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We present a new method for computing the best approximation to a Killing vector on closed 2-surfaces
that are topologically S2. When solutions of Killing’s equation do not exist, this method is shown to yield
results superior to those produced by existing methods. In addition, this method appears to provide a new
tool for studying the horizon geometry of distorted black holes.

DOI: 10.1103/PhysRevD.76.041501 PACS numbers: 04.25.Dm, 02.40.�k, 04.70.Bw

I. INTRODUCTION

An exact geometric sphere possesses a two parameter
family of rotational Killing vectors while even a slightly
distorted sphere may possess no Killing vectors whatso-
ever. Nevertheless, one could imagine defining perturba-
tions of these initial vectors which would, in some well-
defined ‘‘best’’ sense, represent the closest available ap-
proximation to vectors which almost satisfy Killing’s equa-
tion on such a slightly distorted sphere. In this paper we
introduce a definition which is best in a least squared sense
and discuss some of its attributes.

In general relativity, rotational Killing vectors play an
important role in providing a quasilocal definition for the
spin of a rotating body. A system of astrophysical interest,
such as a pair of orbiting black holes, possesses no global
rotational Killing vectors. In this case, angular momentum
can only be rigorously defined for the system as a whole in
terms of asymptotic rotational Killing vectors.

A quantity of great importance in the evolution of black-
hole binaries is the spin of the individual black holes. The
spin of such black holes can only be determined by some
approximate quasilocal definition (see Ref. [1] for a re-
view). There exist many different quasilocal definitions for
angular momentum, but they all take the form of an inte-
gral over a 2-surface with topology S2, and all require a
rotational Killing vector on this surface.

In numerical relativity, the quasilocal spin of a black
hole is most often expressed as

 S��� �
1

8�G

I
S
Kij�jd2Si; (1)

where Kij is the extrinsic curvature of a spatial hypersur-
face with metric �ij, d2Si is the area element of an S2

surface of integration S taken to be a black hole’s apparent
horizon, and �i is a Killing vector of the metric hij induced
on S by �ij. This form was derived by Brown and York [2]
and later within the Isolated Horizons framework (see
Ref. [3] for a review). It gives the angular momentum of

the rotation associated with the rotational Killing vector �i.
Unfortunately, the induced metric hij will not admit a
solution of Killing’s equation for the case of orbiting
black-hole binaries. In this situation, one has no recourse
but to find some reasonable approximation for the Killing
vector required in Eq. (1).

In some cases, conformal Killing vectors have been
used, and have yielded physically reasonable results [4].
Better still, a ‘‘Killing Transport’’ (KT) technique [5],
which finds exact Killing vectors when they are present,
has been recently adopted, and appears to give physically
reasonable results (cf. Refs. [4,6]). Our definition is shown
to be even better in a well-defined least squared sense and,
for coalescing binary black holes, yields other interesting
results worthy of further investigation.

II. EQUATIONS FOR THE BEST APPROXIMATE
KILLING VECTOR

An arbitrary vector field �i on S2 can be decomposed
into two scalars d and v

 �i � Did� �ijDj�; (2)

where Di is the covariant derivative compatible with the
metric hij induced on the surface S and �ij is the Levi-
Civita tensor. Similarly, the general gradient of a 1-form
can be expressed as

 Di�j � L�ij � hij�� Sij; (3)

where L and � are scalars, and Sij is symmetric and trace
free. Equations (2) and (3) immediately imply that

 � � 1
2D

iDid; (4)

 L � �1
2D

iDiv; (5)

 Sij � DiDjd�
1
2hijD

kDkd�
1
2��ikDjD

kv� �jkDiD
kv�:

(6)

For �i to be Killing, it must satisfy Killing’s equation
D�i�j� � 0 where the parentheses denote symmetrization.
This implies that � and Sij must vanish if �i is Killing. We
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may choose � to vanish, in which case Eq. (4) implies that
d is harmonic. But, assuming a nonsingular metric, the
only harmonic function on S2 is a constant, which makes
no contribution to �i. Thus, we are left with

 �i � �ijDj�; (7)

 Di�j � L�ij � Sij: (8)

Our goal is to find an approximate Killing vector that
minimizes the non-Killing aspects of �i. Clearly, having
already set � to zero, a solution with Sij as close to zero as
possible is what we desire, so we proceed by finding a
vector �i that minimizes SijSij.

