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A computation of the inflationary observables ns and r is made for logamediate inflation where the
cosmological scale factor expands as a � exp�A�lnt���, and is compared to their predicted values in the
intermediate inflationary theory, where a � exp�Btf�. Both versions prove to be consistent with obser-
vational measurements of the cosmic background radiation. It is shown that the dynamics of a single
inflaton field can be mimicked by a system of several fields in an analogous manner to that created by the
joint evolution of the fields in assisted power-law inflation.
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I. INTRODUCTION

In the light of the latest observations of the cosmic
microwave background (CMB) radiation [1], a scenario
of inflationary expansion in the early Universe stands out
as a strong candidate to solve the horizon and flatness
problems of the standard model of cosmology, as well as
providing the seeds for the formation of large-scale struc-
ture with a spectrum of adiabatic and nearly scale-invariant
Gaussian density perturbations. For a review of models of
inflation see, e.g., Ref. [2].

In the particular scenario of ‘‘intermediate’’ inflation [3–
9], the expansion scale factor of the Friedmann universe
evolves as a � exp�Atf�, where A> 0 and 1> f > 0 are
constants; the expansion of the Universe is slower for
standard de Sitter inflation, which arises when f � 1, but
faster than in power-law inflation, a � tp, with p > 1
constant. It has been shown that intermediate inflation
satisfies the bounds on the spectral index ns and ratio of
tensor-to-scalar perturbations, r, as measured by the latest
observations of the CMB [1]. To first order, an exact
Harrison-Zeldovich spectrum [10] of fluctuations arises
when f � 2=3 as well as when f � 1. For the construction
by series of a potential which produces this spectrum to all
orders, see Ref. [11].

In this work, we analyze another generalized version of
inflation, which we call ‘‘logamediate inflation,’’ with a
scale factor of the form a � exp�A�lnt���, with A> 0, � >
1 constants. When � � 1, this model reduces to power-law
inflation with a � tp, where p � A, here. The logamediate
inflationary form is motivated by considering a class of
possible cosmological solutions with indefinite expansion
which result from imposing weak general conditions on the
cosmological model. In Ref. [12] it was shown that an
application of the considerations of Hardy and Fowler to
ordinary differential equations of the form �a �
P�a; t�=Q�a; t�, as t! 1 with polynomials P and Q, leads
to eight possible asymptotic solutions of the cosmological

dynamics. Three of these give noninflationary expansions
for a�t� and three of the others give power-law, de Sitter,
and intermediate inflationary expansions. The remaining
two cases give an asymptotic expansion of the form a �
exp�A�lnt���, and this is the only one of the allowed pos-
sibilities that, to date, has not been studied in detail with
respect to the observational data. We note also that this
form of inflation arises naturally in a number of scalar-
tensor theories [13]. Here, we show that, for observatio-
nally viable models of logamediate inflation, the ratio of
tensor-to-scalar perturbations, r, must be small and that the
power spectrum can be either red or blue tilted, depending
on the specific parameters of the model.

We will also study the dynamics when an ensemble of
fields is present. We look for situations in which the
dynamics allows the ratios of the individual kinetic ener-
gies of the fields to approach constant values. This situation
has been studied in the literature in the context of power-
law inflation and it was dubbed assisted inflation [14–21].
It has the interesting property that the cooperative evolu-
tion of all the fields can lead to inflation even if the
individual logarithmic slopes of the fields are too steep to
provide inflation when the fields are rolling in isolation. In
other words, the effective p can become larger than unity if
additional fields are included in the dynamics, even if the
individual pi are smaller than unity if the fields were roll-
ing alone. In the case of logamediate inflation, as we shall
see, we do not encounter this property as the condition for
inflation is set by the value of � alone; nonetheless, the
fractional Hubble constant, A, becomes the effective quan-
tity that is changed by the number of contributing fields.

