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We study the effect of the cosmological constant � on the bending of light by a concentrated spherically
symmetric mass. Contrarily to previous claims, we show that, when the Schwarzschild-de Sitter geometry
is taken into account, � does indeed contribute to the bending.
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I. INTRODUCTION

In the ongoing effort to understand the nature of the dark
energy that would be responsible for accelerating the ex-
pansion of our Universe, it is of interest to investigate how
the various candidates for this role differ in other observ-
able effects. Review papers on the cosmic acceleration
problem and the dark energy associated with it can be
found, e.g., in [1–8] and references therein. One of the
prime candidates is the cosmological constant �. From this
point of view, various authors have studied the possible
contribution of � to the local bending of light. Even though
such an effect would be many orders of magnitude too
small to be measured with presently available instruments,
it might, in principle, constitute one of the distinguishing
characteristics of �. Yet there seems to be a generally
uncontested perception in the literature that the basic
light-bending effect of a concentrated spherically symmet-
ric mass, as originally obtained by Einstein, is the same—
by a fortuitous canceling of terms—whether or not one
includes a cosmological � term in the general-relativistic
field equations. The purpose of our paper is to prove the
contrary.

The argument for the noninfluence of � was apparently
first made in [9] and has been remade and reaffirmed by
other authors; see for example [10–14]. The common basis
of their arguments is that, in the Schwarzschild-de Sitter
(SdS) metric (first derived by Kottler [15]), which applies
when � is included, � nevertheless drops out of the exact
r, � differential equation for a light path (null geodesic).
Hence the integrated orbital r, � relation for a light path is
also the same with or without �. And we agree with that.

But the differential equation and its integral are only half
the story. The other half is the metric itself, which deter-
mines the actual observations that can be made on the r, �
orbit equation. When that is taken into account, a quite
different picture emerges: � does contribute to the ob-
served bending of light. In fact, as intuition would suggest,
since a positive � effectively counteracts gravity, a positive
� diminishes the classical Einstein bending of light, as we
shall show.

II. THE GEOMETRY AND THE BENDING OF
LIGHT

The metric we shall be concerned with here (as were the
other authors) is the above-mentioned SdS metric

 ds2 � ��r�dt2 � ��r��1dr2 � r2�d�2 � sin2���d�2�

(1)

where

 ��r� � 1�
2m
r
�

�r2

3
; (2)

and where, in the presently used relativistic units (c �
G � 1), m is the mass of the central object. In the limiting
case � � 0 the metric (1) reduces to the Schwarzschild
metric; in the other limiting case, m � 0, it reduces to the
static form of the metric of de Sitter spacetime.

As is well known [e.g. Eq. (11.18) in [16]], the spatial
equatorial coordinate ‘‘plane’’ � � �=2 (like all other such
central ‘‘planes’’) in Schwarzschild spacetime, having the
2-metric

 dl2 �
�
1�

2m
r

�
�1
dr2 � r2d�2; (3)

has an intrinsic geometry identical to that of the so-called
Flamm paraboloid of revolution [17], whose equation is

 z2 � 8m�r� 2m� (4)

in Euclidean 3-space referred to cylindrical polar coordi-
nates �r;�; z�. (It is the surface labeled �3 in our Fig. 1.)
The importance of the ‘‘central planes’’ lies in the fact that
every orbit—by symmetry—lies in one of them.

The central planes of SdS spacetime naturally have a
different intrinsic geometry. Theirs is determined by the 2-
metric

 dl2 �
�

1�
2m
r
�

�r2

3

�
�1
dr2 � r2d�2: (5)

Near the central mass (where m=r dominates over �r2) we
get essentially the Flamm geometry. Far from the central
mass (where �r2 dominates over m=r) we get the geome-
try of a sphere of radius a �

���������
3=�
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 dl2 �
�
1�

r2

a2

�
�1
dr2 � r2d�2: (6)

[See Eq. (16.18) in [16] with r � a�, and Fig. 16.3 there,
where � corresponds to the de Sitter r.]

Hence the surface of revolution that replaces the Flamm
paraboloid in the case of SdS spacetime is a combination of
a Flamm paraboloid and a sphere, as shown in Fig. 1. At
r �

���������
3=�

p
we have a coordinate singularity in the metric

(actually the de Sitter horizon) just as there is a coordinate
singularity at r � 2m (the Schwarzschild horizon). But
these singularities need not concern us here, since the
region of interest lies in between.