From Eqs. (7) and (8) it follows that

 L � 1
2�ijD

i�j; (9)

and

 SijS
ij � �DiDjv��D

iDjv� � 1
2�D

kDkv�
2: (10)

Now, we wish to extremize SijSij with respect to v. But, we
must do this in a way that is independent of the normal-
ization of �i. Using j�j2 � �Div��D

iv�, we choose the
following scalar function on S

 L � SijSij �
1
2

2R��Dkv��Dkv�; (11)

where 2R is the Ricci scalar associated with hij and � is a
dimensionless constant. The factor of 2R is included in the
constraint term of Eq. (11) on dimensional grounds and
also gives extra weight to regions where the curvature is
large, however other choices for the constraint term may
also prove useful [7]. Varying with respect to v, �L=�v �
0 yields a fourth-order scalar elliptic equation for v that
can be rewritten as a pair of second-order scalar elliptic
equations for v and L

 DiDiL� �1����12�D
i 2R�Div� 2RL� � 0; (12)

 DiDiv� 2L � 0: (13)

Equations (12) and (13) can be solved for L and v, with the
Lagrange multiplier � fixed by the requirement that
Eq. (12) be integrable on S2. Given a solution for v, the
approximate rotational Killing vector is given by Eq. (7)
once it is normalized to have affine length 2�. We note that
Eq. (12) is satisfied by a Killing vector �i when � � 0
(with L defined by Eq. (9) and Div � �2= 2R�DiL).

It has been noted [8,9] that an approximate Killing
vector should be divergence free Di�i � 0, in part because
the angular momenta computed using such an approximate
Killing vector possess a certain gauge invariance.
Approximate Killing vectors constructed using the KT
method are not guaranteed to be divergenceless, although
at least in certain cases [4] this can be enforced a posteri-
ori. These approximate Killing vectors also inherit an
additional problem. A defining equation of the KT method

[5], which can be written in the form of Eq. (9), is not
satisfied by solutions of the KT equations unless there is a
Killing vector. This is due to the path dependence of the
solution scheme. Moreover, Eq. (9) cannot be enforced a
posteriori.

Because our approximate Killing vector is defined from
the solution of Eqs. (12) and (13) via Eq. (7), it is guaran-
teed to be divergenceless. Furthermore, because our solu-
tion is obtained via a global solution of elliptic equations,
Eq. (9) is also guaranteed to be satisfied.

III. TESTS

We have implemented a code to solve Eqs. (12) and (13)
for situations where the metric hij is conformal to a unit 2-
sphere:

 d s2 �  4r2�d�2 � sin2�d�2�: (14)

Details of the solution scheme will be presented in a future
paper [10]. While this form for the metric may seem to be a
strong simplification, a scheme based on this form is
suitably general since any sufficiently smooth metric on
S2 is conformally equivalent to a unit 2-sphere.

To explore our method, we first consider the case where
the conformal factor is given by an ‘ � 2, m � 0 scalar
spherical harmonic with its axis of symmetry rotated to a
direction given by ��0; �0�

  ��;�� � A� B
X2

m��2

Y2m��;��Y	2m��
0; �0�; (15)

and A and B are real constants chosen to guarantee that
 > 0 everywhere. The form of Eq. (15) guarantees that
the metric possesses a rotational Killing vector and in all
the cases we attempted, solving Eqs. (12) and (13) returned
a solution where the axis of symmetry was correctly ro-
tated by ��0; �0� and for which � � 0. As mentioned
above, the solutions are divergenceless and satisfy
Eq. (9) to the level of roundoff error. Furthermore, we
find SijS

ij � 0 also to the level of roundoff error, as
expected for a solution that yields a true Killing vector.

