the
comoving time t. Their sum, however, violates the weak
energy condition (WEC) �� p 
 0 on cosmological
scales
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Although the value for w� 1 is unobservably small in this
model, the calculation shows that quantum effects can
induce a self-limiting phase of superacceleration, in which
a classically stable theory violates the WEC on cosmologi-
cal scales in the average of �� p not just in fluctuations
about an average that obeys the condition �� p � 0. This
is because inflationary particle production causes the scalar
to undergo a random walk such that its average distance
from the minimum of the potential �

4!’
4 increases. In our

model, h�j’2�x�j�i� �UV divergence��H2 ln�a�=4�2�
O��� [15]; recall that ln�a� � Ht. [See the calculations in
Sec. IV for the O��� and O��2� corrections.] Hence, after
the ultraviolet divergence is removed, the VEV of ’2 gets
pushed up its potential by inflationary particle production.
This increases the vacuum energy which leads to the
violation of the WEC by virtue of the covariant conserva-
tion _� � �3H��� p�; since _� > 0 due to inflationary
particle production, �� p has to be less than zero.

The process, however, must be self-limiting because
(i) as the scalar rises up its potential, the classical restoring
force ��’3=6 pushes it back down, and (ii) the curvature
�’2=2 associated with being away from the minimum of
the potential acts like a positive ‘‘mass squared’’ to reduce
the inflationary particle production responsible for pushing
the scalar away from the configuration ’ � 0, where the

potential is minimum. [In quantum field theory (QFT), the
mass squared is calculated via self-energy diagrams as is
rigorously done in Ref. [10]. The VEV of the curvature of
the potential provides a heuristic picture to understand the
effect.] Since the classical restoring force (i) gets bigger as
the field rolls up its potential and the mass generation
(ii) cuts off particle production, the field cannot continue
rolling up its potential. It must eventually come to a halt.
Indeed, Starobinsky and Yokoyama showed [7] that
h�j’2�x�j�i asymptotes to the constant
3H2��3=4�=���1=4�

����
�
p

in this model, which proves that
the field strength does not grow forever. The curvature of
the potential, that acts like a mass squared, should asymp-
tote to �=2 times this expectation value. They also esti-
mated the time scale for the process as T � 18:7=H

����
�
p

.
Thus, by choosing �� 1, it is possible to have a long
duration for the effect. We assume �� 1 in this paper.

We study the stability of the system in this paper. To
decide whether the system is stable [15] or not, one needs
to check (i) if the VEV h�j’2�x�j�i continues to grow
without a bound and (ii) if the small, position-dependent
perturbations grow. If neither happens, the system is stable;
otherwise, it is unstable. The above arguments show that
h�j’2�x�j�i cannot continue to grow forever in the inter-
acting theory (it asymptotes to a constant). Checking
criterion (ii) is the main object of this paper. To do that,
one solves the quantum-corrected effective field equation
at linearized order

 �’�x� �
Z
d4x0M2�x; x0�’�x0� � 0 (7)

and obtains the quantum-corrected mode function.
Although the scalar is classically massless in our model,
quantum processes generate a nonzero self-mass-squared
M2�x; x0�. Potential instabilities would come from the field
developing a negative mass squared. In that case, the
amplitude of the mode function would be an increasing
function of time, indicating growth of perturbations and,
hence, the instability. The fully renormalized scalar self-
mass-squared M2�x; x0� is calculated rigorously in
Ref. [10] at one- and two-loop order, using the
Schwinger-Keldysh formalism.M2�x; x0� is indeed positive
at one loop. However, one must go to two-loop order to see
corrections of the derivative terms. To interpret the two-
loop result, and hence to check the stability of the system,
one needs to investigate how the self-mass-squared
M2�x; x0� modifies the effective field equations and its
solution, i.e., the quantum-corrected mode function. If
the amplitude of the solution is a decreasing function of
time, one can conclude that perturbations do not grow;
therefore, the model is stable.

The outline is as follows. In Sec. II, we define the
effective mode equation, summarize the Schwinger-
Keldysh formalism, and discuss our limitations in solving
the effective mode equation. In Sec. III, we solve the

E. O. KAHYA AND V. K. ONEMLI PHYSICAL REVIEW D 76, 043512 (2007)

043512-2



effective mode equation in the late time limit and obtain
the mode function in the leading logarithm approximation.
Late time, for us, means ln�a�  1. In Sec. IV, we alter-
natively compute the same mode function using
Starobinsky’s stochastic inflation technique and compare
it with the result obtained in Sec. III. Our conclusions are
summarized in Sec. V.

II. EFFECTIVE MODE EQUATION FOR THE MMC
SCALAR

In this section, we describe the operator formalism and
effective field equation correspondence. Then we review
the Schwinger-Keldysh formalism that one must use to
calculate expectation values. We use the one- and two-
loop results [10] for the scalar self-mass-squaredM2�x; x0�,
obtained by applying the Schwinger-Keldysh formalism in
our model, to write the effective (quantum-corrected)
mode equation and discuss how we ‘‘solve’’ it.