Figure 1 is a useful picture to have in mind. Here we
have plotted, first, on a flat r, � plane �1, the graph of a
typical photon orbit L1 as given by the r, � relativistic
orbit equation, from which, by general agreement, � is
absent. Exactly the same r, � relation holds on the Flamm
paraboloid �3 and on the SdS sphere �2. Hence the photon
orbits L3 in the Schwarzschild spacetime, and L2 in the
SdS spacetime, correspond to the vertical projections of L1

onto the surfaces �3 and �2, respectively. In the case of
Schwarzschild spacetime, where �3 becomes flat at infin-
ity, the asymptotes of L3 are identical to those of L1. So
the total deflection angle is the same as that of L1 in the flat
space �1, and indeed it is usually so evaluated.

But for SdS spacetime the situation is more complicated.
SdS spacetime in its static representation does not become
flat at infinity. As r approaches the value

���������
3=�

p
, L2

‘‘climbs up’’ the SdS sphere to the horizon, and angle
measurements differ severely from the corresponding
ones in �1 and �3. We therefore investigate next how �

affects deflection measurements in the finite region be-
tween the two horizons.

As is shown in many textbooks [see, for example,
Eq. (14.24) in [16] with h � 0, as justified before
Eq. (11.62) there], the orbital equation for light in SdS
spacetime is

 

d2u

d�2
� u � 3mu2; �u � 1=r�; (7)

without approximation and in spite of the presence of � in
the SdS metric. This equation is the same as, e.g., Eq. (17)
in [9] and Eq. (22) in [10].

The orbit that is usually discussed is a small perturbation
of the undeflected straight line in flat space,

 r sin��� � R (8)

(see Fig. 2). This ‘‘first approximation’’ to Eq. (7) is then
substituted into the comparatively small relativistic correc-
tion term 3mu2, and the resulting linear equation for u
solved in the usual way. Thus one obtains [Eq. (11.64) in
[16]]

 

1

r
� u �

sin���
R
�

3m

2R2

�
1�

1

3
cos�2��

�
: (9)

It is this orbit that we shall take as L1 in Fig. 1 and as the
relevant r, � relation in both Schwarzschild and SdS
spacetime. Its parameter R is related to the physically
meaningful area distance r0 of closest approach by

 

1

r0
�

1

R
�
m

R2 : (10)

Other authors, see for example [18,19], used the impact
parameter b to discuss the bending of light in
Schwarzschild spacetime, but the SdS spacetime is not
asymptotically flat and one needs to define other parame-
ters and constants of motion such as R.

In Schwarzschild spacetime, for the asymptote of the
orbit, we can let r! 1 in (9) and, correspondingly, �!
�1 (small). Thus we find at once that �1 � �2m=R. So
the total deflection, defined as the angle between the
asymptotes (both in �1 and �3), is 4m=R, as usual. But
in SdS spacetime, r! 1 makes no sense. What we can
measure here are the various angles  that the photon orbit

sin

FIG. 2. The orbital map. This is a plane graph of the orbit
equation (9) and coincides with �1 in Fig. 1. The one-sided
deflection angle is  �� � �.

FIG. 1. Schwarzschild and Schwarzschild-de Sitter geome-
tries. �3 is the Flamm paraboloid representation of a central
coordinate plane in Schwarzschild spacetime; �2 is the corre-
sponding surface in Schwarzschild-de Sitter spacetime; �1 is an
auxiliary plane with an r, � graph, L1, of the orbit equation (9).
The curves L2 and L3 are the vertical projections of L1 onto �2

and �3, and represent the true spatial curvature of the orbits.
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makes with successive coordinate planes � � const. (See
Fig. 2.)

Some interesting points were discussed in [20] and it has
been argued there that one should consider the turning
point r0 (point of closest approach) and not the constant
of motion b in the null geodesic differential equation.
Then, since r0 is not affected by �, and by virtue of the
null geodesic equation, � should not contribute to the
bending of light. As explained in the Introduction, this
and other arguments were based on the null geodesic
differential equation; however, as we demonstrate in the
next section, the contribution of � to the bending angle
comes from the spacetime metric itself [21], independently
from what one will use for the parametrization of the null
geodesic differential equation (an independent argument is
also discussed in the note [22]).