Interestingly, Eqs. (12) and (13) in general have multiple
solutions. In fact for the example given by Eq. (15), there
exist an infinitely degenerate set of solutions where the axis
of approximate symmetry lies anywhere in the rotated
equatorial plane. For these solutions, � � 0 and SijSij �

0 since these solutions are not true Killing vectors. Again,
the solutions are divergenceless and satisfy Eq. (9) to the
level of roundoff error.

We have also tested the system of equations against the
numerically generated initial data for corotating and non-
spinning equal-mass black-hole binaries as described in
Ref. [4]. We use data for different orbital separations,
parametrized by the dimensionless orbital angular velocity
M�0, where M is the total irreducible mass of the binary.
For the case of corotating black holes, the spin of each
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black hole is aligned with the direction of the orbital
angular momentum. In all cases tested, we have found
that the measured spins based on an approximate Killing
vector obtained using Eqs. (12) and (13) are nearly iden-
tical to those based on the KT method, with differences
growing only to a few parts in 107. While the resulting
spins are nearly identical, our solutions are measurably
different from the results of the KT method, and we find
that our system of equations produces solutions for which
hSijS

iji � �4���1 H SijSijd� is always smaller than that
produced by the KT method. Note that in both cases, the
approximate Killing vectors have been properly normal-
ized to have affine length 2�. Figure 1 shows hSijSiji as
computed by our method and the KT method, and the
analogous quantity h2�2i obtained by using conformal
Killing vectors. On a separate scale, Fig. 1 also shows
the value of � obtained by our method for the same data.

As with the first example given by Eq. (15), our equa-
tions yield multiple solutions for the numerically generated
black-hole data. The solutions shown in Fig. 1 have their
axis of approximate symmetry aligned with the orbital
angular momentum (z-axis) as expected. In all cases, we
find two additional solutions. Both have their axis of
approximate symmetry in the orbital plane and we refer
to them as Solutions 1 and 2. We find that for all orbital
separations, the directions of these two symmetry axes are
orthogonal to the level of numerical error in the code
(truncation error). For large separation (small M�0),
Solution 1 has its axis of approximate symmetry pointed
roughly in the direction of motion of the black hole (y-axis)
at an azimuthal angle of �1, and Solution 2 has its axis
pointed roughly toward the companion black hole (x-axis)

at an angle of �2. The directions �1 and �2 (mod �) for
these two solutions are displayed in Fig. 2. Here, zero
azimuthal angle is in the direction of the positive x-axis.
For small separations, the roles are reversed and we find
that Solution 1 points roughly toward the x-axis and
Solution 2 toward the y-axis.

The regime between large and small orbital separations,
where the two solutions swap orientations, is quite inter-
esting. Over most of the range of M�0 considered, �1 and
�2 change gradually. However, over a narrow range of
M�0, the angles change rapidly but smoothly, rotating
by an angle of approximately �=2. Interestingly, the value
of hSijSiji for Solution 1 is smaller than that for Solution 2
for all separations. At the point where �1 � �2 � �=2 �
�=4, curves of hSijSiji for the two solutions ‘‘appear’’ to
cross. However, a careful examination shows this to be an
‘‘avoided’’ crossing. We shall examine this behavior in
more detail in a future paper [10].

Finally, if we measure the spin of the black holes using
the approximate Killing vectors associate with Solutions 1
and 2, all cases yield zero to truncation error. So, for the
case of corotating equal-mass black-hole binaries, we find
three ‘‘orthogonal’’ solutions and only one of them yields a
nonvanishing spin.