A. Relation to fundamental operators

The relation between the fundamental Heisenberg op-
erator of the scalar field’�x� and the C-number plane wave
mode solution ��x; ~k� of the linearized effective field
equation can be given [16,17] as

 ��x; ~k� � h�fj�’�x�; �
y� ~k�	j�ii: (8)

Here j�ii and j�fi are the states, and �y� ~k� is the free
creation operator. In flat space scattering problems, j�ii
and j�fi correspond to the states whose wave functionals
are free vacuum in the asymptotic past and future, respec-
tively. The universe, however, begins at a finite time and
evolves to some unknown state in the asymptotic future.
Therefore, in cosmology, we release the universe from a
prepared state at a given time and then let it evolve. We
seek to know expectation values in the presence of this
state. This corresponds to the choice j�fi � j�ii. For
computational convenience, we assume that both of the
states are free vacuum at � � �i. Had the choices of flat
space scattering theory been used, acausal effective field
equations would have been obtained. The matrix elements
of Hermitian operators would also be complex in that case.

To define the free creation and annihilation operators,
recall that the full Lagrangian density L of the MMC
scalar is
 

L � �
�1� �Z�

2

�������
�g
p

g��@�’@�’�
��� ���

4!

�������
�g
p

’4

�
�m2

2

�������
�g
p

’2: (9)

The field strength (�Z), coupling constant (��), and mass
(�m2) counterterms are needed to remove divergences at
one- and two-loop order in the scalar self-mass-squared. It
turns out that �Z and �� are of order �2, whereas �m2 has
contributions of order � and �2 [10].

Let us now integrate the invariant field equation of the
MMC scalar
 

@��
�������
�g
p

g��@�’� �
�������
�g
p

1� �Z

�
��� ���

6
’3 � �m2’

�
� 0:

(10)

The result is

 ’�x� � ’0�x� �
Z 0

�i
d�0

Z
dD�1x0G�x; x0�I�’�x0�	; (11)

where’0�x� is the free field. We define the interaction term
as

 I�’	 �
�������
�g
p

1� �Z

�
��� ���

6
’3 � �m2’

�
: (12)

The Green’s function G�x; x0� is any solution of the equa-
tion

 @��
�������
�g
p

g��@�G�x; x0�� � �D�x� x0�: (13)

Although the Green’s functions would obey Feynman
boundary conditions for flat space scattering problems, it
is more natural to use retarded boundary conditions in
cosmology. The fundamental field operator ’�x�, on the
other hand, is unique. It does not depend on the choices of
the boundary conditions for the Green’s functions or on �i.
What changes with those choices is the free scalar ’0�x�.
Because ’0�x� obeys the linearized equations of motion
and agrees with the full fields at � � �i, it can be ex-
panded in terms of free creation and annihilation operators
�� ~k� and �y� ~k� as

 ’0�x� �
Z dD�1k

�2��D�1 fu��; k�e
i ~k� ~x�� ~k�

� u���; k�e�i ~k� ~x�y� ~k�g; (14)

where the Bunch-Davies mode function [18]

 u��; k� �
H��������
2k3
p �1� ik��e�ik�: (15)

Although the creation and annihilation operators change as
different Green’s functions are used in Eq. (11), their non-
zero commutation relation remains fixed

 ��� ~k�; �y� ~k0�	 � �2��D�1�D�1� ~k� ~k0�: (16)

By iterating Eq. (11), one can expand the full field ’�x� in
terms of the free field ’0�x� as

 ’�x� � ’0�x� �
Z 0

�i
d�0

Z
dD�1x0Gret�x; x0�I�’�x0�	

(17)
 

� ’0�x� �
Z 0

�i
d�0

Z
dD�1x0Gret�x; x0�

� I�’0�x0�	 � � � � : (18)

Hence, choosing j�fi � j�ii as free vacuum at �i, one
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can see [16,17] that the quantum-corrected plane wave
mode solution (8) yields

 ��x; ~k� � h�j�’�x�; �y� ~k�	j�i � u��; k�ei ~k� ~x �O���:

(19)

The O��� andO��2� corrections in Eq. (19) are obtained in
Sec. III, by ‘‘solving’’ the quantum-corrected effective
field equation at one- and two-loop order. In Sec. IV, we
obtain the same corrections by calculating the commutator
(8) stochastically. The results yielded by the two ap-
proaches are in perfect agreement.

B. Schwinger-Keldysh formalism

Because of the fact that ‘‘in’’ (t! �1) vacuum is not
equal to the ‘‘out’’ (t! 1) vacuum in the de Sitter back-
ground, we need to calculate expectation values rather than
in-out matrix elements. This is done by applying the
Schwinger-Keldysh formalism [13,14]. The end points of
propagators acquire a� polarity, in this formalism. Hence,
every propagator i��x; x0� of the in-out formalism general-
izes to four Schwinger-Keldysh propagators: i����x; x0�,
i����x; x0�, i����x; x0�, and i����x; x0�. Each propagator
can be obtained from the Feynman propagator by replacing
the de Sitter conformal coordinate interval

 �x2�x; x0� � �x2
���x; x0�

� k ~x� ~x0k2 � �j�� �0j � i��2 (20)

with the appropriate coordinate interval

 �x2
���x; x0� � k ~x� ~x0k2 � ��� �0 � i��2

� ��x2
���x; x0���; (21)

 �x2
���x; x0� � ��x2

���x; x0���: (22)

Vertices are either all � or all �. A � vertex is the usual
one of the in-out formalism, whereas the � vertex is its
conjugate.