II. LOGAMEDIATE INFLATION: a � exp�A�lnt���

We start by considering the evolution of the scale factor
of a flat Friedmann universe to be

 a�t� � exp�A�lnt���; (1)

and t > 1. The Hubble rate is
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 H �
_a
a
� A��lnt���1 1

t
; (2)

hence, for an expanding universe we require A� > 0. On
the other hand,

 

�a
a
�
A�

t2
�lnt���1���� 1��lnt��1 � 1� A��lnt���1�: (3)

Therefore, for an inflationary universe with �a=a > 0, it is
necessary that � > 1, or if � � 1, that A> 1.

A. Single-field inflation

Now assume the material content of the universe is a
singe scalar field � with potential V���. Since _H �
� _�2=2, at late times we have

 

_� �
���
2
p
�A��1=2�lnt����1�=2 1

t
; (4)

and the evolution of the field satisfies

 � � �0 � 2
�A��1=2

�� 1
�lnt����1�=2; (5)

where�0 is constant. The scalar potential results from V �
3H2 � _H. Substituting for H and _H gives

 V��� � 3�A��2�lnt�2���1� 1

t2
� A���� 1��lnt���2 1

t2

� A��lnt���1 1

t
: (6)

At late times, only the first term survives, hence, using
solution (4) (setting �0 � 0, without loss of generality),
the potential can be written as

 V��� � V0�
� exp������; (7)

where

 V0 � 3�A��2B2���1�; (8)

and

 B �
�

�� 1

2
���
2
p
�A��1=2

�
2=���1�

; (9)

and � � 4��� 1�=��� 1�, � � 2B, and � � 2=��� 1�.
This class of scalar potentials were studied in Refs. [22,23].
Note that we would have obtained the same form of the
scalar potential had we assumed slow-roll inflation,
3H _� 	 �dV=d�. Indeed, as the field rolls down the
potential towards larger values, the slow-roll approxima-
tion becomes increasingly more accurate, hence the two
different approaches give the same result.

In the Hamilton-Jacobi formalism we write the slow-roll
parameters as

 � � 2
�
H0

H

�
2
; � � 2

H00

H
;

where the prime represents differentiation with respect to
the scalar field �. For our scalar potential these become
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FIG. 1 (color online). Trajectories for different combinations of the parameters ��;�� in the ns–r plane. For these values of �, the
parameter A ranges from A � 1:5
 10�92 for ��;�� � �50; 131� up to A � 2:1
 10�2 for ��;�� � �2; 6�.
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 � �
1

2�2 ��� ���
��2; (10)

 � � �
1

�2

�
�� ����� 1��� �

1

2
��� �����2

�
:

(11)

The slow-roll parameter � diverges when the field ap-
proaches zero, has a minimum at the maximum of the
potential, peaks at some value ��, and finally asymptotes
to zero for large values of the field. We will focus on those
cases where the peak occurs for � > 1, so that we can
identify the moment when inflation begins with �1 �
��� � 1�. We are, therefore, limiting our analysis to the
region of parameter space defined by

 �> 2
�

1

32
��� 1����3�

�
1=���1�

: (12)

The number of e-folds between two values of the field, �1

(defined to be the beginning of inflation) and �2 (when a
given mode exits the horizon), is given by

 N � �
Z �2

�1

d�
�

�� ���� : (13)

The spectral index, ns, and the ratio of tensor-to-scalar
perturbations, r, can be expressed in terms of the slow-roll
parameters as

 ns � 1� 4�� 2�; (14)

 r � 16�: (15)

For a given set of parameters, � and �, and consequently
�1, we have fixed a value �2, and then calculated the
corresponding quantities N, �, �, and �2 � ���
�2��1=2�0 numerically. In Fig. 1 we show the trajectories
in the ns–r plane. Curiously, a scale-invariant spectrum
with large r can be obtained for ��;�� � �50; 131�. The
second-order expression for the spectral index in terms of
the slow-roll parameters is given by

 ns � 1� 4�� 2�� �8�1� C��2 � �6� 10C���

� 2C�2�; (16)

where C � �0:73. Comparing Figs. 1 and 2, we can con-
clude that the second-order correction to the spectral index
is negligible.