We find similar results for the case of nonspinning
black-hole-binary initial data. There is a solution with an
axis of approximate symmetry aligned with the orbital
angular momentum and two additional solutions with their
axes in the orbital plane and similarly orthogonal to each
other. As discussed in Ref. [4], the nonspinning black-hole
data we use are defined by setting the spin measured by the
KT method to zero. The corresponding spins measured by
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FIG. 1 (color online). The value of hSijSiji for the new method
is displayed as a solid (black) line and its value when using the
KT method is shown as a dashed (red) line. The analogous
quantity h2�2i when using conformal Killing vectors is shown
as a dot-dot-dashed (black) line visible in the inset where a
logarithmic scaling is used. The value of the Lagrange multiplier
� obtained using the new method is also displayed as a dot-
dashed (blue) line and its scale is shown on the right. All data is
from one corotating black hole in an equal-mass binary.
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FIG. 2 (color online). The top portion of the figure displays the
directions of the additional approximate symmetry axes with
� � 0 in the positive x direction. The axis direction of the
Solution 1 is displayed as a solid (black) curve and the direction
for Solution 2, with �=2 subtracted, is displayed as a dashed
(red) line. The lines are visually coincident. The lower portion of
the figure displays �� � �1 ��2 � �=2 showing the degree
to which the two axes are approximately orthogonal. All data is
from one corotating black hole in an equal-mass binary.
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our method again differ at most by a few parts in 107, and
in all cases we find the value of hSijSiji for the new method
to be smaller than the value from the KT solution. The
behavior of the additional solutions is qualitatively the
same as seen for the case of corotation and is displayed
in Fig. 3. While the behaviors are generally similar, the
directions of the approximate symmetry axes are some-
what different and the rapid change in the direction of the
solutions occurs at much smaller separation.

IV. DISCUSSION

We have mentioned two previous methods defined in the
literature for use in computing the spin of rotating black
holes that lack axial symmetry. Both have been considered
useful in the past, and yet both have shortcomings. When a
Killing vector does not exist, the conformal Killing ap-
proach returns a vector for which Di�i � 0. By contrast,
the Killing Transport method constructs a �i that can often
be made divergenceless. It also constructs the scalar L (see
Eq. (3)), but generally this does not satisfy Eq. (9). Our new
method not only ensures both that �i is divergenceless and
that Eq. (9) is satisfied, but it also is best in the sense that
hSijSiji is minimal. Since a Killing vector cannot be pro-
duced where one does not exist, the usefulness of our
results for an approximate Killing vector will depend on
the extent to which physical questions (such as concern
black-hole spins) can be given meaningful answers. In
particular, it may have immediate application in giving a
more refined definition for binaries containing black holes
without individual spin.

One sense in which our results already appear mean-
ingful relates to the vectors found to reside in our xy-plane,
for which the corresponding spins are computed to be zero
to the level of truncation error. Any other outcome for these
would have been somewhat unpalatable. Their actual ori-
entation for binary black holes at large separation can be
easily interpreted in terms of boosted frames. Closer in,
their combined dramatic rotation at some critical separa-
tion warrants further investigation, as does the apparent
occurrence of avoided crossings for hSijSiji and for � at
the critical separation.

Another sense in which our results appear meaningful
relates to the solution associated with our z-direction. For
sufficiently large black-hole separation, our result leads to
spins which are in good agreement with those of the KT
method. This is not unreasonable, even though we find
small differences between the two solutions for �i over
the surface of the apparent horizon. However, for highly
distorted black holes—such as near merger or with near
maximal rotation, or for unaligned spins—we can imagine
that our results could prove to be more robust. More
extensive comparisons than we have been able to carry
out here will be necessary before this expectation might be
practically substantiated.

To a high degree of precision, it appears that the axes of
the approximate symmetries we find form an orthogonal
basis in all the cases we have examined. This is of consid-
erable interest, because this basis is directly related to
intrinsic properties of the apparent horizons we have
studied. Thus, in addition to the reasonableness of our
results associated with both the rotation axis and the orbital
plane, our method appears to give a new tool for studying
the horizon geometry of distorted black holes in general,
and the volatile dynamics of black holes during collision,
in particular. Further investigation of the usefulness of this
new tool will be forthcoming.
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