Because each external line can be either � or � in the
Schwinger-Keldysh formalism, each N-point 1PI function
of the in-out formalism corresponds to 2N Schwinger-
Keldysh N-point 1PI functions. The Schwinger-Keldysh
effective action is the generating functional of these 1PI
functions, so it depends upon two background fields ’��x�
and’��x�. For example, there are four Schwinger-Keldysh
2-point 1PI functions M2

���x; x0�. The�� one is the same
as the in-out self-mass-squared, and the others are related
as the propagators

 � iM2
���x; x0� � ��iM2

���x; x0���;

� iM2
���x; x0� � ��iM2

���x; x0���:
(23)

The various self-mass-squared terms enter [14] the effec-
tive action as follows:

 

��’�; ’�	 � S�’�	 � S�’�	 �
1

2

Z
dDx

Z
dDx0

� f’��x�M2
���x; x0�’��x0�

� ’��x�M2
���x; x0�’��x0�

� ’��x�M2
���x; x0�’��x0�

� ’��x�M2
���x; x0�’��x0�g �O�’

3
��; (24)

where S�’	 is the classical scalar action. The effective field
equations of the Schwinger-Keldysh formalism are ob-
tained by varying with respect to either polarity and then
setting the two polarities equal [14]. Up to orderO�’2�, we
have

 

���’�	
�’��x�

��������’��’
� @��

�������
�g
p

g��@�’�x��

�
Z 0

�i
d�0

Z
d3x0fM2

���x; x0�

�M2
���x; x0�g’�x0�: (25)

Note that we have taken the regularization parameter D to
its unregulated value of D � 4, in view of the fact that the
self-mass-squared is assumed to be fully renormalized. It is
this linearized effective field equation which ��x; ~k�
[Eq. (8)] obeys [16,17]

 

@��
�������
�g
p

g��@���x; ~k�� �
Z 0

�i
d�0

Z
d3x0fM2

���x; x0�

�M2
���x; x0�g��x0; ~k� � 0: (26)

Thus, the two renormalized 1PI 2-point functions we need
areM2

���x; x0� andM2
���x; x0�. At one-loop order, we have

[10]

 M2
1���x; x0� �

�H2

8�2 a
4 ln�a��4�x� x0� �O��2�: (27)

The �� case vanishes at this order because there is no
mixed interaction. Fully renormalized two-loop results for
the �� and �� cases are [10]
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The �� and �� terms in (26) exactly cancel for �0 >�
and also, in the limit �! 0, for x0� outside the light cone
of x�. This is how the Schwinger-Keldysh formalism gives
causal effective field equations. In the next section, we
discuss what we mean by solving the quantum-corrected
effective mode equation (26). The one- and two-loop cor-
rected mode solution is obtained in the late time limit, i.e.,
for ln�a�  1, in Sec. III.

C. Solving the quantum-corrected effective mode
equation

Here we discuss the limitations that one has in solving
the effective mode equation (26). The full scalar self-mass-
squared can be expressed, as a series, in powers of the loop
counting parameter �

 M2
���x; x0� �M2

���x; x0� �
X1
‘�1

�‘M2
‘�x; x0�: (30)

The first limitation is that we have only the ‘ � 1 and ‘ �
2 terms

 M2
1���x; x0� � �M2

1�x; x0�; (31)

 M2
2���x; x0� �M2

2���x; x0� � �2M2
2�x; x0�; (32)

which are given by Eqs. (27)–(29), respectively. So we can
only solve the effective mode equation perturbatively. We
first substitute a series solution of the form

 ��x; ~k� � u��; k�ei ~k� ~x �
X1
‘�1

�‘�‘��; k�ei
~k� ~x (33)

into Eq. (26) and then solve the equation order by order in
powers of � and �2. The zeroth order (‘ � 0) solution of
�‘ is the well-known Bunch-Davies mode function u��; k�
[Eq. (15)] times the exponential ei ~k� ~x.

The second limitation is due to the lower bound ‘‘�i’’ on
the temporal integration in Eq. (26). We release the uni-
verse in free vacuum at time � � �i. Little is known about
the wave functionals of interacting QFTs in curved space,
but free vacuum can hardly be realistic. In fact, all of the
finite energy states of interacting flat space QFTs have
important corrections. Similar corrections are expected in
curved space, too. Although it is possible to correct the free
state functionals perturbatively as in nonrelativistic quan-
tum mechanics, the usual procedure in flat space QFT is to
release the system in free vacuum at asymptotic past and let
the infinite time evolution resolve the difference between
free vacuum and true vacuum into shifts of the mass, field
strength, and background field [19]. In cosmology, how-
ever, one cannot typically apply this procedure, for the
reasons noted in Sec. II A. One can still correct the state
wave functionals perturbatively, though. Corrections to the
initial state would appear as new interaction vertices on the
initial value surface. They are expected to have a large
effect on the expectation values of operators near the initial
value which would decay in the late time limit. For ex-
ample, it is the exponentially falling portions of the renor-
malized stress-energy tensor (4) and (5)

 �falling �
�H4

26�4

�
2

9
a�3 �

1

2

X1
n�1

n� 2

�n� 1�2
a��n�1�

�
�O��2�;

(34)

 pfalling �
�H4

26�4

�
�

1

6

X1
n�1

n2 � 4

�n� 1�2
a��n�1�

�
�O��2� (35)

that it is conjectured [9] can be absorbed into an order �
correction of the initial (a � 1) free Bunch-Davies vacuum
state. The fact that they fall off as one evolves away from
the initial value surface suggests that they can be absorbed
into a kind of local interaction there, leaving only the
infrared logarithms
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 pconj � �
�

8�G
�
�H4

26�4

�
1

2
ln2�a� �

1

3
ln�a�

�
�O��2�:

(37)

Notice that they are separately conserved, i.e., _�conj �

�3H��conj � pconj� and _�falling � �3H��falling � pfalling�.
This is exactly what would be the case if they could be
canceled by a new interaction vertex. Note that Eqs. (34)
and (35) diverge on the initial value surface at a � 1,
which indicates that free vacuum is very far away from
any physically accessible state. Thus, although Eq. (26)
determines the quantum corrections to the mode function
(19) for free vacuum, that mode function has little physical
relevance, because free vacuum is inaccessible. To find
physically relevant mode functions, which are also valid
for initial times, the corrections to the state wave functional
must be included. Unfortunately, we have neither order �
nor order �2 corrections to the state wave functional. It
therefore makes no sense to solve Eq. (26) for all times.
The effects of the state corrections, however, must fall off
at late times [ ln�a�  1] as in Eqs. (34) and (35). Because
of time evolution, initially free vacuum and true vacuum
become indistinguishable, as in flat space QFT [19].
Hence, we may obtain valid information from Eq. (26)
by solving it in the late time limit. That is the subject of
the next section.