In Fig. 3, we show the dependence of the spectral index
on the number of e-folds of inflation, for the same range of
values of the parameters ��;�� of Fig. 1. We can observe
that there is a range of values of ns and r that is compatible
with the WMAP3 analysis. For small numbers of e-folds of
inflation, compatibility is assured for large values of the
parameter �.

The running of the spectral index, to lowest order in slow
roll, is given by
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FIG. 2 (color online). Trajectories for different combinations of the parameters ��;�� in the n�2�s –r plane, where n�2�s is the second-
order expansion of the spectral index in slow-roll parameters.
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dns
d lnk

� �8�2 � 10��� 2�2: (17)

From Fig. 4, we observe that for certain combinations of
the parameters ��;��, the running of the spectral index can
be negative, which is favored by WMAP3.

B. Multifield inflation

In the original model of assisted power-law inflation,
with combinations of pure exponential potentials, the dy-
namics can be interpreted by performing a rotation in the
field space decomposing the fields into a weighted mean
field that sets the direction of motion, and a set of fields
orthogonal to it. The potential for the orthogonal directions
has a minimum, therefore assuring the stability of the
scaling solution obtained in these models. We expect the
same to be true in the case of logamediate inflation,
although a scaling solution is not attained (i.e., the ratio
between the potential and kinetic energies is not a constant
throughout the evolution) because it is reasonable to as-
sume that the ratios of the kinetic energies of the fields can
reach a constant value as these potentials encounter a
valley along each defined direction. Moreover, by increas-
ing the number of fields we are increasing the Hubble
damping in the equations of motion for these fields, hence
preventing them from running away. Consequently, slow-
roll evolution is reinforced. We will see now that the
combined evolution of an ensemble of fields can be mim-

icked by one field, as in the previous section, where the
parameter A depends on the steepness of the potential in all
the original field-space directions.

We will now generalize the previous logamediate infla-
tionary solution for the scalar potential to include an
arbitrary number of scalar fields. To this end, and moti-
vated by the single-field case, we will assume that at late
times we can express the cosmic time as a weighted sum of
mq different scalar fields, �i, in the form

 lnt �
Xmq

i

�qi�
2=���1�
i ; (18)

so that when the potential is written in terms of time, t, it
becomes

 V �
X
q

kq�lnt�2���1� 1

t2
; (19)

where the kq are constants that depend on the parameters
�qi and will be determined in what follows. Hence, we will
assume that the general form of the scalar potential that has
this behavior at late times can be written in terms of the
fields as

 V �
Xn
q

vq

�Xmq

i

�qi�
2=���1�
i

�
2���1�


 exp
�
�2

Xmq

i

�qi�
2=���1�
i

�
; (20)

where the vq are arbitrary constants.
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FIG. 3 (color online). Dependence of the spectral index on the number of e-folds of inflation for different combinations of the
parameters ��;��.
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We are mainly interested in those situations where all
fields play an important role in the evolution. More spe-
cifically, we will focus on models for which the ratio of the
kinetic energies of the fields reaches a constant value at late
times. Since we must have

 2 _H � �
Xm
i

_�2
i � 2A���� 1��lnt���2t�2; (21)

where m is the total number of fields, we search for
solutions where

 

_� i � ci�lnt����1�=2 1

t
; (22)

such that

 

Xm
i

c2
i � 2A�: (23)

The late-time solutions for the �i are obtained by integrat-
ing Eq. (22), so

 �i �
2ci
�� 1

�lnt����1�=2: (24)

We can derive an additional condition for the ci coef-
ficients by combining Eqs. (18) and (24):

 