III. RESULTS AND DISCUSSION

In order to calculate the bending angle, we use the
invariant formula for the cosine of the angle between two
coordinate directions d and � as shown in Fig. 2 (whose
proof is immediate by going to locally Euclidean coordi-
nates):

 cos� � �
gijdi�j

�gijd
idj�1=2�gij�

i�j�1=2
: (11)

For our purpose the relevant gij is the 2-metric of �2,
namely (5). Then

 g11 � ��r��1 �

�
1�

2m
r
�

�r2

3

�
�1
; g22 � r2:

(12)

Next, we differentiate (9) and multiply by r2, to find

 

dr
d�
�
mr2

R2 sin�2�� �
r2

R
cos��� � A�r; ��: (13)

Then, if we call the direction of the orbit d and that of the
coordinate line � � const �, we have

 d � �dr; d�� � �A; 1�d� �d� < 0�;

� � ��r; 0� � �1; 0��r:
(14)

Substituted into (11), these values yield

 cos� � �
jAj

�A2 � ��r�r2�1=2
(15)

or, more conveniently,

 tan� � � �sec2� � � 1�1=2 �
��r�1=2r
jAj

: (16)

The one-sided bending angle is given by � �  ��.
Let us calculate � �  �  0 when � � 0. By (9), this

occurs when r � R2=2m, and consequently jAj �
R3=4m2. Equation (16) then yields for the (small) angle  0

  0 �
2m
R

�
1�

2m2

R2 �
�R4

24m2

�
: (17)

This is the formula of most astrophysical significance.
Twice  0 is the total bending of a light ray by a massive
object, if both source and observer are ‘‘far’’ from that
object. In Schwarzschild space we would simply let r! 1
in (16) to get this angle. In SdS space, on the other hand, r
cannot exceed its horizon value

���������
3=�

p
, and even that value

is unrealistic. The only other intrinsically characterized r
value for this purpose is that at � � 0. As Eq. (17) shows,
at that point the classical Einstein one-sided bending angle
2m=R has already been reached, to first order, when � � 0
[we recall here that R is related to r0 by (10) and, to first
order, the Einstein angle has the same expression in terms
of R or r0]. And beyond that point we find ourselves in the
very extensive, essentially flat, region of transition between
Schwarzschild and de Sitter geometry, in which no further
significant bending takes place (note that this holds only
for particular values ofm, R, and �). It is in that region that
both the source and the observer may be assumed to be
situated, and where the observer measures the physical
bending angle 2 0 directly as the angle between the ap-
parent and the undisturbed position of the source. Note,
from (17), that a positive � diminishes the bending angle,
as expected.

For completeness’ sake it is of interest also to look at
bending angles occurring at � values other than zero, and
their connection with observations. As an example, we
calculate  when � � 45�. To sufficient accuracy, (9) is
then satisfied by r �

���
2
p
R. With that, and assuming m=R

and �R2 to be small, we find successively from (2), (13),
and (16)
 

A � 2m�
���
2
p
R � �

���
2
p
R
�
1�

���
2
p
m
R

�
;

�1=2 �

�
1�

2m���
2
p
R
�

2

3
�R2

�
1=2
� 1�

m���
2
p
R
�

�R2

3
;

tan� � � 1�
m���
2
p
R
�

�R2

3
: (18)

The actual (small) bending angle at � � 45� is � �  �
�. For this, we find, from (18),

 � �
m

2
���
2
p
R
�

�R2

6
; (19)

where we used � �  �� � tan� ��� � �tan� � �
1�=�1� tan� �� and tan��� � 1. Once again there is the
expected negative contribution from �.

The observational situation in the general case is as
follows. The observer is at the intersection of the ray
coming from the distant source and a radius having coor-
dinate direction�. Clearly such an observer can measure  
directly: it is the visually determined angle from the center
of the lens to the apparent position of the star being lensed.
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In principle, � is also measurable, but it requires the input
of a second observer far away who has determined the total
bending angle 2 0. Then � � ��  0, where � is the
angle from the center of the lens to the undisturbed position
of the star. We provided here a brief prescription for ob-
servations; however, a full study on how to put our results
into an observational context is pursued and will be pre-
sented in a follow-up paper. We will also include there
second order perturbations to the geodesic equation in
order to match the higher order terms in Eq. (17).

Of course, the contribution of � to the bending of light is
very small. We know from cosmology that � is of the order
of 10�56 cm�2. With that, the ratio of the two terms on the
right-hand side of (17), in the case of a ray grazing the limb
of the sun, is 1028:1. In this respect, though it is also
hopelessly small, the contribution of � to the advance of
the perihelion of Mercury [see Eq. (14.25) in [16]] is

superior: it could be as much as 10�15 of the total.
However, one would expect this to be different at very
large scales (e.g. clusters and superclusters of galaxies),
and this will be explored in detail in a follow-up paper.

In conclusion, the present paper provides a long overdue
correction to previous works on whether or not the cosmo-
logical constant � affects the bending of light by a con-
centrated spherically symmetric mass. We showed that,
when the geometry of the Schwarzschild-de Sitter space-
time is taken into account, � indeed contributes to the light
bending.
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0
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