III. EFFECTIVE MODE FUNCTION FOR THE
MMC SCALAR

The linearized effective field equation that the MMC
scalar mode solution ��x; ~k� obeys is given in Eq. (26).
Using Eqs. (30), (31), and (33), one obtains the integro-
differential equation for the one-loop correction �1��; ~k�
to the classical mode function u��; k�
 

a2�@2
0 � 2Ha@0 � k

2	�1��; k�

� �
Z 0

�i
d�0

Z
d3x0M2

1�x; x0�u��0; k�e�i ~k�� ~x� ~x
0�

� �
Z 0

�i
d�0

Z
d3x0

H2

8�2 a
4 ln�a�

� �4�x� x0�u��0; k�e�i ~k�� ~x� ~x
0�

� �
H2

8�2 u��; k�a
4 ln�a�: (38)

As is discussed in Sec. II C, the only sensible and physi-
cally interesting regime in which we can solve the effective
mode equation is the late time limit ln�a�  1. The zeroth
order mode function u��; k� can be replaced by its limit
u�0; k� � H=

��������
2k3
p

in this regime. Solving Eq. (38) in the
late time limit, we find

 �1��; k� � �
1

243�2 u�0; k�
�
ln2�a� �

2

3
ln�a�

�
; (39)

in leading logarithm orders.
The order �2 correction �2��; k�, on the other hand, has

contributions due to both one- and two-loop self-mass-
squared terms. It obeys

 a2�@2
0 � 2Ha@0 � k

2	�2��; k�

� �
Z 0

�i
d�0

Z
d3x0fM2

1�x; x0��1��
0; k�

�M2
2�x; x0�u��0; k�ge�i ~k�� ~x� ~x

0�: (40)

The first integral is evaluated, in leading logarithm order,
by inserting Eqs. (27) and (39) into Eq. (40). We find

 �
Z 0

�i
d�0

Z
d3x0M2

1�x; x0��1��
0; k�

�
H2

273�4 u�0; k�a
4

�
ln3�a� �

2

3
ln2�a�

�
: (41)

The second integral is evaluated, in the late time limit, in
Appendix A. Expanding in terms of powers of infrared
logarithms, we find
 

�
Z 0

�i
d�0

Z
d3x0M2

2�x; x0�u��0; k�e�i ~k�� ~x� ~x
0�

! �u�0; k�
Z 0

�i
d�0

Z
d3x0M2

2�x; x0�

�
H2

2432�4 u�0; k�a
4

�
ln3�a� �

23

16
ln2�a�

�

�
27

8
ln
�
2�
H

�
�

189

32
�
�2

2

�
ln�a�

�
: (42)

Using Eqs. (41) and (42) in Eq. (40) yields

 a2�@2
0 � 2Ha@0 � k2	�2��; k�

!
H2

2732�4 u�0; k�a
4

�
11ln3�a� �

19

2
ln2�a�

�

�
27 ln

�
2�
H

�
�

189

4
� 4�2

�
ln�a�

�
: (43)

In leading orders, the solution for �2��; k� is
 

�2��; k� �
1

2833�4 u�0; k�
�
11

2
ln4�a� � ln3�a�

�

�
27 ln

�
2�
H

�
�

185

4
� 4�2

�

�

�
ln2�a� �

2

3
ln�a�

��
: (44)

Thus, keeping the leading logarithm terms at each order of
perturbation (i.e., in �1 and �2), we find that the quantum-
corrected mode solution (33) asymptotes to
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��x; ~k� � u�0; k�ei ~k� ~x
�
1�

1

243�2 �ln2�a�

�
11

2933�4 �
2ln4�a�

�
�O��3�: (45)

One can immediately see from Eq. (45) that perturbation
theory breaks down when ln�a�t�� is of order 1=

����
�
p

. This,
however, does not invalidate the reliability of our late time
[ ln�a�  1] solution, because by choosing �� 1, as we
assume in this paper, one can have a long period of time
during which 1� ln�a� � 1=

����
�
p

.
Equation (45) also shows that, at t � 0, the mode solu-

tion ��x; ~k� is equal to the well-known (Bunch-Davies)
classical result u�0; k�ei ~k� ~x. As time goes on, it decreases
proportional to the factor 1� �H2t2=48�2 �O��2� (the
stochastic calculation of Sec. IV yields the same result).
Thus, the amplitude of the quantum-corrected mode func-
tion (hence, of the field) is reduced (consistent with the
model developing a positive mass squared, as one- and
two-loop self-mass-squared terms and the VEV of the
curvature of the potential imply; see the discussion in the
next section). This means that linear perturbations do not
grow in this system; therefore, it is stable.