Xmq

i

�qic
2=���1�
i �

�
�� 1

2

�
2=���1�

: (25)

We then go on to compute the various ci and kq in terms of
the parameters �qi in the potential. Substituting (24) in the

equations of motion for each of the fields, which satisfy

 

�� i � 3H _�i �
@V
@�i
� 0; (26)

we obtain the set of relations

 3A�2ci � 2
�

2

�� 1

�
2=���1�Xn

q

kq�qic
�����1�=���1��
i : (27)

Multiplying by ci, and using constraints (23) and (25) we
obtain

 

Xn
q

kq � 3A2�2;

as expected, by comparing Eqs. (6) and (20).
Equation (27) can also be rewritten as

 c2=���1�
i �

�
2

3A�

�
2

�� 1

�
2=���1�

�
1=�
�Xn
q

kq�qi

�
1=�
: (28)

Multiplying by �ri, summing over all fields, and using
relation (25), we obtain a set of constraints that must be
satisfied by the various scales of the potential kq:

 

Xm
i

�Xn
q

kq�qi

�
1=�
�ri �

�
�� 1

2

�
2=�
�
3A�

2

�
1=�
: (29)

In general, it is a difficult task to compute these quantities,
but in the case where the fields only appear in one of the
terms in the potential, for a given �i, all the �qi vanish
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FIG. 4 (color online). Trajectories in the ns–�dns=d lnk� plane, for different combinations of the parameters ��;��.
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except one. In this case, Eqs. (29) can be simplified to give

 kq �
�
�� 1

2

�
2
�
3A�

2

��Xmq

i

����1�=�
qi

�
��
: (30)

We have already seen that
Pn
q kq � 3A2�2; hence, we can

write the parameter A in terms of the coefficients �qi in the
potential (20):

 A �
1

2�

�
�� 1

2

�
2 Xn

q

�Xmq

i

����1�=�
qi

�
��
: (31)

From this expression we can see that the value of A
increases if we increase the number of terms in the poten-
tial and decreases if we increase the number of scalar fields
in each of the terms. This behavior is very similar to that
encountered in assisted power-law inflation driven by a
combination of pure exponential potentials [17].

From Eq. (28), we are now ready to compute the ci:

 c2�=���1�
i �

�
�� 1

2

�
2�=���1�

�qi

�Xmq

j

����1�=�
qj

�
��
: (32)

In Fig. 5, we compare the effective value of A,

 Aeff �

�
�H2

_H

�
� 1

��N��1 ; (33)

determined from the numerical integration of the equations
of motion, with the value expected at late times using
Eq. (31).

III. INTERMEDIATE INFLATION: a � exp�Atf �

Intermediate inflation is defined by a scale-factor evo-
lution of the form a � exp�tf�, for which we have H �
Aftf�1. Hence, for an expanding universe, Af > 0. From
the time derivative of the Hubble rate _H � Af�f� 1�tf�2,
which must be negative, we conclude in addition that f <
1. Consequently, we impose A> 0 and 0< f < 1.

A. Single-field inflation

For a single scalar field, _H � � _�2=2 and we have

 

_� � �2Af�1� f��1=2tf=2�1; (34)

which gives the evolution of the field as

 � �
�

8A
1� f
f

�
1=2
tf=2 (35)

and results in a time dependence of the potential given by

 V � 3�Aftf�1�2 � Af�1� f�tf�2: (36)

Substituting time for the value of�, we obtain at late times
that

 V��� � 48
A2�2A���=2

��� 4�2
���; (37)

where � � 4�1� f�=f.
The relation between the spectral index and the ratio of

scalar-to-tensor perturbations takes the form

 ns � 1�
�� 2

8�
r; (38)

and it was found that this model is in agreement with the
latest WMAP data [9].

We will now determine the effective value of A when
several fields are evolving.