IV. STOCHASTIC ANALYSIS

Starobinsky developed a stochastic inflation technique
[6,7] which gives the leading infrared logarithms at each
order in perturbation theory. Recently, his technique was
proven to all orders and extended to various models [20]. In
this section, we introduce the stochastic technique briefly
and use it to calculate the quantum-corrected plane wave
mode solution (8) and the VEVof the curvature (associated
with the field being away from the minimum) of the
potential which acts like a mass squared in the classical
action.

The equation of motion for the scalar field with quartic
self-interaction in D � 3� 1-dimensional de Sitter back-
ground is

 �’�t; ~x� � 3H _’�t; ~x� �
r2

a2 ’�t; ~x� �
�
6
’3�t; ~x� � 0: (46)

The solution of Eq. (46) can be obtained by iterating

 ’�t; ~x� � ’0�t; ~x� �
�
6

Z t

0
dt0a3�t0�

�
Z
d3x0Gret�t; ~x; t0; ~x0�’3�t0; ~x0�; (47)

where the retarded Green’s function [20] is
 

Gret �
H2

4�
��t� t0�

�
��Hk ~x� ~x0k � a�1�t� � a�1�t0��

a�t�a�t0�Hk ~x� ~x0k

���Hk ~x� ~x0k � a�1�t� � a�1�t0��
�
: (48)

As in Eq. (14), the free field ’0�t; ~x� can be expanded in
terms of mode function u�t; k� and annihilation and crea-
tion operators �� ~k� and �y� ~k�, satisfying the canonical
commutation relation (16) in D � 3� 1 dimensions.
Starobinsky’s stochastic technique cuts out the ultraviolet
modes k > Ha of the field and applies the following rules
to the equation of motion: (i) retain only the term with the
smallest number of derivatives of the field, (ii) replace the
field variable by a stochastic variable, and (iii) subtract the
stochastic source term f for each time derivative of the
field. Applying these rules to Eq. (46) yields

 �’� 3H _’�
r2

a2 ’�
�
6
’3 � 0! 3H _’�

�
6
’3 � 0

! 3H� _	� f	� �
�
6
	3 � 0:

(49)

(The scalar field ’ became a stochastic field 	.) The
source term f	 is the time derivative of the infrared
truncated free field (14)

 	0�t; ~x� �
Z d3k

�2��3

�Ha�t� � k�

H��������
2k3
p fei ~k� ~x�� ~k�

� e�i ~k� ~x�y� ~k�g: (50)

Here the leading infrared limit of the Bunch-Davies mode
function (15) u�t; k� �H=

��������
2k3
p

is used. Hence,

 f	�t; ~x� � _	0�t; ~x�

�
Z d3k

�2��3
��k�Ha�t��

H2�����
2k
p fei ~k� ~x�� ~k�

� e�i ~k� ~x�y� ~k�g: (51)

In Eq. (49), we obtained a Langevin-like equation which
can be recast as

 

_	�t; ~x� � f	�t; ~x� �
�

18H
	3�t; ~x�: (52)

In this section, we use this equation to stochastically
calculate (i) the VEVof the curvature associated with being
away from the minimum of the potential, i.e.,
�h�j	2�x�j�i=2, which acts like a field-dependent mass
squared, and (ii) the quantum-corrected mode function (8),
i.e., h�j�	�x�; �y� ~k�	j�i. As a check, we calculate (i) also
using perturbative QFT at one- and two-loop order and
show that the two realizations agree perfectly in leading
logarithm order. The quantum-corrected mode function
was already obtained in Sec. III by applying QFT.
Comparing Eq. (45) of Sec. III with the stochastic result
for (ii) will show that the agreement is again perfect in
leading logarithm order.

In stochastic calculations (i) and (ii), we express 	�x� in
terms of the infrared truncated free field 	0 perturbatively,
by first integrating Eq. (52) and then iterating the result up
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to the desired power of �:

 	�t; ~x� � 	0�t; ~x� �
�

18H

Z t

0
dt0	3�t0; ~x�

� 	0�t; ~x� �
�

18H

Z t

0
dt0	3

0�t
0; ~x� �

�2

2233H2

�
Z t

0
dt0	2

0�t
0; ~x�

Z t0

0
dt00	3

0�t
00; ~x� �O��3�:

(53)

In the noninteracting (free) theory, 	�t; ~x� � 	0�t; ~x�.

Hence, using Eq. (50), the VEV of the scalar field strength
squared is obtained trivially in this (� � 0) limit

 h�j	2
0�x�j�i �

H2

4�2 ln�a�: (54)

This stochastic result is the same as the results of Ref. [15]
applying QFT.

Now we start calculating (i) the VEV �h�j	2�x�j�i=2
in the interacting (� � 0) theory. Using Eq. (53), we find

 

�
2
h�j	2�x�j�i �

�
2

�
h�j	2

0�x�j�i �
�

9H

Z t

0
dt0h�j	0�t; ~x�	

3
0�t
0; ~x�j�i

�
�O��3�

�
�
2

�
h�j	2

0�x�j�i �
�

3H

Z t

0
dt0h�j	0�t; ~x�	0�t0; ~x�j�ih�j	2

0�t
0; ~x�j�i

�
�O��3�: (55)

Inserting Eq. (50) into Eq. (55) yields the stochastic result

 

�
2
h�j	2�x�j�i �

�
2

�
H2

4�2 ln�a� �
�

3H

Z t

0
dt0

H4

16�4 ln2�a0�

�O��2�

�

�
H2

23�2 � ln�a�
�

1�
1

2232�2 �ln2�a�
�

�O��3�: (56)

Next, we want to calculate the same VEV �h�j	2j�i=2
using QFT. Figure 1 depicts the one-loop contribution.
Hence, at one-loop order, the VEV is given in terms of
the coincident limit of the scalar propagator and the mass
counterterm �m2:

 

�
2
h�j	2j�i �

�
2
i��x; x� � �m2 �O��2�: (57)

The scalar propagator in D-dimensional locally de Sitter
background is [8,9]

 

i��x; x0� �
HD�2

�4��D=2

�
�
X1
n�0

1

n� D
2 � 1

��n� D
2�

��n� 1�

�

�
y
4

�
n��D=2��1

�
��D� 1�

��D2�
� cot

�
�
D
2

�

�
X1
n�1

1

n
��n�D� 1�

��n� D
2�

�
y
4

�
n

�
��D� 1�

��D2�
ln�aa0�

�
: (58)

Here the modified de Sitter length function y�x; x0� is given
in terms of the de Sitter conformal coordinate interval �x2

[Eq. (20)]

 y�x; x0� � H2aa0�x2

� H2aa0�k ~x� ~x0k2 � �j�� �0j � i��2	: (59)

To facilitate dimensional regularization, we express the
dimension of spacetime in terms of its deviation from
four: D � 4� �. Therefore, the coincident limit of the
scalar propagator

 i��x; x� � lim
x0!x

i��x; x0�

�
H2��

�4��2���=2�

��3� ��
��2� �

2�

�
2 ln�a� � � cot

�
��
2

��
:

(60)

Because of the finite, time-dependent term in Eq. (60), we
cannot make the one-loop VEV (57) vanish for all time.
Our renormalization condition is that it should be zero at
t � 0, which implies

 �m2 � �
�H2��

25���2���=2�

��3� ��
��2� �

2�
� cot

�
��
2

�
�O��2�:

(61)

δ 2m

FIG. 1. Generic one-loop diagram with the mass counterterm.
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Therefore, Eq. (57) yields

 

�
2
h�j	2j�i1-loop �

�H2

8�2 ln�a�: (62)

The two-loop diagram that contributes to the VEV is
known as the snowman diagram depicted on the left of
Fig. 2. The right-hand side diagram depicts the one-loop
mass counterterm which naturally combines with it (�m2

denotes the mass counterterm vertex). In Schwinger-
Keldysh formalism (Sec. II B) the internal vertices are
summed over both � and � polarities. A simple applica-
tion of Feynman rules gives

 

�
2
h�j	2j�i2-loop �

�
2

Z
dDx0a0Df�i����x; x0�	2

� �i����x; x0�	2g
�
��i��

2
i��x0; x0�

� i�m2

�
: (63)

Both �� and �� propagators are the same function (58)
of the appropriate version of the modified de Sitter length
function y�x; x0�. By definition (20), y���x; x0� �
H2aa0�x2

�� � y�x; x0�, given in Eq. (59). On the other
hand, y���x; x0� � H2aa0�x2

��, where the coordinate in-
terval �x2

�� is given in Eq. (21). The coincident propaga-
tor and the mass counterterm are calculated in Eqs. (60)
and (61), respectively. Because both diagrams in Fig. 2
have the same lower loop, they possess the common factor
given in the first curly bracket of Eq. (63). The first term in
the second curly bracket comes from the left-hand side
diagram, whereas the second term comes from the right-
hand side diagram.

The integral in Eq. (63) is calculated explicitly in
Ref. [10]. The result can be read off directly from its
Eq. (61). After renormalizing the overlapping divergence
���2H2=27�4�� 2�H��

� ln�a�
� of the snowman diagram by the

two-loop mass counterterm, one obtains

 

�
2
h�j	2j�i2-loop�

�2H2

27�4

�
�

4

9
ln3�a��

13

18
ln2�a�

�

�
ln
�
H
2�

�
�

8

3
���

2

9
�2

�
ln�a�

�
238

81
�

13

54
�2�

4

3
�3��

a�3

81

�
X1
n�1

n�5

�n�1�3
a��n�1��4

X1
n�1

a��n�2�

�n�2�3

�4
X1
n�1

a��n�3�

n�n�3�3

�
�O��3�; (64)

where Euler’s constant � ’ 0:577. (The constants and ex-
ponentially decaying terms may be subsumed into the
definition of the vacuum state.) Combining one- and two-
loop results, Eqs. (62) and (64), we find

 

�
2
h�j	2j�i �

H2

23�2 � ln�a�
�

1�
1

2232�2 �ln2�a�
�

�O��3�; (65)

in leading logarithm order. This QFT result is exactly the
same as stochastic result Eq. (56).

Until the breakdown of the perturbation theory—that
occurs around �ln2�a� � 1, as was pointed out earlier—
expectation value (56) remains positive. This means that
the curvature associated with the scalar being away from
the minimum of the potential assumes a growing positive
expectation value which acts like a positive ‘‘mass
squared’’ during the process. This agrees with the decreas-
ing mode function obtained in Eq. (45) by solving the one-
and two-loop corrected effective field equation, in the
context of QFT.