B. Multifield inflation

As before, we can admit that the cosmic time can be
written in terms of a combination of the fields such that

 t �
Xmq

i

�qi�
2=f
i ; (39)

and the potential can be written as

 V �
Xn
q

vq

�Xmq

i

�qi�
2=f
i

�
2�f�1�

: (40)

We must note, however, that vq is dependent of �qi and not
free as in the previous model. Indeed, the potential can be
rewritten in terms of the parameters bqi � v1=�2f�2�

q �qi in
the form
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FIG. 5 (color online). Evolution of Aeff (solid line) compared
with the late-time value expected from Eq. (31) (dashed line).
The actual potential used is V �

P
qvq�

P
i�qi�

2=���1�
i �2���1� 


exp��2
P
i�qi�

2=���1�
i �, with �11 � 3:6, �12 � 3:9, �23 � 3:3,

�24 � 4:2, � � 2, and v1 � v2 � 1.
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 V �
Xn
q

�Xmq

i

bqi�
2=f
i

�
2�f�1�

: (41)

Scalar potentials of this form, however, have a ridge in
field space rather than a valley as in the previous example;
consequently, any solution for which the ratio of the kinetic
energies of the fields is a constant is unstable. For this
reason we will focus on the simplified class of potentials
given by

 V �
Xm
i

�i�
4�f�1�=f
i : (42)

Admitting that the system attains a regime where all the
fields are important in the evolution of the universe, we
write

 �i �
2

f
citf=2; (43)

and by requiring

 2 _H � �
Xm
i

_�2
i � 2Af�1� f�tf�2; (44)

we have the condition

 

Xm
i

c2
i � 2Af�1� f�: (45)

Substituting Eq. (43) in the equations of motion results
in the following set of relations:

 3Afci � 4
1� f
f

�
2

f

�
3�4=f

�ic
3�4=f
i : (46)

Multiplying by ci and using condition (45) we obtain

 3A2f2 �

�
2

f

�
4�4=fXm

i

�ic
4�f�1�=f
i : (47)

Using Eq. (46) to write ci in terms of �i and substituting
into Eq. (47), we have that

 A �
1

3f=2f

�
f2

8�1� f�

�
1�f

�Xm
i

�f=�2�f�i

�
�2�f�=2

: (48)

We see that also in intermediate inflation, the effective

value of A increases by increasing the number of fields.
Upon substitution back into Eq. (46), the coefficients ci are
given by

 c2�4=f
i �

3�2�f�=2

f�i

�
2

f

�
f�4�4=f

�
4
f� 1

f

�
f�2

: (49)

For a specific model, we can now compare the late-time
numerical evolution of the effective Aeff ,

 Aeff �

�
� _H
H

�
f N

�1� f�f
; (50)

against the expected value given by Eq. (48). An exercise
of this kind would lead to an equivalent evolution to the
one found in Fig. 5.

IV. CONCLUSIONS

We have analyzed a new inflationary scenario named
‘‘logamediate’’ inflation and revisited the scenario of in-
termediate inflation. We have demonstrated that both lead
to phenomenologically viable models of inflation as there
are wide regions of parameter space compatible with the
latest CMB observations. Then, in each of these two sce-
narios, we generalized the solutions obtained for the scalar
potentials to allow an ensemble of scalar fields to partici-
pate in the dynamics. As in the original model of assisted
inflation for pure exponential potentials, we found that also
in intermediate and logamediate inflation the fields behave
as a group and the late-time dynamics is dictated by the
steepness of the potential in all field-space directions.
However, unlike the original assisted inflation case, the
cooperative behavior does not determine if inflation is
more or less probable as we increase the number of fields.
The reason for this difference is that the parameters that
affect the condition for acceleration of the universe are � >
1 and f < 1, which are required to be fixed to a certain
value for all fields. The only effective parameter that
depends on the parameters of the potential is A, whose
value, however, does not influence the criteria for accel-
erated expansion to occur.
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