Next, in calculation (ii), we recompute the very same
mode solution ��x; ~k� obtained in Eq. (45) using QFT. This
time, however, we calculate ��x; ~k�� h�j�	�x�;�y� ~k�	j�i
[Eq. (8)] by applying the stochastic technique to show that
the two realizations yield exactly the same result, in lead-
ing logarithm order. The commutator

 

�	�x�; �y� ~k�	 � u�0; k�ei ~k� ~x
�
1�

�
6H

Z t

0
dt0	2

0�t
0; ~x�

�
�2

2232H2

Z t

0
dt0	2

0�t
0; ~x�

Z t0

0
dt00	2

0�t
00; ~x�

�
�2

233H2

Z t

0
dt0	0�t

0; ~x�
Z t0

0
dt00	3

0�t
00; ~x�

�

�O��3�; (66)

which implies

x x

x

δm2

x

FIG. 2. Generic snowman diagram with the mass counterterm.
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 ��x; ~k� � h�j�	�x�; �y� ~k�	j�i

� u�0; k�ei ~k� ~x
�
1�

�
6H

Z t

0
dt0h�j	2

0�t
0; ~x�j�i �

�2

2232H2

�Z t

0
dt0

Z t0

0
dt00h�j	2

0�t
0; ~x�j�ih�j	2

0�t
00; ~x�j�i

� 2
Z t

0
dt0

Z t0

0
dt00�h�j	0�t0; ~x�	0�t00; ~x�j�i�2

�
�

�2

232H2

Z t

0
dt0

Z t0

0
dt00h�j	0�t0; ~x�	0�t00; ~x�j�i

� h�j	2
0�t
00; ~x�j�i

�
�O��3�: (67)

Using Eq. (50) in Eq. (67) yields

 ��x; ~k� � u�0; k�ei ~k� ~x
�
1�

�
6H

Z t

0
dt0

H2

4�2 ln�a0� �
�2

2232H2

Z t

0
dt0

H2

4�2 ln�a0�
Z t0

0
dt00

H2

4�2 ln�a00� �
�2

32H2

�
Z t

0
dt0

Z t0

0
dt00

H4

16�4 ln2�a00�
�
�O��3�

� u�0; k�ei ~k� ~x
�
1�

1

243�2 �ln2�a� �
11

2933�4 �
2ln4�a�

�
�O��3�: (68)

This result is in perfect agreement with Eq. (45), which is
obtained by lengthy and highly nontrivial calculation using
quantum field theory.

V. CONCLUSIONS

Massless, minimally coupled �
4!’

4 on a locally de Sitter
background can induce enhanced quantum effects causing
superaccelerated phase of cosmic expansion, a possibility
not excluded by present observations. In this paper, we
have studied the stability of this system for �� 1. In
Sec. II, we have obtained the quantum-corrected effective
field equations at linearized order, using the fully renor-
malized Schwinger-Keldysh self-mass-squared terms at
one- and two-loop orders. In Sec. III, we have solved the
effective field equations in the late time limit, i.e., for
ln�a�  1, and obtained the scalar mode function in lead-
ing powers of infrared logarithms at each order of pertur-
bation. In Sec. IV, we have used Starobinsky’s stochastic
inflation technique to compute the mode function in the
leading logarithm approximation and compared it with the
quantum field theory result of Sec. III.

There are three main conclusions that we draw:
(i) perturbation theory breaks down for ln�a�t�� � 1=

����
�
p

.
This, however, does not invalidate the reliability of our late
time solutions since one can have a long period of time
during which 1� ln�a� � 1=

����
�
p

for �� 1. (ii) The
quantum-corrected mode function decreases in time—
consistent with the field developing a positive (nonta-
chyonic) mass squared—starting from its initial classical
(Bunch-Davies) value. This means that linear perturbations
do not grow in this model. Thus, the model is stable.
(iii) The results of quantum field theory and
Starobinsky’s stochastic technique are in perfect
agreement.

The effect can be understood physically as follows.
Heisenberg’s energy-time uncertainty principle implies
that virtual particle-antiparticle pairs continually emerge
from the vacuum and then disappear back into it. However,
massless particles which are also conformally noninvariant
have a certain amplitude for appearing with a wavelength
greater than the inverse of the Hubble parameter. In an
inflating universe, these virtual pairs are pulled apart by the
Hubble flow before they find time to annihilate each other.
Hence, they become real, recalling the analogy with the
Hawking radiation. Therefore, one gains particles out of
nothing which also means that the scalar field strength
grows. In fact, h�j’2j�i � �H2=4�2�Ht�O��� in our
model. Thus, inflationary particle production causes the
scalar to undergo a random walk such that its average
distance from the minimum of the quartic potential in-
creases. This makes the vacuum energy larger; hence, _� >
0. Now recall the covariant stress-energy conservation law
_� � �3H��� p�. Because inflationary particle produc-

tion causes _� > 0, we must have �� p < 0 to satisfy this
law. Hence, the weak energy condition is violated, and the
equation of state parameter w<�1. Will this effect be
terminated? If the growing of the field, which generates the
effect, stops, then the effect terminates. There are two
causes, in the interacting theory, which would yield the
growing of the field come to a halt eventually. The first
cause is the classical restoring force � �

6’
3. This force

pushes the field back down to the configuration where the
potential is minimum, i.e., to ’ � 0, as the scalar rises up
its potential. The second cause is the curvature associated
with the field being away from the minimum of the poten-
tial, i.e., �2’

2, which acts like a ‘‘mass squared.’’ Because
�
2 h�j’

2j�i is a growing positive real number, the scalar
develops a growing positive mass. That cuts off particle
production, since inflationary particle production requires
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effective masslessness (with respect to the Hubble parame-
ter). Because of these two causes, the field cannot continue
to roll up its position. It must eventually come to a halt. In
fact, Starobinsky and Yokoyama showed [7] that h�j’2j�i
does asymptote to a positive constant.
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APPENDIX A: INTEGRATING THE TWO-LOOP
TERMS

In this appendix, we calculate the integral

 �
Z 0

�i
d�0

Z
d3x0M2

2�x; x0�u��0; k�e�i ~k�� ~x� ~x
0�; (A1)

which is a part of Eq. (40). M2
2�x; x0� is defined in Eq. (32).

In the late time regime of physical interest, we replace
u��0; k� [Eq. (15)] with its constant limit u�0; k�. Moreover,
as can be seen below, when �� and �� terms are added,
factors of the Heaviside function ������r� arise. They
require k ~x� ~x0k � �� �0, ensuring casuality in the
Schwinger-Keldysh formalism. In the late time limit, this
means that the spatial plane wave factor ei ~k�� ~x� ~x

0� can also
be dropped in Eq. (A1), since �� �0 ! 0 in that regime.
We, therefore, break the integral (A1) into a sum of six
terms of the general form

P6
n�1 In���, with

 In��� � �u�0; k�
Z 0

�i
d�0

Z
d3x0M2

2;n�x; x0�: (A2)

Here we define the integrands

 M 2
2;1�x; x0� �

i
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�x2
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�x2
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�x2
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; (A5)
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iH4

29�6
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4 H
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; (A6)

 M 2
2;5�x; x0� �
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2103�6
�aa0�4

�
ln3

� ���
e
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H2�x2

��

�

� ln3

� ���
e
p

4
H2�x2

��

��
; (A7)
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4
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�
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�n� 2�3

� 4
X1
n�1

a��n�3�

n�n� 3�3

�
�4�x� x0�: (A8)

We evaluate I1��� and I3��� explicitly to illustrate the
relevant calculation techniques and give only the final
answers for the remaining four that can be obtained simi-
larly. The first integral is

 I1��� � �u�0; k�
Z �

�i
d�0

Z
d3x0M2

2;1�x; x0�: (A9)

It is useful to break up the logarithms in M2
2;1 as

 ln��2�x2� � ln
�
H2�x2

4

�
� 2 ln

�
2�
H

�
: (A10)

We then partially integrate the inverse powers of �x2,
using the identities

 

ln�H2�x2�

�x2
�
@2

8
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1
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1

�x2
�
@2

4
ln�H2�x2�: (A12)

Because the integral is over x0�, the derivatives with re-
spect to x� can be taken outside the integral. The remain-
ing integrand possesses only logarithmic singularities.
There is no distinction between the �� and �� terms
at this stage. We define the temporal and spatial intervals
�� � �� �0 and �r � k ~x� ~x0k, respectively. The ��
and �� terms cancel for ��< 0, so we can restrict the
integration to ��> 0. Then the logarithms can be ex-
panded as
 

ln
�
H2

4
�x2
��

�
� ln

�
H2

4
���2 � �r2�

�

� i�����2 ��r2�: (A13)

Making the change of variables ~r � ~x� ~x0 and performing
the angular integrals yield
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1
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where the initial time �i � �H�1. Next, we make the
change of variables r � ��z and perform the integration
over z, using

 

Z 1

0
dzz2 ln
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1� z2

4
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9
: (A14)

The result is
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: (A15)

Note that, owing to the factor ��3, three of the external
derivatives were brought inside the integral. This cubic
derivative gives 6 ln�2����, when it acts upon the terms
inside the square bracket. At this stage, one makes the
change of variables �0 � ��Ha0��1 and looks up the
relevant integral [Eq. (B1)] from Appendix B. Acting on
the remaining derivatives using @0 � Ha2 @

@a , one obtains

 I1��� �
H2

283�4 u�0; k�a
4

�
ln�a� � ln

�
2�
H

�
�

3

2

�
X1
n�1

�n� 1��n� 2�

2n
a�n

�
: (A16)

Evaluation of I2���, defined by Eqs. (A2) and (A4), is
similar to that of I1���. Using Eqs. (A10)–(A14) and
(B2) yields
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Next, we explicitly evaluate

 I3��� � �u�0; k�
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Z
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2;3�x; x0�; (A18)

where M2
2;3 is given in Eq. (A5). We break up the loga-

rithm squared in M2
2;3 as
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Then we use the identity
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and Eqs. (A12) and (A13). To evaluate the radial integral,
we make the change of variables r � ��z and use
Eq. (A14) and the integral
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We find
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where A � 2 ln�2�=H� � 11=3 and B � ln2�2�=H� �
�11=3� ln�2�=H� � 85=18� �2=6. The cubic derivative
in the integrand yields 6ln2�2���� � �2, when it acts
upon the terms inside the square bracket. Making the
change of variables �0 � ��Ha0��1 and using
Eqs. (B2)–(B6) and @0 � Ha2 @

@a , one obtains
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Evaluation of I4���, defined by Eqs. (A2) and (A6), is
similar to that of I3���. Using Eqs. (A12)–(A14), (A19)–
(A21), (B2), (B3), (B6), and (B7) yields
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To evaluate I5���, we expand ln3�
���
e
p
H2�x2=4� � �ln�H2�x2=4� � �1=2�	3 and use Eqs. (A13), (A14), (A21), and (B5)–

(B8). The result is
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where the Digamma function  �n� � ���
Pn�1
k�1 k

�1 and Euler’s gamma � ’ 0:577. It is straightforward to show that the
remaining integral
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Summing the six terms gives the total two-loop contribution in Eq. (40)
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APPENDIX B: USEFUL INTEGRAL IDENTITIES

In Appendix A, to calculate the temporal integrations
over �0, we make the change of variables �0 � ��Ha0��1

and use the following integral identities:
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where  �n� is the Digamma function and � is the Euler’s
constant, as defined in Appendix A,
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